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Abstract

Background: For many individuals, daily commuting activities on roadways account for a substantial proportion of
total exposure, as well as peak-level exposures, to traffic-related air pollutants (TRAPS) including ultrafine particles,
but the health impacts of these exposures are not well-understood. We sought to determine if exposure to TRAPs
particles during commuting causes acute oxidative stress in the respiratory tract or changes in heart rate variability
(HRV), a measure of autonomic activity.

Methods: We conducted a randomized, cross-over trial in which twenty-one young adults took two 1.5-hr rides in
a passenger vehicle in morning rush-hour traffic. The subjects wore a powered-air-purifying respirator, and were
blinded to high-efficiency particulate air (HEPA) filtration during one of the rides. At time points before and after
the rides, we measured HRV and markers of oxidative stress in exhaled breath condensate (EBC) including nitrite,
the sum of nitrite and nitrate, malondialdehyde, and 8-isoprostane. We used mixed linear models to evaluate the
effect of exposure on EBC and HRV outcomes, adjusting for pre-exposure response levels. We used linear models to
examine the effects of particle concentrations on EBC outcomes at post-exposure time points.

Results: Mean EBC nitrite and the sum of nitrite and nitrate were increased from baseline at immediately
post-exposure comparing unfiltered to filtered rides (2.11 μM vs 1.70 μM, p = 0.02 and 19.1 μM vs 10.0 μM,
p = 0.02, respectively). Mean EBC malondialdehyde (MDA) concentrations were about 10% greater following
the unfiltered vs. filtered exposures, although this result was not statistically significant. We found no significant
associations between exposure to traffic particles and HRV outcomes at any of the time points. At immediately
post-exposure, an interquartile range increase in particle number concentration was associated with statistically
significant increases in nitrite (99.4%, 95% CI 32.1% to 166.7%) and nitrite + nitrate (75.7%, 95% CI 21.5% to 130.0%).

Conclusions: Increases in markers of oxidative stress in EBC may represent early biological responses to widespread
exposures to TRAPs particles that affect passengers in vehicles on heavily trafficked roadways.
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Table 1 Characteristics of subjects

Characteristic Mean (range)

Age (years) 22.4 (18–41)

BMI (kg/m2) 23.8 (19.50-28.66)

Race/ethnicity n (%)

Asian 9 (43)

Black 3 (14)

Hispanic 1 (5)

White 8 (38)

Sex n (%)

Men 15 (71)

Women 6 (29)
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Background
Exposure to traffic-related air pollutants (TRAPs) has been
associated with cardiovascular and respiratory health ef-
fects [1-3]. Exposure to TRAPs is highly prevalent, and
for many individuals, a substantial proportion of daily
exposure to TRAPs occurs during work commutes in
rush-hour traffic [4]. Although the health effects of these
short-term, intense exposures to TRAPs are not well-
established, a case-crossover study found increased risk of
myocardial infarction within hours of commuting activ-
ities [5]. Controlled exposure to emissions from diesel
engines, a major source of TRAPs, caused acute re-
spiratory irritation, inflammation, and adverse cardiovas-
cular effects among human volunteers [6-12]. Short-term
exposures to TRAPs on or near roadways have been
associated with increased respiratory tract inflamma-
tion, decreased lung function, and changes in heart
rate variability (HRV) [13-19].
Oxidative stress is a general mechanism by which ex-

posure to TRAPs may cause adverse health effects [2,20].
Complex TRAPs mixtures include known primary oxi-
dants, notably PAH-quinones and transition metals found
in the particle phase [21-23]. Cellular interactions with
TRAPs cause secondary production of oxidants, includ-
ing nitric oxide and nitrosative compounds, as well as
reactive oxygen species [24,25]. Oxidative stress has been
implicated in inflammatory responses to diesel exhaust
and diesel exhaust particles in cell systems, animal models,
and the human respiratory tract [26,27].
Pulmonary oxidative stress can be sampled non-invasively

