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Abstract

suspensions by means of dynamic light scattering.

Inhalation of (nano)particles may lead to pulmonary inflammation. However, the precise mechanisms of particle
uptake and generation of inflammatory mediators by alveolar macrophages (AM) are still poorly understood. The
aim of this study was to investigate the interactions between particles and AM and their associated pro-
inflanmatory effects in relation to particle size and physico-chemical properties.

NR8383 rat lung AM were treated with ultrafine (uf), fine (f) TiO, or fine crystalline silica (DQ12 quartz). Physico-
chemical particle properties were investigated by transmission electron microscopy, elemental analysis and
thermogravimetry. Aggregation and agglomeration tendency of the particles were determined in assay-specific

All three particle types were rapidly taken up by AM. DQ12 and ufTiO, , but not fTiO, , caused increased
extracellular reactive oxygen species (ROS), heme oxygenase 1 (HO-1) mRNA expression and tumor necrosis factor
(TNF)-a. release. Inducible nitric oxide synthase (iNOS) mRNA expression was increased most strongly by ufTiO, ,
while DQ12 exclusively triggered interleukin (IL) 1B release. However, oscillations of intracellular calcium
concentration and increased intracellular ROS were observed with all three samples. Uptake inhibition experiments
with cytochalasin D, chlorpromazine and a Fcy receptor Il (FcyRIl) antibody revealed that the endocytosis of fTiO,
by the macrophages involves actin-dependent phagocytosis and macropinocytosis as well as clathrin-coated pit
formation, whereas the uptake of ufTiO, was dominated by FcyllR. The uptake of DQ12 was found to be
significantly reduced by all three inhibitors. Our findings suggest that the contrasting AM responses to fTiO, ,
ufTiO, and DQ12 relate to differences in the involvement of specific uptake mechanisms.
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Introduction

The introduction and application of novel types of
nanomaterials and nanodevices is rapidly increasing in
recent years. Risks of exposure to nanoparticles (NP,
which can be defined as nano-objects with all three
external dimensions in the nanoscale, i.e. < 100 nm; [1])
often cannot be reliably estimated at this time. Due to
their novel physico-chemical properties, concerns have
been raised about their potential to cause adverse effects
in biological systems and their impact on human health.
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Reliable testing strategies to investigate possible health
risks caused by nanoparticles (NP) are therefore urgently
needed [2,3].

Hints for a potential toxicity of NP arose predomi-
nantly from the field of inhalation toxicology, where it
has been shown that (aggregates of) specific NP, like
carbon black (CB) or titanium dioxide (TiO, ), exhibit a
markedly higher biological activity at cellular and sub-
cellular levels [2,4,5] when compared to an equal mass
dose of their larger sized counterparts [6-8]. Currently,
TiO, particles are used widely and in large quantities in
many industrial applications like cosmetics, pharmaceu-
ticals, paints and in food industry, as well as in medical
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and dental prosthesis in either fine (> 100 nm) or ultra-
fine sizes [9,10].

Animal studies have shown that fTiO, particles predo-
minantly deposit within the deeper regions of the lung
and can subsequently induce inflammatory responses
[11]. However, this typically does not result in marked
lung fibrosis [9,12], unlike other inorganic particles, e.g.
crystalline silica [13-15]. Such contrasting outcomes
pointed to the existence of fundamental differences
between different types of inorganic particles concerning
their toxic potential. Investigations of the acute inflam-
matory effects of an ultrafine and a fine sample of TiO,
in rats and mice have shown that the smaller particles
are more potent on a mass dose basis, but that the
responses do not differ when the samples are adjusted
to an equal surface area dose (reviewed in [2]). This
suggests that the specific surface area (SSA) of NP per
se may define their pro-inflammatory effects. However,
on the cellular level biological effects of NP are consid-
ered to be driven by their specific physico-chemical
interactions with cells and subcellular constituents,
including initial recognition and/or interference with
specific membrane associated receptors [16]. This speci-
fic particle-cell-interaction may also explain observations
in other studies where associations between the SSA and
specific toxic effects were not as clear (e.g. [17]).

Alveolar macrophages (AM) are professional phago-
cytes accounting for approximately 95% of airspace leu-
kocytes in the healthy lung, which generally represent
the first cell type that gets into contact with inhaled
pathogens [18]. The AM cell line NR8383 has been
extensively characterized and is widely accepted as a
reliable surrogate for freshly obtained primary AM [19].
In a previous study, we demonstrated the participation
of the classical phagocytosis Fcy receptor II (FcyRII) in
the uptake of fine crystalline silica particles (with a
mean geometric diameter of about 1 pm) by NR8383
AM [20]. Other studies have shown an association
between FcyRII stimulation by interferon y in the mono-
cyte cell line U937 as well as in primary human blood
monocytes, and the induction of a signal cascade which
is connected to phospholipase (PLC)y-1. Activation of
PLCy-1 is known to increase the concentration of intra-
cellular calcium ([Ca®>* ]; ) which in turn can activate
nicotinamide adenine dinucleotide phosphate (NADPH)
oxidases and thus the generation of ROS via the so-
called oxidative burst [21,22]. Participation of other
membrane receptors including the class A scavenger
receptor (SR-A) and the macrophage receptor with col-
lagenous structure (MARCO) has also been described to
be of importance for the uptake of fine-sized TiO, and
silica particles, but not for the internalization of carbo-
naceous particles [23,24]. Taken together, these observa-
tions provide strong evidence that particle type-specific
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mechanisms of uptake exist in macrophages. However,
the exact route(s) by which NP can enter these cells and
their impact on subsequent cellular responses are still
poorly understood. Elucidation of these mechanisms will
provide an important step for the risk assessment of NP
and for potential medical and pharmaceutical applica-
tions of newly engineered NP.

Interaction of AM with respirable particles can lead to
the production of ROS and secretion of a large variety
of cytokines, chemokines and other, typically pro-
inflammatory mediators. These include TNF-a and
interleukin (IL)-1pB, both early pro-inflammatory cyto-
kines which in turn are capable to activate various sec-
ondary mediators and as such orchestrate the
recruitment of further immune cells, like neutrophilic
granulocytes [25]. Many of these cytokines and chemo-
kines are regulated by redox-sensitive transcription fac-
tors like nuclear factor kappa B (NF-xB) and/or
activator protein 1 (AP-1), which in turn are regulated
by second messengers including calcium and ROS
[26,27]. Enhanced [Ca®*]; levels are known to lead to
the activation of protein kinase C (PKC) which is
involved in the activation of NF-xB [28,29]. The involve-
ment of [Ca®*]; in the pro-inflammatory responses of
AM has recently been established for fine crystalline
silica particles (54) as well as for carbonaceous NP, i.e.
ultrafine carbon black [27].

