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Abstract

Background: Clarifying the physicochemical properties of nanomaterials is crucial for hazard assessment and the
safe application of these substances. With this in mind, we analyzed the relationship between particle size and the
in vitro effect of amorphous nanosilica (nSP). Specifically, we evaluated the relationship between particle size of nSP
and the in vitro biological effects using human keratinocyte cells (HaCaT).

Results: Our results indicate that exposure to nSP of 70 nm diameter (nSP70) induced an elevated level of reactive
oxygen species (ROS), leading to DNA damage. A markedly reduced response was observed using submicron-sized
silica particles of 300 and 1000 nm diameter. In addition, cytochalasin D-treatment reduced nSP70-mediated ROS
generation and DNA damage, suggesting that endocytosis is involved in nSP70-mediated cellular effects.

Conclusions: Thus, particle size affects amorphous silica-induced ROS generation and DNA damage of HaCaT cells.
We believe clarification of the endocytosis pathway of nSP will provide useful information for hazard assessment as

well as the design of safer forms of nSPs.

Background
With recent developments in nanotechnology, various
kinds of nanomaterials have been designed and pro-
duced throughout the world. Nanomaterials have been
widely used in consumer and industrial applications,
such as medicine, cosmetics and foods, because they
exhibit unique physicochemical properties and innova-
tive functions [1]. For example, materials such as amor-
phous silica nanoparticles (nSPs) and titanium dioxide
(TiO,) are colorless and reflect ultraviolet light more
efficiently than micro-sized particles. Consequently,
these substances are already used as functional ingredi-
ents in many cosmetics such as foundation creams and
sunscreens.

However, concerns over the potentially harmful effects
of nanomaterials have been raised precisely because they
possess novel properties that are different from those of
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microsized materials. Increasing numbers of studies show
that many types of nanomaterials, such as carbon nano-
tubes, fullerenes, quantum dots, zinc oxide and TiO,,
have a harmful effect on cells and rodents [2-14]. For
example, previous studies reported that various nanopar-
ticles induced toxicological effects mainly in lung, liver,
spleen and kidney tissues [3,10,15-19]. In vivo toxicity
studies in Sprague Dawley rats showed that inhaled silver
nanoparticles elicited chronic inflammation in the lungs
[20]. After intravenous injection with silica nanoparticles
in BALB/c mice, 70 nm particles induced liver injury at
30 mg/kg, while 300 nm or 1000 nm had no effect [21].
Recent evidence indicates that the small size and high
surface area of nanomaterials may cause unpredictable
genotoxic properties [22]. For example, induction of
DNA damage by gold-, silver-, cobalt-, TiO,-nanoparti-
cles has been reported. The results from various studies
suggest that these nanomaterials may cause DNA damage
by an indirect pathway through promoting oxidative
stress and inflammatory responses via dysfunction of
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mitochondria or inflammasomes. Central to the study of
nanotoxicology is genotoxicity, the study of genetic aber-
rations following exposure to nanomaterials, because it is
known that an increased genetic instability is associated
with the development of cancer.

A sufficient understanding of the relationship
between the physicochemical characteristics of nano-
materials governing their cytotoxicity (i.e. genotoxi-
city) and the identification of factors that influence
their associated hazards are essential for the develop-
ment of safer nanomaterials [22-25]. Since the linkage
analysis is the sole methods for developing safe nano-
materials, many researchers have conducted extensive
efforts [26-30]. In this context, the aim of our study
was to investigate the relationship between particle
size and in vitro hazard of amorphous nanosilica
(nSP), especially focusing on DNA damage, using
human keratinocyte cells.
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Results and Discussion
We first analyzed the physicochemical properties of the
commercially available silica particles of 70, 300 and
1000 nm in diameter (nSP70, nSP300 and mSP1000,
respectively). Close examination of the silica particles of
different particle sizes (nSP70, nSP300, mSP1000) by
scanning electron microscopy (SEM) revealed that all
the particles used in this study were spherical and the
primary particle sizes were approximately uniform
(Figure 1A-C). The size distribution spectrum of each
set of silica particles in a neutral solvent showed a single
peak. Moreover, the average particle size corresponded
almost precisely to the anticipated size for each sample
(Figure 1D and 1E). These results suggest that the silica
particles used in this study remained as stable well-
dispersed particles in solution.