with exhaled breath condensate (EBC). In EBC, concentra-
tions of the nitrite and nitrate, relatively stable oxidation
products of nitric oxide metabolism, have been associated
with previous-day exposure to coarse particles among
adults with pulmonary disease in European cities [28], and
with levels of air pollution in healthy adults during the
Beijing Olympics time period [29]. We found increased
EBC nitrite and nitrate among adults with asthma after
controlled exposure to diesel exhaust [9]. Increased con-
centrations of the lipid peroxidation products malon-
dialdehyde (MDA) and 8-isoprostane have been associated
with exposure to PM and traffic among children with
asthma in Mexico City [30] and with ambient PM among
students in Beijing [31,32].
Exposures to ambient and traffic-related particulate

matter (PM) have been associated with adverse cardio-
vascular effects, including changes in heart rate vari-
ability (HRV), an indicator of the relative balance of
parasympathetic and sympathetic autonomic control of
heart rate that has predicted mortality in at-risk patient
groups [33]. Polymorphisms in antioxidant genes modify
associations between ambient PM and HRV, suggesting a
link between oxidative stress and the autonomic effects of
exposure to PM [34,35].
We hypothesized that 1.5-hr rides as a passenger in an
automobile in morning rush-hour traffic on a major US
highway causes acute increases in oxidative stress in the
respiratory tract and changes in autonomic balance
among healthy young adults, and that the PM compo-
nent of the TRAP mixture is responsible for these ef-
fects. We measured changes in biomarkers of oxidative
stress in EBC and HRV in a randomized, controlled,
cross-over study design in which subjects wore a pow-
ered air purifying respirator (PAPR) during two car rides,
and were blinded to High Efficiency Particulate Air
(HEPA) filtration during one of the two car rides. Both
inside the respirator and inside the vehicle cabin, we
measured PM2.5 (particulate matter with median aero-
dynamic diameter cut-point of <2.5 μm) and particle
number (PN) concentration as a proxy for ultrafine par-
ticles on roadways in traffic.

Results
Demographics
The subjects (mean age 22 years old) were predominantly
male, reflecting the population of our academic campus at
Rutgers University (Table 1).

Exposure measurements
With the HEPA filter in place, the mean (+/− SD) par-
ticle number concentration that subjects breathed inside
the respirator hood was reduced by approximately
99.99% compared to unfiltered rides (3.5 +/− 4.1 vs.
37,999 +/− 9,545 pt/cm3) (Table 2) (Figure 1). The re-
duction in PM2.5 with HEPA filtration was of a much
smaller magnitude (9.1 +/− 4.8 vs. 1.4 +/− 0.6 μg/m3).
Black carbon and gas-phase pollutants were not mea-
sured inside the respirator. Mean concentrations of
black carbon, CO, NO2, T and RH in the vehicle cabin
air were similar on filtered vs. unfiltered days.
Subjects wore the PAPR during both car rides, blinded