In our current study, two types of TiO, with different
size distributions were investigated, i.e. fTiO, and
ufTiO, . The aims of our study were to analyze (i) dif-
ferences in uptake mechanisms for these samples in
AM, and (ii) how the uptake associates with various cel-
lular responses in AM that are considered to play a role
in the adverse health effects of inhaled particles. The
established inflammogenic and fibrogenic crystalline
silica sample DQ12 was used as reference particle
[15,30-33]. Intra- and extracellular responses of AM
were investigated via the analysis of particle uptake,
cytotoxicity, changes in [Ca®*]; , ROS generation as well
as the induction of various markers of inflammation and
oxidative stress, i.e. NF-xB, TNF-a, IL-1f, inducible
nitric oxide synthase (iNOS) and heme oxygenase-1
(HO-1). Particle type-specificity of internalization by
AM was investigated by uptake analysis in the absence
or presence of specific inhibitors, i.e. cytochalasin D
(CytD), chlorpromazine (Chl), filipin III, FcyRII antibody
as well as by evaluation of uptake at 4 versus 37°C.
Since former studies have shown that TiO, particles
tend to reside as aggregates as well as to form larger
agglomerates in suspension depending on the type of
buffers [34], in the present study special emphasis was
also put on the characterization of the specific particle
suspensions used for the various biological tests. Ele-
mental analysis (EA) and thermogravimetric analysis
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(TGA) have been employed to exclude the presence of
organic residues in the investigated powders that could
impact on AM responses. Morphology and dispersion
behavior of the samples in the different media was eval-
uated by means of transmission electron microscopy
(TEM), dynamic light scattering (DLS) and dark field
light scattering microscopy (DF-LSM).

Materials and methods

Particle samples used

Three types of particles were used in this study, i.e.
ufTiO, and fTiO, and a respirable quartz sample
(DQ12). fTiO, was obtained from Sigma-Aldrich and is
a pure anatase sample with a reported mean diameter of
about 250 nm [8]. The ufTiO, sample originates from
Degussa (Hanau, Germany) and represents a mixture of
80% anatase and 20% rutile with a reported mean parti-
cle size of 25 nm [8]. The DQ12 sample originates from
Dérentrup, Germany (IUF batch 6) and represents a
highly pure quartz (99.1%) with a mean particle dia-
meter of 960 nm [32]. The specific surface areas of the
samples measured according to the method of Brunauer,
Emmert and Teller [35] are 50 m*/g, 10 m*/g and 9.6
m?/g, for ufTiO, , fTiO, and DQI2, respectively.

Particle characterization

In order to obtain additional information on particle
composition and size, the batches were subjected to
TGA, EA, DLS, DF-LSM and TEM. EA of the pow-
ders was carried out with a Perkin-Elmer Analyzer
2400 with an accuracy of measurement of 0.3%. TGA
experiments were performed on powder samples on a
Netsch STA 449 C Jupiter at a constant heating rate
of 10 K min™" in an argon atmosphere between 30
and 600°C. The solid residues at 600°C are attributed
to the inorganic component. TEM images were taken
using a Philips EM 208 S. DLS measurements were
performed on a High-Performance Particle Sizer
HPP5002 (Malvern Instruments) after their suspen-
sion in water, Hank’s buffered saline solution (HBSS
G/ phenol red free, with Mg2+ and Ca’"; Invitrogen
GmbH, Karlsruhe, Germany) and FCS-containing cell
culture medium at 25°C, using 1 x 1 cm? polystyrene
cuvettes. Particle size distributions were derived from
a deconvolution of the measured intensity autocorre-
lation function by the non-negative least-squares
algorithm included in the DTS software. The suspen-
sions used for this analysis were prepared in the same
way as those used for the biological testing as
described below. DLS analysis of the ufTiO, particle
suspension was also performed after filtration through
a 450 nm membrane filter to further evaluate the
influence of aggregate/agglomerate formation on this
method.
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Preparation of the particle suspensions and cell
treatments
NR8383 rat AM (ATCC, Manassas, USA) were cultured
in Kaighn’s modified medium (F12-K Nutrient Mixture,
Gibco, Eggenstein, Germany) containing 15% FCS, 1%
penicillin/streptomycin and 1% glutamine (all purchased
from Sigma-Aldrich, Taufkirchen, Germany) and incu-
bated in a humidified incubator (Heraeus, BB 6060 CU)
at 37°C and 5% CO, . Three days before each experiment,
cells were seeded in a concentration of 1.25 x 10° cells/
cm? in the indicated culture dishes. If not otherwise men-
tioned, incubations took place at 37°C and 5% CO, .
Particles were heated at 220°C for 16 h in order to
destroy potential endotoxins, which are known to be
potent activators of AM. Immediately before the experi-
ment, particles were freshly suspended either in com-
plete cell culture medium (see above) for most of the
experiments except for ROS and calcium measurements,
for which suspension was performed in HBSS®*/*) (phe-
nol red free, with Mg®* and Ca®*) or saline, respectively.
The evaluation of mRNA expression changes was done
under both treatment conditions, i.e. using particles sus-
pended in either HBSS™/*) or complete medium. All
suspensions were sonicated in a water bath for 10 min
(Sonorex TK 52, Schaltech, Morfelden-Walldorf, Ger-
many) immediately prior to addition to the cells. Parti-
cles were added to the AM at concentrations of 10, 20,
40, 80 pg/cm? for 1, 4 or 24 h as indicated.

Measurement of particle uptake by flow cytometry

The uptake of particles by the AM was analyzed via flow
cytometry. Measurement was performed with a FACS
Calibur (Becton Dickinson, Heidelberg, Germany). The
sideward scatter (SSC) which is directly related to cell
granularity was used as a marker of particle uptake [36],
whereas the forward scatter (FSC) mainly correlates to
the cell size.

For inhibition experiments, cells were preincubated for
30 min with the following substances: CytD (1.5 pg/mL;
Sigma, Taufkirchen, Germany) to inhibit actin recruit-
ment, Chl (5 pg/mL; Sigma-Aldrich, Taufkirchen, Ger-
many) to disable the formation of clathrin coated pits
(CCP), and an antibody against the phagocytotic FcyRII
(CD32, 5 pg/mL; BD Biosciences, Heidelberg, Germany)
to avoid specific receptor binding. Dimethyl sulphoxide
(DMSO, 0.1%; Sigma, Taufkirchen, Germany) was
applied as vehicle control for CytD. The IgG1x mono-
clonal antibody was used as isotype control (5 pg/mL;
BD Biosciences, Heidelberg, Germany) for the FcyRII
antibody experiments. Cells were treated with particles
at concentrations of 10, 20 or 40 pg/cm?® for 1 or 3 h.
NR8383 cells were gently scraped from the culture
dishes on ice, centrifuged (200 x g, 10 min, 4°C), washed
with 300 pl of ice cold HBSS"/? and centrifuged again.
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The pellet was resuspended in 200 pl ice cold HBSS”.
In total 15,000 events were counted. For calculation cell
debris and free particles were excluded by an electroni-
cal gate containing AM of all sizes and granularities in a
FSC-SSC-histogram. Univariant histograms of SSC
determined the median of cell granularity used as mea-
sure of particle uptake by AM. Data were detected with
CellQuest 3.3 and analyzed using CellQuest Pro (Becton
Dickinson, Heidelberg, Germany).