Cosmetic products containing nSP, such as those
used in skincare treatments, have been on the market

D 40-

scattering method.

nSP70
nSP300
weeeesa mSP1000 1390 +92
g 307 &
‘5 356 + 14.6
3 20- 69.4+7.7 i
8 P
£ : s
10 P
0 | p— :I : !
10 100 1000 10000
Size (d.nm)

Figure 1 Scanning electron microscopy (SEM) analysis and spectrum of size distribution of amorphous silica particles. (A-C) SEM
photomicrographs of silica particles used in this study: nSP70 (A), nSP300 (B) and mSP1000 (C). Scale bars: 0.1 mm (A) and 0.5 mm (B and C).
(D and E) Size distribution of nSP70 (black), nSP300 (gray) and mSP1000 (dashed line) in water (D) or PBS (E) were measured by a dynamic light
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for a considerable period of time. Adult human skin
has an average surface area of 1.95 m®, weighs 3.18 kg
and comprises over 300 million cells. The skin is the
largest organ in the human body, which provides
protection against heat, cold, electromagnetic radiation
and chemical damage. Indeed, skin cells are likely to
have the highest frequency of exposure to nSPs. Hence,
a safety evaluation of nSPs using dermal cells is essen-
tial. Based on this consideration, using the HaCaT
human keratinocyte cell line as a model system, we
studied the effects of various sized silica particles on
cell function. Specifically, we used HaCaT cells to per-
form the LDH release assay to assess membrane
damage induced by silica particles. We found that
membrane damage was not observed in nSP300- and
mSP1000-treated HaCaT cells. By contrast, LDH
release increased after exposure of the cells to nSP70
in a dose-dependent manner (Figure 2). This observa-
tion suggested that membrane damage in keratinocytes
increased significantly when the particle size was less
than 100 nm. The decrease of particle size changes the
physicochemical properties of the silica particles, such
as surface area and the number of functional groups per
particle weight, which are both increased [31-34]. In addi-
tion, subsequent experiments were performed at a non-
toxic dose (less than 300 pug/ml) in order to exclude the
toxic effects of nSP70.
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Figure 2 Effect of silica particles on membrane damage. Cellular
membrane damage in HaCaT cells after incubation with nSP70
(circles), nSP300 (squares) and mSP1000 (diamonds) for 24 h was
evaluated by the LDH release assay. The percentage cellular
membrane damage was calculated relative to the negative
(medium) controls. Data are presented as means + SD (n = 3).*P <
0.01 vs same dose of nSP300 and mSP1000.
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Some reports have indicated that intracellular generation
of reactive oxygen species (ROS) is induced by nSP
[35-37]. Furthermore, it has recently been reported that
crystalline silica induces intracellular ROS generation via
NADPH oxidase activation following uptake by endocyto-
sis [38,39]. Based on these reports, ROS generation and
DNA damage are an obvious means of assessing the
hazard posed by nSP. Firstly, total intracellular ROS gen-
eration was measured in silica particle-treated HaCaT
cells using 2’7’-dichlorodihydorofluorescein diacetate
(DCFH-DA). Silica particles of all sizes were found to
induce intracellular ROS generation in a dose-dependent
fashion (Figure 3A). However, ROS generation by nSP70
treatment was significantly greater compared with nSP300
and mSP1000 treatment at the same particle concentra-
tion. Additionally, we confirmed that hydroxyl radicals,
one of the most highly reactive ROS, were generated in
HaCaT cells treated with silica particles, in particular with
nSP70 (Figure 3B). Even in the 10 pg/ml-treated group,
hydroxyl radical-generation effects of nSP70-treatment
were 1.4 times higher than that of nSP300 and mSP1000-
treated groups. These results suggested that silica particle-
induced intracellular ROS generation was significantly
increased by decreasing the particle size to less than 100
nm. ROS are defined as either “primary” or “secondary”.
Primary ROS (e.g. superoxide, O,") can be generated
through metabolic processes or through the activation of
oxygen, which results in the formation of a reactive
nucleophilic molecule of oxygen i.e., superoxide anion.
These reactive species may interact with other molecules,
such as redox active transition metals (e.g. iron) or
enzymes, resulting in the production of “secondary” ROS
(e.g. "OH), which are primary mediators of DNA damage.
Consequently, we analyzed the formation of 7°8-dihydro-
8-oxodeoxyguanosine (8-OH-dG) as an indicator of ROS-
induced DNA damage. When HaCaT cells were treated
with various concentrations of silica particles for 3 h, 8-
OH-dG levels in nSP300- and mSP1000-treated cells
remained constant regardless of silica particle dose and
were equal to the levels found in untreated cells (Figure
3C). By contrast, 8-OH-dG levels increased upon exposure
of the cells to nSP70 in a dose-dependent manner. After
treatment with nSP70 at 90 pug/ml the level of 8-OH-dG
increased significantly compared with non-treated cells.