to the presence or absence of the HEPA filter. The filter



Table 2 Concentrations (mean ± SD) of measured pollutants

Environmental measurements Unfiltered rides HEPA-filtered rides

Mean SD Median Mean SD Median

Air inside vehicle cabin

Particle Number (cm−3) 41,350 12,678 40,806 44,411 16,115 40,063

PM2.5 (μg/m3) 11.7 6.3 10.7 12.2 6.2 10.3

BC (μg/m3) 6.1 3.6 5.5 6.2 2.5 6.2

CO (ppm) 1.1 0.4 1.1 1.3 0.4 1.2

NO2 (ppb) 26 9 26 26 11 24

Temp °C 24.5 2.9 24.2 23.6 2.4 23.8

RH% 25 10 28 27 10 28

Air inside respirator facepiece

Particle number (cm−3) 37,999 9,545 37,928 3.5 4.1 2.2

PM2.5 (μg/m3) 9.1 4.8 8.2 1.4 0.6 1.3

Abbreviations: HEPA High-Efficiency Particulate Air.
Pollutant measurements were made in the vehicle cabin air and inside the facepiece of the respirator (particle number and PM2.5 only) during all rides under
both unfiltered and filtered conditions.
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is not visible inside the PAPR, and the respirator is very
quiet and maintains constant airflow and a positive pres-
sure inside the loose-fitting face piece with or without the
filter in place. Stress Questionnaire data showed no differ-
ence in perceived stress or anxiety during the car rides
while wearing the PAPR compared to prior to the car rides
while not wearing the PAPR [Stress Symptom Rating (SSR)
mean score (SD): 2.05 (0.81) vs. 2.06 (0.95)].

EBC markers
Figure 2 shows concentrations of nitrite, the sum of ni-
trite and nitrate (nitrite + nitrate), and MDA in EBC col-
lected at pre-exposure, post-exposure, 6 hr, and 24 hr
after the car rides. Following the unfiltered rides, mean
EBC nitrite was increased at post-exposure compared to
baseline (2.11 μM vs 1.70 μM), whereas following the fil-
tered rides, mean EBC nitrite decreased at post-exposure
compared to baseline (1.14 μM vs. 1.56 μM) (p = 0.02
comparing change from baseline in filtered vs. unfiltered).
In the unfiltered rides, mean EBC nitrite + nitrate was

increased at post-exposure compared to baseline (19.1 μM
vs 10.0 μM), whereas in the filtered rides, mean EBC ni-
trite + nitrate decreased at post-exposure compared to
baseline (13.1 μM vs 16.9 μM) (p = 0.02 comparing change
from baseline in filtered vs. unfiltered). Changes in mean
EBC nitrite + nitrate from baseline, comparing filtered and
unfiltered rides, were not statistically significantly different
at 6 hr and 24 hr after the rides.
Mean MDA concentrations in EBC were about 10%

greater in the unfiltered vs. filtered conditions at post-
exposure, 6 hr, and 24 hr, but these differences were not
statistically significant. EBC 8-isoprostane was not de-
tectable in a majority of the samples using our HPLC
method.
In regression analysis of data from filtered and unfiltered
rides, an interquartile range (IQR) increase in particle
number concentration (36,392/cm3), measured inside the
respirator face piece, was associated with statistically sig-
nificant increases in nitrite and nitrite + nitrate at the im-
mediately post exposure time point, but not at the 6
and 24 hr time points (Table 3). There were no statistically
significant associations between PM2.5 (IQR 5.25 μg/m3 mea-
sured inside the respirator and EBC nitrite, nitrite + nitrate,
or MDA.

Heart rate and HRV
HRV parameters generally decreased from pre-exposure
to 6 hr and 24 hr for both filtered and unfiltered rides, but
there were no statistically significant differences between
unfiltered and filtered rides (Table 4). Similarly, LF and
total power increased from baseline to post-exposure, but
with no statistically significant differences between unfil-
tered and filtered rides. There were no consistent trends
or statistically significant effects of exposure (filtered vs.
unfiltered) on HRV or HR at any time points. There was a
large amount of variation in HRV outcome measurements
both within and between subjects.

Discussion
Among young adults riding as passengers for 90–110 min
in heavy motor-vehicle traffic, we found increased nitrite
and nitrite + nitrate in EBC immediately after rides during
which the subjects breathed unfiltered vehicle cabin air
compared to rides during which they breathed HEPA-
filtered air. In analysis of single pollutant effects, mean
particle number concentration measured inside the res-
pirator was associated with increased nitrite and nitrite +
nitrate in EBC immediately after the car rides. MDA