Microscopical evaluation of uptake

In order to microscopically investigate AM after a 24 h
treatment with particles cytospin slides were prepared.
Therefore, NR8383 cells were scraped, centrifuged (200
x g, 5 min, 4°C), washed and resuspended in sterile, ice
cold phosphate buffered saline (PBS). Then 2 x 10° cells
were spun onto glass slides (600 rpm, 5 min) using a
Cytospin3 (Shandon GmbH, Frankfurt, Germany). After
drying and May-Griinwald-Giemsa-staining (Merck,
Darmstadt, Germany) preparations were analyzed via
light microscopy (Olympus BX60, Hamburg, Germany).

Cytotoxicity

Effects of particles on cell viability were determined
using the WST-1 assay (Roche Diagnostics GmbH,
Mannheim, Germany) which is based on the principle of
the reduction of the stable tetrazolium salt WST-1 to a
soluble violet formazan product within the mitochondria
of viable cells. For this assay, NR8383 cells were seeded
in octoplicate in 96-well microtiter plates. After 24 h of
particle treatment, 10 pL. WST-1 solution (Roche Diag-
nostics GmbH, Mannheim, Germany) was added to 5
wells per treatment or control and incubated for further
2 h. The other three wells were used as controls for the
absorption by the particles and therefore measured
without WST-1 substrate application. Optical density
was detected at 450 nm using the Multiskan ELISA
reader (Thermo Fisher Scientific, Dreieich, Germany).
For data calculation, the mean of the obtained values of
the wells without WST-1 was subtracted from the mean
of the WST-1 substrate treated samples and expressed
as percentage of control cells. To investigate potential
reagent binding to particles, which could lead to a false
interpretation of toxicity [3], cell free experiments were
performed in WST-1- as well as formazan-containing
suspensions spiked with particles. Such artifacts could
be excluded for the particles used in our present study.

Calcium imaging

In order to investigate the relation between particle
exposure and intracellular calcium, wide-field fluores-
cent imaging was employed to measure changes in [Ca®
]; in individual cultured AM upon particle treatment.
NR8383 cells were seeded onto sterile coverslips coated

Page 4 of 19

with poly-D-lysine hydrobromide (Sigma-Aldrich, Tauf-
kirchen, Germany) and used for experiments after 3 - 4
days. Loading with the Ca®* sensitive fluorescent dye
Fura-2 and fluorescence measurements were performed
in saline containing (in mM): NaCl 125, KCl 3, NaH,
PO, 1.25, MgSO, 2, CaCl, 2, HEPES 25, D-glucose 10
(pH 7.4). The acetoxymethyl ester form of the fluoro-
phore was dissolved as 5 mM stock solution in 20%
Pluronic acid in DMSO and stored at -20°C. For dye
loading, coverslips were incubated for 90 min at room
temperature in saline containing 0.5 mM Fura-2- acet-
oxymethyl ester. Following loading, cells were kept in
dye-free saline for at least 30 min to ensure de-esterifi-
cation of the dye before starting the imaging
experiments.

Conventional wide-field fluorescent imaging was per-
formed employing an imaging system (Till Photonics
GmbH, Munich, Germany) in conjunction with an
upright microscope (Axioskop, Zeiss, Oberkochen, Ger-
many) equipped with a cooled CCD camera (SensiCam
QE, PCO, Kelheim, Germany). Cells loaded with Fura-2
were excited every 5 s using a monochromator (poly-
chrome V, Till Photonics GmbH); fluorescence emission
from regions of interest (ROIs) placed around AM
somata was detected by the camera. Emission intensities
> 440 nm were collected after alternate excitation at 357
and 380 nm, and background-corrected fluorescent
ratios (F357/380) were calculated. Background fluores-
cence was determined from coverslip areas devoid of
cellular material.

Baseline [Ca®*]; was recorded under control conditions
and for at least 70 min during exposure to either ufTiO,
or fTiO, particles at concentrations of 10 or 20 pg/cm?.
To quantitatively analyze and compare calcium fluctua-
tions in response to different particles, integrals for ratio
values for specific 10 min time windows (one for control
experiments; 15 - 25 min and 55 - 65 min after particle
application) were calculated for each individual cell
employing OriginPro Software (OriginLab Corporation,
Northampton, MA).

Intracellular ROS measured by DCFH-DA

To quantify intracellular ROS the cell-permeable non-
fluorescent probe 2’,7’-dichlorodihydrofluorescein diace-
tate (DCFH-DA; Sigma, Saint-Louis, Missouri, USA)
was used. After entering the cell, DCFH-DA loses its
diacetate group by the action of esterases. The oxidation
of this probe leads to the highly fluorescent DCF. Prior
to particle treatment, NR8383 cells seeded in 96-well
plates were washed and replaced by HBSS®'*) to avoid
scavenging effects of DCFH-DA by medium compo-
nents. After a recovery time of 30 min, AM were pre-
incubated with 100 pM DCFH-DA for another 20 min
in the incubator. Afterwards cells were washed and
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allowed to recover for another 30 min before they were
treated with 40 pg/cm? of particles. The change in
DCFH-DA fluorescence over time was detected via
fluorescence reader (Synergy2, BioTek Instruments Inc.,
Bad Reichenhall, Germany) for 3 h at 37°C.

Measurement of extracellular ROS by Electron
Paramagnetic Resonance (EPR) spectroscopy with spin
trapping

For the analysis of extracellular ROS, NR8383 cells were
seeded in 96 well plates. Cells were washed and the
medium was replaced by HBSS""/*) followed by a recov-
ery time of 30 min. AM were treated with particles at
concentrations of 10 or 40 pg/cm? The spin trapping
agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO, 0.11
M, Sigma-Aldrich, Taufkirchen, Germany) was added
simultaneously with the particles; cells were incubated
for 3 h. Cell-free supernatants were harvested and
immediately measured for radical formation using a
MiniScope MS200 Spectrometer (Magnettech, Berlin,
Germany) with the following instrumental settings:
room temperature, microwave frequency = 9.39 GHz,
magnetic field = 3360 G, sweep width = 100 G, scan
time = 30 s, number of scans = 3, modulation amplitude
= 2 G, receiver gain = 900. Quantification was carried
out on first derivation of EPR signal of the characteristic
DMPO-OH quartet, as the mean of amplitudes, and
outcomes are expressed in arbitrary units (a.u.). DQ12
and the well-known PKC activator phorbol 12-myristate
13-acetate (PMA) were used as positive controls.

Immunocytochemistry (IHC) for NF-xB

Transcriptional activation of the nuclear factor kB was
microscopically analyzed by the nuclear translocation of
the p65 subunit. Therefore, cells were seeded into 4-
chamber slides and treated with 40 pg/cm? of particles.
After 1 h, NR8383 cells were fixed (4% paraformalde-
hyde/PBS, pH 7.4) and permeabilized (0.1% TritonX-100,
5 min). Unspecific binding sites were blocked by goat
normal serum followed by an overnight incubation with
anti-NF-xB (p65) antibody (1:500, Santa Cruz Biotech-
nology, CA, USA). Slides were incubated with secondary
antibody Alexa-488 (1:200, Molecular Probes, OR, USA)
for 1 h before mounting the cover slip with Ultra Cruz
Mounting Medium containing DAPI (Santa Cruz Bio-
technology, CA, USA). Fluorescence images were taken
with the Axio Observer.D1 fluorescence microscope
(Carl Zeiss Microlmaging GmbH, Goéttingen, Germany).