8-OH-dG is known as a major index of oxidative
DNA damage related to mutagenesis, carcinogenesis and
the aging process [40,41]. These reports, together with
our results, suggest the possibility that nSP70 may be
carcinogenic. Moreover, nSP-induced ROS may induce
genotoxicity via DNA strand breaks, oxidative DNA
damage and mutation. Indeed, DNA damage was
detected in nSP70-treated HaCaT cells. In addition,
nSP70-mediated DNA damage was inhibited by pre-
treatment with the ROS scavenger, N-acetylcystein
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Figure 3 Detection of oxidative stress induced by silica particle treatment in HaCaT cells. Detection of total ROS and hydroxy! radical
induced by silica particle treatment in HaCaT cells. HaCaT cells were incubated with various concentrations of nSP70 (circles), nSP300 (squares),
and mSP1000 (diamonds) for 3 h. (A) Total ROS induced by treatment with silica particles were expressed as relative fluorescence units in the
DCFH assay.*P < 0.01 vs same dose of nSP300 and mSP1000. (B) Hydroxyl radical was measured by hydroxypheny! fluorescein (HPF) assay. Data
shown are means + SD (n = 3).*P < 0.01 vs same dose of nSP300 and mSP1000. (C) Detection of 8-OH-dG induced by silica particle treatment in
HaCaT cells. HaCaT cells were incubated with 10, 30 or 90 mg/ml nSP70, nSP300, or mSP1000, and As,Os (positive control) for 3 h. Data shown
are means + SD (n = 3). *P < 0.01, **P < 0.05. (D and E) Effects of ROS inhibitor on DNA strand breaks induced by silica particle treatment in
HaCaT cells. HaCaT cells were pretreated with 2 mM N-acetylcystein (NAC) for 30 min (NAC + nSP70) or nSP70 alone, prior to incubation with 90
mg/ml nSP70 for 3 h. As a positive control, HaCaT cells were treated with 0.2 mM H,O, for 3 h. (D) Column height shows the tail length. (E)
Column height shows the tail moment. Data shown are means + SD of at least 16 cells per sample. Results shown are representative of more
than three independent experiments. *P < 0.01.
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(NAC) (Figure 3D and 3E). From the results of the pre-
sent study, we suggest that ROS play an important role
in cellular responses such as nSP-induced DNA damage.
However, the reason why ROS generation varies with
particle size has not yet been clarified.