Figure 1 Box plots showing mean, median, 25th percentile, 75th percentile, and range of concentrations of particle number and
PM2.5 concentrations measured inside the respirator (PAPR) facepiece.
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Figure 2 EBC outcome measurements before and after breathing either HEPA-filtered or unfiltered air during car rides. EBC nitrite (a), nitrite +
nitrate (b), and MDA (c) at pre-exposure, immediately post-exposure, and 6 and 24 hr post-exposure with HEPA filtered breathing air (dashed line) or
unfiltered breathing air (solid line). N = 20 for most data points, with missing single data points at some 6 and 24 hours (N = 19) *indicates significance
at p = 0.02 for exposure effects comparing change from baseline for unfiltered rides to change from baseline for filtered rides.
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Table 3 Estimated% difference (95% CI) in EBC nitrite,
nitrite + nitrate, and malondialdehyde (MDA) associated
with interquartile range change relative to the median,
adjusted for pre-exposure level, in particle number
concentration (cm−1,PN) and PM2.5 inside the respirator
for all car rides

EBC biomarker Pollutant** Time pt. % Response/IQR increase

Nitrite PN 0 hr 99.4% (32.1% to 166.7%)*

6 hr 22.3% (−21.9% to 66.5%)

24 hr 7.1% (−16.2% to 29.8%)

PM2.5 0 hr 27.6% (−27.3% to 82.4%)

6 hr 13.2% (−18.6% to 45.0%)

24 hr −1.9% (−10.0% to 6.2%)

Nitrite + Nitrate PN 0 hr 75.7% (21.5% to 130.0%)*

6 hr 62.9% (−35.5% to 160.3%)

24 hr 33.5% (−18.6% to 85.2%)

PM2.5 0 hr 26.4% (−13.7% to 66.5%)

6 hr 8.9% (−61.0% to 78.8%)

24 hr 7.8% (−33.0% to 48.6%)

MDA PN 0 hr 11.3% (−16.2% to 37.3%)

6 hr 0.3% (−43.2% to 42.7%)

24 hr 15.1% (−16.8% to 47.1%)

PM2.5 0 hr −1.4% (−20.6% to 17.9%)

6 hr 3.8% (−27.0% to 34.5%)

24 hr 1.1% (−24.3% to 26.6%)

*p < 0.01 for change from baseline.
**Inter-quartile ranges: PN = 36,392, PM2.5 = 5.25, BC = 4.66.
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concentrations in EBC were ~12 to 14% greater at post-
exposure and 6 and 24 hr after unfiltered compared to
filtered rides, but these differences were not statistically-
significant. We did not find statistically significant dif-
ferences in HRV between unfiltered and filtered rides.
These results suggest that exposure to the particle phase
of TRAP contributes to acute, transient increases in re-
spiratory tract oxidative stress among healthy adult vehicle
occupants during short-term exposures to TRAP that
occur during commuting.
We used an experimental approach with a filtered-air

control condition in order to isolate the effects of expos-
ure to TRAP particles on biomarkers of acute oxidative
stress and autonomic balance that may mediate respira-
tory and cardiovascular health effects of relatively intense,
short-term exposures to TRAPs. TRAPs are a complex
mixture of primary gas-, vapor-, and particle-phase pollut-
ants from engine emissions, as well as re-suspended road
dust and products of vehicle and road wear. In various set-
tings in close proximity to sources, such as while occupy-
ing a vehicle in traffic or residing near a major roadway,
exposures to TRAP are likely to co-vary with noise, other
environmental factors, and psychological stress. Observa-
tional epidemiologic approaches may have limited ability
to disentangle the effects of specific components of TRAPs
from the effects of these potentially confounding or effect-
modifying co-exposures. Controlled human exposure stud-
ies in the laboratory can control for potential confounders,
but generally with some sacrifice of relevance to complex
real-world exposures. To control for these factors in a real-
world setting, we randomized exposure to HEPA-filtered
and unfiltered vehicle cabin air in a blinded, cross-over
study design. The observed differences between unfiltered
(particles and gas-phase TRAPs) and particle-filtered (gas-
phase TRAPs only) exposures suggest that particles are
necessary, although they may not be sufficient, to cause
the observed increases in markers of oxidative stress in
the respiratory tract after exposure to TRAPs.
This is the first report of acute increases in markers of