TNF-o. and IL-1P release

NR8383 cells were seeded onto 24-well microtiter plates.
After 24 h of particle treatment, cell-free supernatant
was collected, centrifuged (200 x g, 10 min, 4°C) and
aliquots were stored at -20°C. Supernatants were
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analyzed using a TNF-a or IL-1 ELISA kit (R&D Sys-
tems, Wiesbaden, Germany) according to the manufac-
turer’s manual and using a Multiskan ELISA reader
(Thermo Fisher Scientific, Dreieich, Germany).

Quantitative RT-PCR analysis of gene expression

NR8383 cells were seeded in 6-well plates, treated with
particles for 4 h, scraped and centrifuged (200 x g, 5
min, 4°C). The pellet was resuspended in 0.5 ml Trizol®
Reagent (Invitrogen GmbH, Karlsruhe, Germany) and
stored at -20°C until further use. The RNeasy” mini kit
(Qiagen, Hilden, Germany) coupled to DNAse treatment
was used to purify total RNA from salts and residual
DNA. Quantity and purity of RNA were evaluated using
spectrophotometry at 230, 260, 280, and 320 nm. cDNA
was synthesized using the iScript™ cDNA Synthesis kit
(BioRad, CA, USA), starting from 0.5 pg of RNA. cDNA
was diluted 15 x in RNAse-free water before use. PCR
primers for rat HO-1, iNOS and the housekeeping gene
GAPDH were designed using Primer Express software
(Applied Biosystems). Primer sequences for HO-1 were
5-GGG AAG GCC TGG CTT TTTT -3’ (forward) and
5-CAC GAT AGA GCT GTT TGA ACT TGGT -3’
(reverse), for iNOS 5-AGG AGA GAG ATC CGG TTC
ACA GT-3 (forward) and 5-ACC TTC CGC ATT
AGC ACA GAA-3’ (reverse) and for GAPDH 5-TGA
TTC TAC CCA CGG CAA GTT-3’ (forward) and 5’-
TGA TGG GTT TCC CAT TGA TGA-3" (reverse).
qRT-PCR was performed with a MyiQ Single Color real
time PCR detection system (BioRad) using iQ™ SYBR®
Green Supermix (Biorad), 5 pL diluted ¢cDNA, and 2.5
puL of 0.3 uM forward and reverse primer in a total
volume of 25 pL. PCR was conducted as follows: a dena-
turation step at 95°C for 3 min was followed by 40
cycles at 95°C (15 s) and 60°C (45 s). After PCR, a melt
curve (60 - 95°C) was generated for product identifica-
tion and purity. PCR efficiency of all four primer sets, as
assessed by the use of cDNA dilution curves, was 90 -
100%. Data were analyzed using the MyiQ Software sys-
tem (BioRad) and were expressed as relative gene
expression (fold increase) using the 2-48Ct method [37].

Statistical Analysis

All biological assays were performed in at least three
independent experiments. Data are presented as mean *
SEM unless indicated otherwise. Statistical analysis was
performed using SPSS 18.0 for Windows using analysis
of variance (ANOVA) with Dunnett or LSD post hoc
comparison as indicated for the specific data. Differ-
ences compared to untreated control cells were consid-
ered significant at * p < 0.05, ** p < 0.01 and *** p <
0.001. Differences in inhibition experiments compared
to the appropriate particle treatment were indicated as #
p < 0.05, ## p < 0.01 and ### p < 0.001.
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Results

Particle sample characteristics

In order to verify the absence of organic residues in the
particle samples, we performed EA and TGA in the
powders. In the former, no carbon content was detected
within the experimental error, and in the latter, no sig-
nificant weight loss was found attributable to organic
combustible contents, up to a temperature of 600°C
(data not shown). The morphology of the samples was
investigated by means of TEM. Representative images
(Figure 1) showed for the TiO, samples individual parti-
cles of nearly spherical shape and moderate size distri-
bution. From the images, particle size histograms were
extracted (see Figure 1D), revealing a number-average
primary particle diameter of 69.1 nm (+ 39.9 nm SD)
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for ufTiO, particles and of 194.9 nm (+ 60.8 nm SD)
for fTiO, , respectively. Figure 1C shows a representa-
tive image of the control sample DQ12. A detailed char-
acterization of this sample has been performed in a
previous study, revealing a mean diameter of 960 nm
[32].

Evaluation of particle suspensions used for biological
testing

It is well-known that for (nano)particle dispersions the
actual object size can differ significantly from the size of
the primary particles and their aggregates due to
agglomeration processes. Therefore, we compared the
core size of the primary particles obtained from TEM
with results from dispersion-based methods. For this
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Figure 1 TEM images and size distribution of particles. Particles were suspended and prepared for TEM measurements in deionized water.
(A) ufTiO, and (B) fTiO, are regular and spherical particles in contrast to (C) crystalline silica DQ12 particles that display a very irregular shape. (D)
Particle size histograms are derived from the appropriate TEM analysis for primary particles of ufTiO, and fTiO, .
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purpose, DLS and DF-LSM experiments were carried
out. Both methods are based on the analysis of the dis-
tribution of the diffusion coefficient measured from
scattered light signals. While in DLS the signal fluctua-
tions are used directly to obtain information on the
autocorrelation function, in DF-LSM the signals are
used to track individual objects and analyze their Brow-
nian diffusion perpendicular to the laser direction. For
ufTiO, as well as fTiO, , particle dynamics as examined
by DLS were in accordance with the presence of predo-
minantly primary particles or small aggregates in water
dispersion after ultrasonification and partly filtration by
a 450 nm microfilter. This is evident from the high cor-
relation of the number-average hydrodynamic particle
diameter as extracted by DLS (see Table 1) with the
average core diameter as observed by TEM. Similar
values were also obtained for the cell culture-based par-
ticle dispersions. In the latter, after filtration which was
performed to investigate the impact of aggregate/
agglomerate formation on the DLS measurements, the
scattering signal was dominated by small colloids (~ 6
nm). This signal could be attributed to proteins which
are abundant in the FSC containing medium. The pro-
teins contained within the FCS stabilize the particles in
the dispersion and hence prevent their sedimentation. In
the HBSS-based suspensions, however, the DLS mea-
surements indicated the presence of agglomerates with a
diameter of up to the micrometer range (see Table 1,
value in brackets). The findings are in accordance with
the observation of a lower sedimentation stability of
these buffer-based samples compared to water- or com-
plete culture medium-based dispersions.