Fine or ultrafine particulate matter (PM), such as die-
sel exhaust particles or crystalline silica, often induces
ROS generation that contributes to the induction of
DNA damage or apoptosis. Although the mechanisms
underlying the PM-induced oxidative stress response
remains unclear, strong evidence supports PM phagocy-
tosis as a stimulus for increased oxidative stress via
NADPH oxidase activation [38,42,43]. In addition,
Walee Chamulitrat et al. reported that HaCaT cells con-
stitutively express Nox components Racl, p40phox, and
p67phox proteins [44]. In HaCaT skin keratinocyte cells,
stimuli such as epidermal growth factor, Ca**-ionophore
A23187, lysophosphatidic acid are capable of producing
ROS [45-47]. Thus, one potential candidate for the
nSP70-mediated DNA damage is ROS, which is pro-
duced by NADPH oxidase upon nSP70 phagocytosis. In
order to assess the relationship between the uptake
pathway and ROS generation, we measured the produc-
tion of ROS induced by nSP70 in the presence or
absence of a specific inhibitor of endocytosis. After
treatment with cytochalasin D, an inhibitor of actin
polymerization [48], ROS generation induced by nSP70
was measured by DCFH-DA assay. Results indicated
that ROS generation induced by nSP70 was inhibited by
pretreatment with cytochalasin D in a dose-dependent
manner (Figure 4). Furthermore, nSP70-induced DNA
damage was also significantly reduced by pretreatment
with cytochalasin D (Figure 5A and 5B). These findings
suggest that the silica particles entered the cells mainly
through actin-mediated endocytosis, such as the macro-
pinocytosis pathway, thereby inducing ROS generation
and DNA damage. It is well-known that NADPH oxi-
dase, which exists in the cytosol, cellular membrane and
subcellular compartment membranes, becomes activated
and generates ROS after ingestion of microorganisms
into the phagosome and/or endosome [49-51]. More-
over, it is reported that TiO, particles induce IL-1f3
production by NADPH oxidase-mediated ROS genera-
tion in the human macrophage cell line [52]. Likewise,
NADPH oxidase exists in the cytosol and membranes of
non-phagocyte cells, including HaCaT cells [44]. Addi-
tionally, it had been reported that inflammasomes are
activated by actin-mediated endocytosis of crystalline
silica, which lead to NADPH oxidase activation and
ROS generation [38,39,53]. Consequently, in order to
determine the role of NADPH oxidase in silica particle-
induced ROS generation, the effects of pretreatment
with the NADPH oxidase inhibitor, apocynin, a well-
known NOX inhibitor [49,54], were investigated. As
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Figure 4 Effects of endocytosis and NADPH oxidase inhibitor
on generation of ROS induced by silica particle treatment.
HaCaT cells were pretreated with cytochalasin D or apocynin for

30 min prior to incubation with 270 mg/ml nSP70 for 3 h. ROS
induced by silica particle treatment were expressed as relative
fluorescence units, which means that ROS intensity of each silica
particle alone and non-treatment is 100 and O respectively, in the
DCFH assay. Data shown are means + SD (n = 3). *P < 0.01, **P < 0.05.

expected, nSP70-induced ROS generation was inhibited
in the presence of apocynin (Figure 4). In contrast,
DNA damage induced by nSP70 was not inhibited by
pretreatment with apocynin (Figure 5C and 5D). Taken
together, these results suggest that nSP70-mediated
DNA damage was induced by ROS generated by an
unknown mechanism, and not via NADPH oxidase.
Nox1 activation may initiate large bursts of ROS that
can mediate the killing of pathogens, such as H. pylori
[55]. Thus, NOX1 activation has been implicated in the
cutaneous innate immunity to bacterial infections of the
skin. A more detailed evaluation of the mechanism that
underlies nSP70-mediated NOX activation is essential.
Nonetheless, based on our results and the work of
others, we speculate that nSP70s are treated almost like
pathogens by HaCaT cells.