oxidative stress in EBC following short-term, real-world
exposure to TRAPs. In a recent controlled exposure study,
we found increases in EBC nitrite in subjects with asthma
immediately after a 1-hr exposure to diluted diesel exhaust
compared to filtered-air control [9]. Balint et al. (2001) re-
ported an immediate, transient increase in EBC nitrite +
nitrate among smokers after smoking two cigarettes [36].
Other studies have found that EBC nitrite and/or nitrite +
nitrate were positively associated with levels of ambient
air pollution [28,29], as well as with the disease states of
asthma, cystic fibrosis, and COPD [37-39].
We found statistically significant associations between

particle number concentrations and EBC nitrite and ni-
trite + nitrate immediately following the car rides, but no
associations between PM2.5 and these outcomes. Particle
number is a more specific indicator of TRAP particles,
which are predominantly in the ultrafine size range near
emission sources on highways, compared to PM2.5 mass
concentration, which includes generally larger ambient
particles and is less influenced by TRAP particles [40].
Therefore, these results are consistent with the interpret-
ation that exposure to TRAP particles, not ambient PM,
were a primary cause of the airway response measured in
EBC comparing unfiltered to filtered rides.
Increases in nitrite and nitrate in EBC may reflect in-

creased NO production and/or increased oxidation of NO
to nitrite and/or nitrite to nitrate. Although both EBC ni-
trite and fractional exhaled nitric oxide (FENO) can indi-
cate the level of NO production within the lung, there are
significant differences between the two measures. By def-
inition, FENO is a measure of NO released to the gas
phase that has escaped reaction with aqueous components
of the lung lining. In contrast, nitrite represents NO that
has been “fixed” in the aqueous phase by oxidative reactiv-
ity. Therefore, EBC nitrite is a more complex measure as
it is determined by the rates of NO production and oxida-
tion. The immediate increase in EBC nitrite was consist-
ent with increased NO production from the constitutive
isoforms of nitric oxide synthase (NOS), rather than



Table 4 Heart rate variability (HRV) at time points before and after unfiltered and filtered care rides

Out-come Exposure Mean (SD) Mean of differences from pre-exposure (SD)

Pre-exposurea Immediately Postb 6 hours posta 24 hours postc Immediately Post 6 hours post 24 hours post

RMSSD (ms) Filtered 0.095 (0.066) 0.103 (0.064) 0.064 (0.042) 0.082 (0.056) 0.008 (0.028) −0.031 (0.043) −0.011 (0.043)

Unfiltered 0.073 (0.048) 0.091 (0.051) 0.056 (0.033) 0.077 (0.059) 0.017 (0.050) −0.016 (0.046) 0.077 (0.070)

P-value assessing exposure effectd .5180 .91056 .9756

LF (ms2) Filtered 1152.6 (1549.4) 1575.8 (1447.1) 623.1 (511.1) 933.5 (1045.4) 423.2 (1339.5) −529.6 (1263.5) −237.6 (1573.3)

Unfiltered 1112.2 (1005.2) 1432.9 (996.7) 752.9 (681.2) 827.9 (795.5) 281.3 (921.9) −359.3 (733.0) −284.0 (663.5)

P-value assessing exposure effectd .3750 .2530 .7847

HF (ms2) Filtered 2294.3 (3646.1) 2453.7 (2993.9) 1029.9 (1116.5) 1675.6 (2562.2) 159.4 (1232.4) −1264.4 (3220.3) −540.3 (2110.6)

Unfiltered 1908.1 (2922.2) 1882.6 (1996.0) 787.4 (768.2) 1613.0 (3191.2) −94.3 (1853.6) −1120.7 (2560.8) −222.9 (1456.3)