Importantly, for the ufTiO, particles the mass percen-
tage of the filtered fraction was 20% of the total mass
(data not shown). The large fraction of the non-filtered
material at least in part accounts for larger agglomerates
which may be inappropriately measured by the DLS
method. As such, the data of the unfiltered samples

Table 1 Characteristics of particle dispersions as
measured by DLS

sample Dispersant dy? PDIP
water 55.4° 022

(891.2)
ufTiO, cell culture medium 575 0.33
HBSS 164.2° 0.26

(2018)
Water 3212 0.18
fTio, cell culture medium 4486 0.16
HBSS 936.6 0.64

? number-average hydrodynamic diameter [nm]

® polydispersity index

¢ sample was filtered (450 nm microfilter) prior to experiment

in brackets: results of the comparable measurement of unfiltered sample
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have to be interpreted with caution. Nevertheless, the
measurements of the unfiltered suspensions (Table 1)
showed that the ultrafines tended to from larger
agglomerates than their fine counterparts. These find-
ings were also supported by data obtained from DF-
LSM (not shown), and are important in view of the cell
based assays.

Dose-dependent particle uptake in alveolar macrophages
The uptake of particles by NR8383 AM was determined
by measuring the granularity of the cells via flow cyto-
metry. These measurements revealed a dose-dependent
uptake (10, 20 or 40 pg/cm?) of all tested particles after
1 as well as 3 h (Figure 2, panels A-C). Comparison of
the SSC results also indicates that the smaller the
ingested particles, the higher is the light scattering
caused by the elevated granularity of the cells. This was
confirmed by comparison of cell free particle suspen-
sions revealing a median SSC of 885, 728 or 228 for
ufTiO, , fTiO, or DQ12, respectively. Uptake was also
verified by light microscopy of treated NR8383 cells
(Figure 2D).

Cell toxicity following particle exposure

Viability of AM after 4 and 24 h of particle treatment
was determined by measurement of mitochondrial dehy-
drogenase activity. This investigation showed no cyto-
toxic effects after 4 h for all three tested particles
(Figure 3A) but marked differences between fTiO, and
ufTiO, particles after 24 h (Figure 3B). Treatment of the
AM with ufTiO, particles already caused toxic responses
at a concentration of 20 pg/cm” which was comparable
to the responses of the positive control DQ12. For
fTiO, particles no effects on cell viability were found up
to the highest tested concentration of 80 pg/cm>.

Ultrafine and fine TiO, exposure induce intracellular
increase of calcium

Calcium is an important second messenger involved in a
multitude of intracellular signaling pathways. We, there-
fore, investigated the impact of exposure to TiO, parti-
cles on the calcium concentration ([Ca®']; ) of individual
AM by performing ratiometric imaging with Fura-2
(Figure 4A). Under control conditions with no added
particles, the baseline calcium concentration was stable
(Figure 4B). Addition of either ufTiO, or fTiO, caused
an increase in the intracellular calcium concentration in
a large number of cells in the field of view, some cells
responded with large and random calcium oscillations
(Figure 4C).

To quantitatively analyze and compare calcium fluc-
tuations in response to different particles and different
concentrations, integrals for ratio values for specific 10
min time windows (one for control experiments; 15 - 25
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Figure 2 Concentration- and time-dependent particle uptake by NR8383 cells. Results of FACS analysis demonstrate increased particle
uptake by AM based on SSC of laser light indicating cellular granularity. AM were treated with (A) ufTiO, , (B) fTiO, and (C) DQ12 particles in
concentrations of 10, 20 or 40 ug/cm? for 1 or 3 h. (D) Particle internalization by NR8383 cells are demonstrated in MGG-stained cytospin
preparations. Light microscopic images show AM either untreated or treated with 10 ug/cm? of particles for 4 h (upper panel) or 24 h (lower
panel). Original magnification 1000-fold (Olympus BX60). Figure A - C represent median + SEM of three independent experiments, with * p <
0.05, ** p < 0.01 and ** p < 0.001 vs. control (ANOVA with Dunnett post-hoc comparison).
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Figure 3 Particle-dependent effects on cell viability in NR8383
cells. Mitochondrial activity of particle-treated AM shows (A) no
impairment of cell viability after 4 h. (B) Particle treatment of 24 h
reveals toxicity for ufTiO, and DQ12 particles at concentrations of
20 ug/cm? and above, whereas fTiO, does not result in toxicity up
to 80 ug/cm?. Figures represent mean + SEM of three independent
experiments, with ** p < 0.01 and *** p < 0.001 vs. control (ANOVA

with LSD post-hoc comparison).

min and 55 - 65 min after particle application) were cal-
culated for each individual cell (Figure 4D). The result-
ing integral values were normalized to the mean of
control values (obtained in the absence of particles).
Cells, displaying values not covered by the standard
deviation of control, were classified as “activated”. A
small number of such activated cells (8 - 10%) were
already found in the control (Figure 4D, upper histo-
grams). After addition of particles, however, the number
of activated cells increased to 30 - 70% (Figure 4D). No
consistent differences in percentage of activated cells
nor amplitude of calcium fluctuations were found
between ufTiO, and fTiO,

Particle-induced intracellular ROS generation

To study the ability of ufTiO, , fTiO, and DQ12 parti-
cles to cause ROS generation in the NR8383 cells,
measurements were conducted over a period of 3 h.
Formation of the fluorescent DCF, representing intra-
cellular ROS formation within the particle treated AM
is shown in Figure 5A. Intracellularly generated ROS
were clearly observed upon particle treatment com-
pared to untreated NR8383 cells. No significant
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differences were found between the different types of
particles.

Particle-induced extracellular ROS generation
Extracellular ROS were detected upon 3 h of particle
treatment in the supernatant of NR8383 cells by EPR
coupled to spin trapping with DMPO. Results are
shown in Figure 5B. A clear dose dependency was
observed for all three particle types, with effects reach-
ing statistical significance for ufTiO, and DQ12 at the
higher concentration of 40 pg/cm”.

Induction of markers of oxidative stress and inflammation
ROS as well as [Ca®*]; are known to play an important
role in activating several signaling pathways such as
MAP kinases and redox-sensitive transcription factors
including NF-xB, which can lead to the production of
pro-inflammatory molecules and mediators. Therefore,
we investigated the effects of the different particles on
NF-xB activation, release of TNF-o and IL-1p as well as
changes in mRNA expression of HO-1 and iNOS in
NR8383 cells. In non-activated cells, NF-xB-specific
fluorescence, reported by an antibody against RelA(p65),
was located in the cytoplasm of the AM as shown in
Figure 6A. A distinct increase in nuclear fluorescence
staining, indicating activation of the NF-xB pathway,
was seen after treatment with the positive control DQ12
(Figure 6B). Treatment of NR8383 cells with ufTiO,
(Figure 6D) was found to cause an increase in the
nuclear p65 staining albeit less strong than that follow-
ing DQ12 treatment. Treatment with fTiO, showed a
weak signal (Figure 6C).

The ability of the different particle types to induce
TNF-a and IL-1P release from NR8383 cells is shown in
Figure 7. TNF-a release was found to be induced by
ufTiO, particles in a concentration-dependent manner,
but not by fTiO, particles (Figure 7A). DQ12 was the
most potent particle type, showing a significantly
increased TNF-a release at 40 pg/cm?, whereas a signifi-
cant effect for ufTiO, was only found at the highest
concentration tested (80 pg/cm?). In contrast to the
observations for TNF-a, the release of IL-1B from
NR8383 cells was only increased after treatment with
DQI12 particles (Figure 7B). Neither ufTiO; nor fTiO,
were capable of initiating an increased IL-1f release
from NR8383 cells at the concentrations tested.