A number of mechanisms underlie the ability of nano-
particles to cause DNA damage. As mentioned above, a
key mechanism that is often described is the ability of
particles to cause the production of ROS [32,56]. One
possible mechanism of particle-mediated DNA damage
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Figure 5 Effects of endocytosis and NADPH oxidase inhibitor on DNA damage by silica particle treatment. Effects of endocytosis inhibitor
(A and B) or NADPH oxidase inhibitor (C and D) on DNA strand breaks induced by silica particle treatment in HaCaT cells. (A and B) HaCaT cells
were pretreated with 10 mM cytochalasin D (Cyto D) for 30 min (Cyto D + nSP70) or nSP70 alone, prior to incubation with 90 mg/ml nSP70 for
3 h. (C and D) HaCaT cells were pretreated with 40 mM apocynin (Apo) for 30 min (Apo + nSP70) or nSP70 alone, prior to incubation with 90

mg/ml nSP70 for 3 h. As a positive control, HaCaT cells were treated with 0.2 mM H,0O, for 3 h. (A and C) Column height shows the tail length.
(B and D) Column height shows the tail moment. Data shown are means + SD of at least 16 cells per sample. Results shown are representative

of more than three independent experiments. *P < 0.01.
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is the ability of particles to stimulate target cells to pro-
duce oxidants/genotoxic compounds e.g., by affecting
mitochondrial electron transport, activation of NADPH
oxidase, or inducing cytochrome P450 enzymes. Our
results show that nSP70-mediated DNA damage of
HaCaT cells occurred via a mechanism that did not
involve NADPH oxidase. Alternatively, transition metal
ions (such as cadmium, chromium, cobalt, copper, iron,
nickel, titanium and zinc) released from certain nano-
particles have the potential to cause the conversion of
cellular oxygen metabolic products such as H,O, and
superoxide anions to hydroxyl radicals, which is one of
the primary DNA damaging species. Well-known exam-
ples of the consequences of metal ion-contamination in
relation to nanotoxicity have been described for carbon
nanotubes. Indeed, iron contaminants in CNT have
been shown to result in a substantial loss of glutathione
and increased lipid peroxidation in alveolar macro-
phages, indicators of oxidative stress [57]. However, our
data suggests that the nSPs used in this study, nSP70,
nSP300 and mSP1000, were not contaminated with
metal ions (data not shown). Thus, it is highly unlikely
that metal ion contamination is involved in nSP70-
induced DNA damage. Another hypothesis is that the
size of nSPs is related to its oxidative stress. As particle
size decreases, the particle unit of mass and overall sur-
face area increases. This larger surface area enhances
catalytic activity. Indeed, it has been widely reported
that increased surface area of these particles increases
reactivity because surface atoms have a tendency to pos-
sess high energy bonds. In order to gain stabilization,
these surface bonds will readily react with other mole-
cules [58]. The specific surface area was calculated by
means of the following equation; s = 6/dp (where s, spe-
cific surface area (m”/g); p, density (g/cc); d, diameter
(um)). The specific surface area of nSP70, nSP300 and
mSP1000 calculated using this equation was 43, 10 and
3 m?/g, respectively. When specific area is considered,
rather than particle concentration, the membrane
damage activity of nSP70 and nSP300-treated cells
shows almost the same level of LDH release per unit
surface area (data not shown). In terms of ROS genera-
tion and DNA oxidation, nSP70 is more potent than
nSP300. These results suggest that nSP70, which
possesses a larger specific surface area compared to the
counterpart micron-sized silica particles, has a much
greater chance of interaction with biomolecules.
Consequently, nSP70 causes direct cellular damage and
promotion of oxidative stress. In addition to these
hypotheses, nanoparticles may gain direct access to
DNA via nuclear transport. However, this mechanism
seems very unlikely given that the nuclear pore complex
is known to be 8-30 nm in diameter, depending on cell
type [59]. Nonetheless, some studies have reported that
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nanoparticles can penetrate the nuclear membrane, such
as silica nanoparticles (40-70 nm) [60]. Detailed analysis
of the mechanism of DNA damage induced by nanopar-
ticles is currently underway. This information will be a
critical determinant in the design of safer nSPs and
will provide valuable information for hazard assessment
of nSPs.