P-value assessing exposure effectd .2893 .2761 .6482

LF/HF (ms2) Filtered 1.2 (1.6) 1.1 (0.9) 1.4 (1.2) 1.0 (0.6) −0.1 (1.1) 0.3 (1.7) −0.2 (1.6)

UnFiltered 1.2 (0.9) 1.3 (1.1) 1.3 (0.8) 1.1 (1.1) 0.1 (0.9) 0.1 (0.7) −0.3 (0.7)

P-value assessing exposure effectd .3263 .5061 .8774

Total Power (ms2) Filtered 4644.2 (4699.9) 7879.1 (8187.1) 2699.3 (1975.1) 3891.0 (3658.0) 3234.9 (7109.1) −1944.9 (4061.6) −699.5 (3503.1)

Unfiltered 4391.9 (4976.9) 6338.7 (5207.0) 2948.1 (2513.4) 3652.7 (4980.4) 1828.7 (3700.2) −1443.8 (3190.1) −670.1 (3559.9)

P-value assessing exposure effectd .2795 .4105 .9899

HR (min−1) Filtered 60.1 (9.5) 56.8 (7.9) 68.9 (12.8) 61.3 (8.2) −3.3 (5.0) 8.8 (8.5) 0.3 (6.8)

Unfiltered 61.4 (10.2) 59.4 (9.7) 70.2 (11.8) 63.3 (11.8) −2.7 (7.9) 8.9 (9.3) 1.6 (6.8)

P-value assessing exposure effectd .4087 .6640 .5514
aN = 20 for filtered; N = 21 for unfiltered; bN = 20 for filtered and unfiltered; cN = 19 for filtered N = 21 for unfiltered; dDerived from mixed-effects linear model, controlling for baseline as a covariate and nested
sessions within subject.
Means and Standard Deviations of HRV outcomes at each time point, the changes from pre-exposure and p-values assessing the effect of exposure (unfiltered vs. HEPA-filtered ride) on change in HRV outcomes from
pre-exposure baseline to post-exposure time points.
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inducible NOS2 activity, which requires protein synthesis.
Consistent with increased production of NO in response
to TRAP exposure, Adar et al. found that exposures to
PM2.5 and black carbon were positively associated with
FENO among elderly passengers on group diesel bus rides
in St. Louis [41]. Even if the mechanism of response to in-
haled TRAP particles were solely increased NO produc-
tion, this represents a source of oxidative stress through
NO’s role as an oxidant.
The observed increase in MDA, a marker of lipid per-

oxidation, after unfiltered rides compared to filtered rides
(Figure 1c) was consistent across time points, but not sta-
tistically significant. Longer-term exposures to air pollut-
ants have been associated with MDA in EBC [30,31].
Among a panel of healthy adults, higher levels of EBC
MDA were measured during the pre- and post-Olympic
periods, compared to the Olympic period in Beijing, China
when air pollutants were drastically reduced [31].
Comparing filtered to unfiltered rides, we found no sta-

tistically significant changes from baseline in any measured
HRV parameters at post-exposure, 6, or 24 hr (Table 3). A
recent meta-analysis of studies that included exposure to
ambient or occupational PM demonstrated a significant in-
verse relationships between PM2.5 and LF, HF, RMSSD
and SDNN HRV measurements [33]. Fewer studies have
examined the effects of direct exposure to TRAPs on
HRV, with inconsistent results [14,19,42,43]. The acute ef-
fects of diesel exhaust on HRV have been inconsistent in
controlled exposure studies [44,45].
In a similar study design, Langrish et al. (2009) found

that 24-hr SDNN and LF HRV were higher after 2-hr
walks in central Beijing during which healthy subjects
wore a negative pressure, air purifying (“N95”) respirator,
compared to walks without the respirator [12]. Negative
pressure, air-purifying respirators are known to affect
cardiovascular physiology including HR and BP, and sub-
jects could not be blinded to the exposure conditions
[46,47]. In the present study, we used a powered air
purifying respirator that does not alter pulmonary me-
chanics, and subjects were blinded to the presence or
absence of a HEPA filter in the light-weight, hood-type,
respirator, which was worn for both filtered and unfil-
tered rides.