Results of qRT-PCR analyses of the stress response
gene HO-1 and the inflammatory gene iNOS are shown
in Figure 8 after treatment of the cells in complete cul-
ture medium (8A and 8C) or in HBSS (8B and 8D),
respectively. Under full medium conditions, a significant
higher HO-1 and iNOS mRNA expression was observed
after 4 h incubation with 40 pg/cm® ufTiO, as well as
DQ12. When treated with HBSS suspensions, the ability
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Figure 5 ROS generation by NR8383 cells after particle
treatment. (A) Intracellular ROS were measured via fluorescence of
DCFH-DA after particle treatment of 40 ug/cm?. (B) EPR measurements
in NR8383 supernatant using the spintrap DMPO show a
concentration-dependent generation of ROS induced by treatment
with both TiO, and DQ12 particles. In both experiments AM were
treated for 3 h. Figures represent mean + SEM of four independent
experiments, with * p < 0.05 and ** p < 0.01 vs. untreated control
(ANOVA with LSD post-hoc comparison) in Figure B.

of the ufTiO, to induce HO-1 mRNA expression was
markedly impaired (8A versus 8B), whereas its effect on
iNOS remained significant (8C versus 8D). In contrast,
DQ12 in HBSS was able to induce the expression of
both genes (B and D). The fTiO, particles showed no
notable effect on the mRNA expression of either gene.

Determination of specific internalization routes for the
investigated particles

In order to investigate internalization pathways for the
different particle types in NR8383 cells, various
approaches were used. Passive translocation was
addressed by comparative evaluation of uptake at tem-
peratures of 37°C and 4°C. Results of these measure-
ments are shown in Figure 9A. Irrespective of their size,
approximately 50% of the TiO, particles entered the cell
by non-active routes, whereas for DQ12 particles a
lower percentage was detected. However, it is important
to note that the increased granularity of NR8383 cells at
4°C may also - at least partially - reflect a fraction of

Page 11 of 19

particles that was not internalized but merely adherent
to the cells.

For the evaluation of specific mechanisms of active
uptake a set of specific inhibitors was used. Comparison
of the FACS analysis data at 1 and 3 h shows that the
majority of particle uptake takes place within the first
hour after particle treatment (Figure 2A-C). Hence, the
particle treatment time for the inhibition experiments
was set to 1 h (Figure 9B-D). Inhibition of actin-depen-
dent phagocytosis and macropinocytosis using CytD
reduced the uptake of fTiO, and DQ12 particles, but
not of ufTiO, particles. Whereas inhibition of actin in
NR8383 cells was able to abrogate active DQ12 uptake,
internalization of fTiO, could not be blocked completely
via this mechanism. The uptake of fTiO, and DQ12 par-
ticles was significantly reduced at a particle concentra-
tion < 20 pg/cm? upon inhibition of the formation of
CCP by Chl. Inhibition of CPP-mediated internalization
of ufTiO, particles was only significant at the highest
concentration tested. In contrast to these findings, treat-
ment of NR8383 cells with an antibody against the pha-
gocytosis receptor Fcyll had a strong influence on the
uptake of ufTiO, but not of fTiO, particles. To inhibit
the formation of caveolae, the inhibitor filipin III was
used. However, these experiments did not demonstrate
any effect on particle uptake (data not shown). Indepen-
dent experiments revealed that the filipin III concentra-
tion used could reduce uptake of the fluorescent dye
Alexa555-Cholera Toxin B-subunit (CTB) by the
NR8383 cells. Since CTB is known to be endocytosed
through lipid rafts [38,39] it is unlikely that caveolae-
mediated endocytosis does play a significant role in the
uptake of any of the tested particles in the NR8383
cells. No significant effects on particle uptake were
observed upon treatment of the cells with the vehicle
control DMSO as well as with the IgG control that was
used for the FcyRII antibody treatment experiments.

Discussion
In various studies ufTiO, particles have been shown to
possess increased inflammogenic potential in compari-
son to fTiO, [2,8,40,41]. Physiologic and systemic reac-
tions towards NP exposure, including the ufTiO, that
was used in this study, have been shown in several in
vivo investigations [6,9,42,43]. However, for the investi-
gation of underlying basic cellular mechanisms and
pathways, in vitro studies are necessary with established
cell lines, e.g. NR8383 cells [19]. Responses of these
cells to various toxicants such as PMA, endotoxin and
DQ12 were shown to be highly comparable to those in
primary AM obtained from rat lungs by bronchoalveolar
lavage [44,45].

In the present study we observed a rapid internaliza-
tion of fTiO, , ufTiO, and DQ12 by AM in a clear
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Figure 6 Induction of NFxB signaling after particle treatment. NR8383 cells were treated with particles as indicated in concentrations of 40
ug/cm? for 1 h. Compared to (A) untreated AM, (B) DQ12-treated cells show the strongest nuclear staining, while (C) fTiO, and (D) ufTiO,
particles demonstrate a lower nuclear staining. Original magnification: 400-fold (Zeiss Axio Observer.D1).
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dose-dependent manner. Direct comparison between the
specific particles was not possible, because of intrinsic
differences in their light scattering properties as
observed under cell free testing conditions. However,
our study demonstrates that, although all three particle
types are taken up, the cellular responses of the AM are
substantially different. DQ12 and ufTiO, showed similar
cytotoxicity, while significant effects for fTiO, were
absent. This confirms the accepted view in particle toxi-
cology that uptake of inorganic poorly soluble particles
does not necessarily culminate in a toxic response in
AM. Our findings also show that particle uptake per se
does not dictate oxidative stress and the induction of
inflammatory mediators. DQ12 represented the most
potent sample in inducing NF-xB activation and release
of TNF-a and IL-1B from the AM. HO-1 and iNOS
mRNA expression levels in AM were most pronounced
after treatment with ufTiO, . Remarkably also, both
DQ12 and ufTiO, triggered TNF-a release, while only
DQ12 induced IL-1f release.