Here, we report the effects induced by well-dispersed
amorphous silica particles (nSPs) on human keratinocyte
(HaCaT) cells. In addition to our own work, other stu-
dies have shown that well-dispersed nSPs induce cyto-
toxicity, including LDH release, in a dose-dependent
and size-dependent manner using a macrophage cell
line [61,62]. On the other hands, Lin et al. reported that
nSPs mediated cytotoxicity/ DNA damage against A549
cells were not correlated with particle size [36]. Further,
Barnes et al. reported that nSP induce no genotoxicity
in fibroblast 3T3-L1 cells [63]. From the viewpoint of
nSP-mediated toxicity, there is no consistency in these
four reports including our findings. As mentioned
above, there are a number of examples in the literature
of conflicting results regarding nSPs. It has becoming
increasingly evident that the physicochemical properties
of nanomaterials, such as the size, shape, surface charge,
fabricating method, etc, play a central role in governing
their cellular uptake and subsequent physiologic conse-
quences. Furthermore, experimental conditions, such as
cell type and incubation time, are critical for the nano-
toxicologic studies. Hence, given the inconsistencies it is
difficult to draw the same conclusions. However, our
results using well-dispersed nSPs indicated that nSPs
were more cytotoxic and genotoxic against the human
keratinocyte cell line HaCaT.

Conclusions

In this study, we show that nSP induce certain cellular
responses, such as ROS generation and DNA damage.
By contrast, their bulk-sized counterparts display a
much reduced response. These different responses
might be partly due to different mechanisms, such as
intracellular uptake and ROS generation. We speculated
that receptor-mediated uptake was involved in these
phenomena and set out to identify the physicochemical
properties that affect receptor endocytosis. We believe a
detailed analysis of nSP-internalization will be invaluable
for both hazard assessment and the design of safe nSPs.

Materials and methods

Silica particles

Suspensions of fluorescent (red-F)-labeled amorphous
silica particles (Micromod Partikeltechnologie GmbH)
(25 mg/ml and 50 mg/ml) were used in this study;
particle size diameters were 70, 300 and 1000 nm
(designated as nSP70, nSP300 and mSP1000,
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respectively). Silica particle suspensions were stored in
the dark at room temperature. The suspensions were
sonicated for 5 min and then vortexed for 1 min imme-
diately prior to use.

Cell Culture

The HaCaT human keratinocyte cell line was kindly
provided by Dr. Inui [64], Osaka University. HaCaT
cells were cultured in Dulbecco’s modified Eagle’s med-
ium (D-MEM) supplemented with 10% heat-inactivated
fetal bovine serum and 0.2 mM L-glutamine. The cells
were grown in a humidified incubator at 37°C (95%
room air, 5% CO,).

Physicochemical examinations of silica particles

Silica particle suspensions were diluted to 0.25 mg/ml
(nSP70), 0.5 mg/ml (nSP300 and mSP1000) with water
or PBS, respectively and the average particle sizes were
then measured using the Zetasizer Nano-ZS (Malvern
Instruments Ltd). The mean size and the size distribu-
tion of silica particles were measured by a dynamic light
scattering method. The size and shape of silica particles
were determined using scanning electron microscopy
(SEM). Each silica particle suspension was dropped on
the sample stage and dried. The dried silica particles
were then observed by SEM.

LDH release assay

Lactate dehydrogenase (LDH) is released from HaCaT
cells exposed to nSP70, nSP300 or mSP1000. The LDH
activity of the supernatant of the culture medium was
determined using a commercial LDH cytotoxicity test
(WAKO, Japan) according to the manufacturer’s instruc-
tions. In brief, 5 x 10% cells were seeded into each well
of a 96-well plate. After 24 h incubation, cells were trea-
ted with nSP70, nSP300, mSP1000 or 0.2% Tween 20
(positive control). After a further 24 h incubation per-
iod, 50 pl of medium overlying cells was used for LDH
analysis. Absorption of light at 560 nm was measured
using a spectrophotometer.