Limitations
The study was small and may have been underpowered to
detect some effects that may be of biological significance,
particularly changes in HRV and EBC MDA, especially in
light of the relatively low exposure levels. The young
healthy, university student subjects do not represent the
general population and may not reflect the response of
more susceptible populations. The comparisons between
rides were between exposures to combined particle- and
gas-phases (unfiltered rides) versus gas-phase TRAPs only
(filtered rides). Therefore, we cannot attribute the ob-
served effects on nitrite and nitrite + nitrate in EBC to the
particles alone. It is possible that an interaction between
particles and gas-phase compounds is essential to produce
these effects.
We could not control the levels of exposure to PM

during unfiltered rides and the variability in mean par-
ticle number concentration and PM2.5 measured inside
the vehicle cabin were large (IQR 18,080 particle/cm3

and 6.2 μg/m3, respectively). The relatively low levels of
PM in the vehicle reflected real-world exposure condi-
tions, but limited our power to see effects. Traffic pollu-
tant mixtures in vehicles vary in concentration and in
composition with different ambient and near-roadway
conditions, vehicle types, and operating conditions [4].
The ~99.99% reduction in particle number concentra-

tion with HEPA filtration (Table 2) is consistent with the
expected, highly-efficient removal of ultrafine traffic par-
ticles. We speculate that the smaller reduction in PM2.5

of about 85% was due to re-suspension of previously-
deposited larger particles from the subjects’ hair and
skin surfaces as filtered air was delivered above the sub-
ject’s head before flowing down to the subject’s immedi-
ate breathing zone where we positioned the sampling
ports. We believe these particles entered the breathing
zone air downstream of the HEPA filter, which is rated
at ≥99.97% removal of 0.3 μm particles and is expected to
be even more efficient at removing the larger particles that
contribute to PM 2.5 than the smaller particles that domin-
ate the particle number concentration on roadways. How-
ever, we have not characterized these particles.
Several investigators have questioned the usefulness of

EBC nitrite as a biomarker reflective of the lower respira-
tory tract [48,49]. A study of subjects with and without
tracheostomy suggested that chemical reduction of saliv-
ary nitrate to nitrite by oropharyngeal bacteria made a
substantial contribution to nitrite concentrations in EBC
that was collected by oral breathing [48]. Dietary nitrate
was found to strongly influence salivary nitrate and
EBC nitrite concentrations. In our study, subjects fasted
prior to the baseline and post-exposure EBC collections,
and then were asked to eat similar foods during the post-
fast meals after filtered and unfiltered rides. Control
of food consumption, along with the within-subjects,
repeated-measures design, may have mitigated any ef-
fect of oropharyngeal contamination, which would likely
be nondifferential, tending to bias results towards the null
hypothesis.

Conclusions
In this study, nitrite and nitrite + nitrate in EBC were in-
creased immediately after 1.5 hr car rides when subjects
breathed unfiltered vehicle cabin air, but not after rides
when subjects breathed HEPA-filtered air, suggesting
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that TRAP particles play an essential role in these effects.
There were no statistically significant differences in HRV
or HR after unfiltered compared to filtered rides. The
health significance of the observed effects is not known,
but they may be indicative of early biological responses to
widespread exposures to TRAPs among passengers in ve-
hicles on heavily trafficked roadways.

Methods
We recruited 21 nonsmoking, healthy adults without
serious chronic illness, pulmonary or cardiovascular dis-
ease, atrial flutter, atrial fibrillation, or cardiac pacing.
All subjects lived on campus or within 10 miles of the
clinical center Clinical Center of the Environmental and
Occupational Health Sciences Institute (EOHSI) in
Piscataway, NJ, except for one subject who lived 15 miles
away. Eight subjects rode campus diesel buses from
residences on the university campus; the remainder
drove personal vehicles. The study protocol was approved
by the University of Medicine and Dentistry of New Jersey
Institutional Review Board.