The contrasting abilities of DQ12, ufTiO, and fTiO,
to induce IL-1B and/or TNF-a release can likely be
explained by underlying differences in signaling path-
ways of activation of both inflammatory genes. NF-xB, a

key regulator in the pathogenesis of particle-induced
diseases [15,46], controls the expression of cytokines,
growth factors and distinct enzymes in response to liga-
tion of many receptors involved in immunity [47].
Indeed, in our current study, an association between
TNF-a levels in the supernatants from AM upon parti-
cle treatment at equal mass (i.e. DQ12 > ufTiO, >
fTiO, ) and their abilities to cause NF-xB p65 nuclear
translocation was found. The exclusive effect of DQ12
on IL-1P release is likely to be explained by the recently
unraveled mechanism of its cellular activation via the
inflammasome. IL-1f is produced as the inactive cyto-
plasmic precursor prolL-1f which has to be cleaved by
caspase-1 to generate the mature active form of the pro-
tein [48-50]. In turn, caspase-1 is regulated by the
inflammasome protein complex NALP3 [51], which has
been proposed to be activated by crystalline silica parti-
cles following lysosomal rupture [52] or by NADPH oxi-
dase-generated ROS driven by phagocytosis [53]. A
recent study has revealed that upon priming with LPS
(to induce prolL-1B), both DQ12 and ufTiO, trigger IL-
1B secretion from bone marrow derived dendritic cells
from wild-type but not caspase-1 or NLRP3-deficient
mice [54]. This suggests that the contrasting IL-1



Scherbart et al. Particle and Fibre Toxicology 2011, 8:31
http://www.particleandfibretoxicology.com/content/8/1/31

A kkk kkk
1000

800 -
600 - *

400 -+

% of control

200 - [

ufTio2 fTio2 DQ12
400
300

200

% of control

ufTio2

fTio2 DQ12

10 ug/cm2  ®W20pug/cm2 M40 pug/cm2 W80 pg/cm2

Figure 7 Particle-dependent release of TNF-a and IL-1fB. (A)
ufTiO, and DQ12 particles trigger the release of TNF-o. by AM in a
concentration- dependent manner. (B) Only DQ12 particles cause
the release of IL-18 by AM at the highest concentrations. Data are
presented as mean + SEM of three independent experiments, with
*p <005 * p <001 and *** p < 0001 vs. medium control
(ANOVA with LSD post-hoc comparison).

responses observed with NR8383 cells may be due to
differences in the abilities of specific types of poorly
soluble particles to act on prolL-1f activation, i.e.
upstream of the inflammasome activation.

A further remarkable observation in our study con-
cerned the mRNA expression of HO-1 and iNOS. The
positive control DQ12 appeared to be less potent than
ufTiO, with regard to the induction of mRNA expres-
sion of both genes. HO-1 is considered as a sensitive
marker of oxidative stress and has shown to be induced
by inhaled ambient ultrafine particles [55] as well as by
DQ12 quartz [45,56]. The induction of iNOS in macro-
phages has been well-established in previous studies for
crystalline silica particles, and this is considered to play
a major role in its pulmonary toxicity [57]. The con-
trasts in nuclear translocation of NF-xBp65, iNOS and
HO-1 mRNA expression in NR8383 cells in response to
ufTiO, and DQ12 suggest that particle-induced iNOS
activation in AM can occur in an NF-xB-independent
manner. Thus, while ufTiO, and DQ12 both trigger
pro-inflammatory effects unlike fTiO, , these particles
likely activate AM through different mechanisms.
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In our present study, calcium influx and intracellular
ROS generation were observed in AM with all three
particle types to a similar extent, although both are con-
sidered as key mechanisms for adverse particle effects
[58]. Tian and colleagues [59] recently demonstrated
that ROS do not modulate [Ca®*]; in quartz-treated rat
AM, however, calcium increase in the cytoplasm causes
ROS generation after silica treatment. Enhanced [Ca*];
in relation to pro-inflammatory signaling pathways has
also been observed after treatment of macrophages with
ultrafine carbon black (CB) particles in contrast to fine
CB [27]. To the best of our knowledge, a comparison of
effects between fTiO, and ufTiO, on calcium homeosta-
sis in macrophages has not yet been performed. We
observed no clear difference between both particle types
in terms of the number of activated cells or the intensity
of activation. In line with this, intracellular ROS levels
also did not differ after treatment with both types of
TiO, . Our findings are in contrast to observations with
CB [27] and suggest that particle size- and/or surface
area-dependent effects on calcium influx and ROS for-
mation are (nano)particle type-specific.

Besides intracellular ROS by DCFH-DA assay, we also
determined extracellular ROS levels by means of EPR.
Significant increases were observed after treatment with
DQ12 and ufTiO, , but not after fTiO, . Previous stu-
dies indicate that fTiO, and ufTiO, samples do not
markedly differ in their intrinsic ROS generating capa-
city, when measured in cell free assays in the absence of
photosensitization [8,60,61]. In concordance with our
current findings in NR8383 cells, we could previously
also show that ufTiO, , unlike fTiO, , caused enhanced
ROS formation in supernatants of A549 human lung
epithelial cells. This suggests that ROS predominantly
originate from interactions between ufTiO, and cellular
constituents and compartments rather than from the
particles themselves. Potential relevant sources herein
include NADPH oxidase enzyme family members as
well as mitochondria [8]. Our findings indicate that dif-
ferent ROS-generating mechanisms exist in AM, with a
selective sensitivity towards particle size or chemical
composition as already concluded by Dick and collea-
gues [62]. At this stage however, it should be empha-
sized that the calcium imaging experiments and both
ROS assays were not performed in complete culture
medium, but in saline, or HBSS*'*, respectively. This
was required to minimize potent radical scavenging
properties of various (protein) constituents in the FCS-
containing medium that can interfere with the assays.
DLS measurements on unfiltered samples demonstrated
that both fTiO, and ufTiO, , when suspended in HBSS,
reside as large agglomerates with an average hydrody-
namic diameter of 936.6 or 2018 nm, respectively, unlike
in FCS-containing medium (see Table 1). Lacking
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differences in calcium influx and intracellular ROS
between fTiO, and ufTiO, may therefore reflect an
“agglomeration”-response of NR8383 cells. Interestingly
though, increased extracellular ROS levels could be
shown for ufTiO, by EPR analysis, despite its agglom-
eration. All other parameters in our study were evalu-
ated using FCS-containing culture medium, in which
the number-average diameter of ufTiO, sample was well
within the nanosize range. However, apart from effects
on agglomeration behavior, these treatment conditions
also generate so-called (protein) coronas, most probably
in a material specific manner [63]. This should be taken
into account with regard to the various effects described
in our study.

The importance of agglomeration and (protein) coat-
ing effects can be demonstrated from the comparative
mRNA expression measurement of HO-1 and iNOS in
HBSS treated versus full medium treated NR8383 cells
(Figure 8). When suspended in HBSS, ufTiO, failed to
cause a significant increase of HO-1 mRNA, which
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indicated that the agglomeration state (see Table 1) of
this sample is crucial for its ability to induce this oxida-
tive stress marker. Remarkably however, the induction
of iNOS by ufTiO, was not abrogated. This suggests
that the activation of HO-1 and iNOS by particles
involves, at least in part, different signaling pathways
driven by different physico-chemical properties. In con-
trast to the ultrafine TiO, , the crystalline silica sample
induced HO-1 and iNOS under both treatment condi-
tions. At the lower treatment concentration (10 pg/
cm?), the effect of DQ12 tended to be even stronger in
the HBSS than in the FCS-containing medium. Current
observations are in concordance with previous investiga-
tions in our laboratory where chemical coating of DQ12
was shown to abrogate its pro-inflammatory properties
in NR8383 cells [45,64], as well as in vivo in the rat
lung [32].