Detection of Reactive Oxygen Species (ROS)

The generation of total intracellular ROS was measured
by monitoring the increasing fluorescence of 2’7’-
dichlorofluorescein (DCF). The cell-permeant 2’7~
dichlorodihydorofluorescein diacetate (DCFH-DA;
Sigma, St. Louis, MO) enters the cell where intracellular
esterases cleave off the diacetate group. The resulting
DCFH is retained in the cytoplasm and oxidized to DCF
by ROS. Hydroxyl radical was measured by monitoring
the increasing fluorescence of hydroxyphenyl fluorescein
(HPF; SEKISUI MEDICAL Co., Ltd., Japan). 3 x 10*
HaCaT cells were seeded into each well of a 96-well
plate. After 24 h incubation, cells were treated with
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nSP70, nSP100, nSP300, mSP1000 or 2 mM H,0, (posi-
tive control). Cells were then washed once with phenol
red-free medium, and incubated in 100 pl working solu-
tion of DCFH-DA or HPF (10 uM) at 37°C for 30 min.
Using the fluorescence reader (ARVO MX; Perkin
Elmer, Waltham, MA), the fluorescence of DCF or HPF
was monitored at the excitation and emission wave-
lengths of 485 nm and 530 nm or 490 nm and 515 nm,
respectively.

8-Hydroxy-2-deoxyguanosine (8-OH-dG) measurement
HaCaT cells were seeded on a 100 mm dish. After 24 h,
cells were treated with various concentrations of nSP70,
nSP300, mSP1000, 0.2 mM H,O, (positive control) or
PBS (negative control). After 3 h, cellular DNA was iso-
lated using DNeasy tissue kit (QIAGEN, Germany). Ten
pg of DNA was converted to single stranded DNA by
incubation with 180 U Exonuclease III (Takara Biotech.,
Japan) at 37°C for 1 h. The DNA was heated at 95°C for
5 min, rapidly chilled on ice, and digested to nucleosides
by incubation with 0.6 U nuclease P1 (Takara) at 37°C
for 1 h followed by treatment with 0.6 U E. coli alkaline
phosphatase (Takara) for a further 1 h. The reaction
mixture was centrifuged (6000 x g for 1 min) and the
supernatant used for the 8-OHdG assay. The amount of
8-OHdG was measured according to the protocol of the
competitive ELISA kit (8-OHdG check; Japan Institute
for the Control of Aging, Japan).

Effects of inhibitor of ROS, endocytosis or NADPH oxidase
on DNA strand breaks induced by silica particles

3 x 10* HaCaT cells were pretreated with 2 mM N-
acetylcystein (NAC, ROS scavenger), 10 mM cytochala-
sin D (endocytosis inhibitor) or 40 mM apocynin
(NADPH oxidase inhibitor) for 30 min prior to incuba-
tion with 90 mg/ml of nSP70 for 3 h. As a positive con-
trol, HaCaT cells were treated with 0.2 mM H,O, for 3
h. DNA strand breaks were detected by alkaline comet
assay according to the Comet Assay Kit (Trevigen,
Gaithersburg, MD). The samples were processed accord-
ing to the protocol provided in the kit. Twenty-five cells
on each slide, randomly selected by fluorescence micro-
scopy, were then analyzed using the Comet Analyzer
(Youworks Corporation, Japan).

Effects of inhibitor of endocytosis, NADPH oxidase or
endosomal acidification on generation of ROS induced by
silica particles

HaCaT cells were pretreated with various concentration
of cytochalasin D (Merck Ltd., Germany) for 30 min
prior to incubation with 270 mg/ml nSP70 for 3 h. ROS
induced by treatment with silica particles were
expressed as relative fluorescence units in the DCFH-
DA assay as described above.
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Statistical analysis

Statistical comparisons between groups were performed
by one-way ANOVA and a Bonferroni post hoc test.
The level of significance was set at P < 0.05.
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