The goal of our study was to investigate the interac-
tions between particles and AM and their associated
pro-inflammatory effects in relation to particle size and
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Figure 8 Particle-dependent impact on the mRNA regulation of HO-1 and iNOS. NR8383 cells were treated with 10 or 40 ug/cm? of the
indicated particles for 4 h in complete culture medium (A and C) or HBSS (B and D). In medium (A), ufTiO, and DQ12 trigger mRNA
upregulation of the stress-response gene HO-1 in a concentration-dependent manner, whereas in HBSS (B) a significant induction was only
observed with DQ12. The synthesis of the inflammatory marker iNOS is induced on the mRNA level by both ufTiO, and DQ12 at a concentration
of 40 pg/cm2 in medium (C) as well as in HBSS (D). In HBSS, DQ12 also elicited significant induction of iNOS at the lower treatment
concentration. All data are corrected for GAPDH. Figures represent mean + SEM of seven (A, C) or three (B, D) independent experiments, with *
p < 005 ** p <001 and *** p < 0001 vs. medium control (ANOVA with LSD post-hoc comparison).
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physico-chemical properties. The contrasting cellular
responses observed by the three types of particles could
not be explained by uptake by the AM per se. Therefore,
investigations were performed addressing the underlying
cellular mechanisms of particle internalization. Herein,
the importance of particle size and distribution as well
as of agglomeration behavior in cell culture medium
suspensions was taken into account. We also specifically
compared the uptake mechanisms for both TiO, sam-
ples with those that we previously investigated for
DQ12 in NR8383 cells [20,65]. Evaluation of uptake at
4°C indicates a passive, energy-independent entrance of
particles into cells and/or their adherence to outer
membranes of AM. For both TiO, samples the propor-
tion was found to be higher than for DQ12. However,
no clear difference could be seen between fTiO, and
ufTiO, despite the marked differences in their size dis-
tributions in complete culture medium used for the
uptake experiments. These observations are in line with
previous findings for both materials concerning their
uptake into A549 human lung epithelial cells [8].

A series of specific inhibition experiments were per-
formed to investigate the various active uptake routes in
NR8383 cells. A combination between different uptake
mechanisms in our study can be reasoned by the find-
ings of Rothen-Rutishauser and colleagues [66] showing
TiO, particles in a three-dimensional cell culture model
free in the cytoplasm as well as membrane-bound. Our
own findings indicate that the active internalization of
ufTiO, particles in AM is mainly performed via a
FcyRII-mediated mechanism and, to a lesser extent, by
CCP which exhibit a vesicle diameter of 100 - 120 nm
[67]. Uptake of fTiO, particles also took place via CCP,
but in addition an actin-dependent uptake mechanism
was equally involved. This may include macropinocyto-
sis, by which large vesicles between 0.2 - 10 um are
formed spontaneously or upon stimulation [68]. Actin-
mediated endocytosis is connected to receptor activation
like MARCO and SR-A mediated processes, as pre-
viously shown by Kobzik and co-workers for primary
AM of different species [69-71]. The prominent recep-
tor-mediated uptake mechanism for fTiO, and silica by
human macrophages via SR-A reported by Thakur et al.
[24] is beyond all question for our study, since NR8383
cells lack this receptor as determined by PCR analysis
(data not shown). As expected from their size distribu-
tion, the DQ12 particles were taken up by actin-depen-
dent classical phagocytosis which is described to be
mediated by FcyRII [65]. Phagocytosis is the most effec-
tive clearance mechanism for particles between 1 - 5
pm in diameter [67]. Inhibition experiments with filipin
IIT were found to be unsuccessful in reducing particle
uptake in NR8383 cells. For DQ12 and fTiO, this could
be anticipated in view of their size distributions and the
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typical diameter of 50 - 100 nm of the caveolae vesicles.
However, filipin III was also ineffective for ufTiO, ,
despite the fact that its number-average hydrodynamic
diameter falls into the vesicle size range of caveolae.
This suggests that even for these smaller particles/aggre-
gates alternative uptake pathways such as CCP domi-
nate. Notably, apart from differences in primary particle
size and agglomeration behavior, both TiO, samples
also differ in their chemical composition. Therefore, a
potential role of rutile vs. anatase in particle-macro-
phage interactions can not be ruled out. Another expla-
nation may be related to the specific method of particle
uptake used in the present study. In relation to the rela-
tive contribution of particle number and particle mass
to changes in AM granularity it is possible that the
uptake of the smallest particles is underestimated in the
flow cytometry approach. However, in a recent study it
was demonstrated that flow cytometry can detect orga-
nosilica nanoparticles as small as 58 nm in diameter via
side scattering analysis and that the method is actually
suitable for size distribution analysis [72]. Comparison
of the TEM distribution data of the samples used in our
study with SSC histograms of cell free particle suspen-
sions obtained with the same apparatus (FACS Calibur)
indicates that this is also valid for TiO, (data not
shown).

A major conclusion that can be drawn from the
uptake experiments is that fTiO, and DQ12 which are
both classified as “fine” particles show a specificity and
size-dependency with regard to the tested cellular
uptake mechanisms. Further studies are needed to inves-
tigate these alternative uptake pathways using indepen-
dent inhibition strategies (e.g. siRNA). Because of the
limitations of the cell line used in our present study (e.
g. lack of SR), this should be done preferably with pri-
mary macrophages. These studies should also focus on
the potential contribution of particle-specific coronas to
kinetics and pathways of uptake and associated cellular
responses.

Our observation that multiple uptake mechanisms
may be relevant for one specific type of particle can be
explained by the size-distribution of the specific samples
and, likely of more importance, their agglomeration
behavior when suspended in culture media. Obviously,
for the identification of the in vivo relevant mechanisms
of uptake of specific types of (nano)particles by AM,
one should obviously take into account the role of the
micro-environment of these cells, e.g. potential corona-
forming constituents of the alveolar lining fluid. Never-
theless, our current in vitro findings emphasize on the
aspect that the inflammatory properties are not driven
by uptake per se. It appeared that specific physico-che-
mical properties of quartz, fTiO, and ufTiO, particles
are responsible for qualitative as well as quantitative
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differences in their ability to induce oxidative stress and
inflammatory responses in AM. In contrast to fTiO,
which was relatively inert, both DQ12 and ufTiO,
increased extracellular ROS and TNF-a release, while
ufTiO, predominantly enhanced iNOS mRNA expres-
sion, and DQ12 exclusively triggered IL-1p release. Our
findings indicate that these dissimilar macrophage
responses may be related to specific differences in
uptake mechanisms, respectively involving actin cytoske-
leton, CCP formation and FcyRII-mediated internaliza-
tion. The findings with fTiO, demonstrate that actin
and CCP are not necessarily involved in pro-inflamma-
tory cytokine release and extracellular ROS generation
by macrophages after particle uptake. The data for
DQ12 and ufTiO, indicate a role for FcyRII in macro-
phage responsiveness. The contrasting activation profiles
for both materials emphasize the need for further inves-
tigations, specifically regarding the inflammasome. The
relative overlap of the investigated mechanisms for the
various types of particles used in this study are likely
explained by their size distributions. Indeed, studies
with monodisperse particles are most appropriate to
clarify individual mechanisms of uptake by macro-
phages. However, it should be emphasized that AM
typically encounter size ranges of particles and their
agglomerates of various types of respirable materials,
including the fine and ultrafine TiO, samples used in
our current study.
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