Study procedure
Each subject participated in two nominally 1.5 hr (range
90–110 min, depending on traffic) car rides in morning
Monday-Friday rush-hour traffic, at least one week and
no more than six weeks apart, in a 2002 Ford Taurus
sedan. Subjects wore a powered air-purifying respirator
(PAPR, Airmate™, 3 M, Minneapolis, MN) with a HEPA
filter present during one ride (filtered ride), and absent
during the other ride (unfiltered ride), in randomized
order (Figure 3). Subjects and technicians were blinded
Figure 3 An investigator demonstrates set-up of the powered
air purifying respirator, with sampling instrument inlets in
place inside the respirator facepiece, as worn by subjects.
to the presence or absence of the filter. Outcomes were
measured before (pre-exposure), after (post-exposure),
and at 6 and 24 hrs after the car rides began. To avoid
effects of food ingestion on study outcomes, subjects
fasted after midnight. Subjects were instructed to avoid
major roadways if driving to the Clinical Center. Subjects
reported at 7:00 AM for the pre-exposure session, which
included a current stress symptom rating (SSR), consisting
of five-point modified-Likert scales between two pairs of
antonyms for “stress” (tense-relaxed; stressed-at ease) and
“anxiety” (nervous-calm; jittery-tranquil). After electrocar-
diogram (ECG) recordings and EBC collection, subjects
underwent non-invasive studies of endothelial function,
and a peripheral venous blood draw, results of which will
be reported elsewhere.
The subject was seated in the rear seat of the vehicle,

which was driven by a professional driver from the EOHSI
Clinical Center to and from the northernmost point on
the New Jersey Turnpike (NJTPK; 79 miles roundtrip, of
which 55 miles were on the NJTPK, 18 miles on Interstate
287, and 6 miles on local secondary roads). The NJTPK is
a highway with six traffic lanes in each direction. The
study vehicle remained in the right-most lane, designated
for both trucks and cars, averaging 65 mph when unim-
peded by traffic. Stop-and-go traffic conditions were rarely
encountered, and 50% of the rides lasted between 95 and
100 minutes. The vehicle ventilation settings were main-
tained with the vent “open” and fan at the medium setting.
Other climate control settings were adjusted for subject
comfort. Midway through the car ride, the subject com-
pleted another SSR questionnaire. The subject returned to
the EOHSI clinic immediately (post-exposure) and at 6 hr
and 24 hr after the car ride for outcome measurements.
Subjects ate a meal consisting of the same foods between
the post-exposure and 6 hr time points. For the 24-hr
time-point, the subjects fasted again after midnight and
returned to the EOHSI clinic at 7:00 AM to repeat a
protocol identical to the pre-exposure protocol.

Exposure measurements
We made the following measurements with inlets at the
subject’s breathing zone inside the respirator face piece
and near the center of the vehicle cabin: mass concentra-
tions of PM with median cut-point of 2.5 μm (PM2.5) at
1-min intervals using TSI SidePak model AM510 aerosol
monitors (TSI, Inc, Shoreview, MN) with the calibration
factor set at 0.32 (based on collocated gravimetric analysis
of local ambient); number concentrations of particles with
aerodynamic diameter from 0.01 to 1.0 μm at 1-min inter-
vals using a condensation particle counter, TSI model 3007
(TSI, Inc.). Measured in the vehicle cabin only: back car-
bon using an AE-51 microaethalometer (Aethlabs, San
Francisco, CA) at flow rate of 100 ml/min and 1-min time
base; nitrogen dioxide (NO2) collected on triethanolamine-
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coated Sep-Pak cartridges (Waters, Corp, Millford, MA),
analyzed using HPLC-UV as previously reported [13]; car-
bon monoxide (CO) and air temperature were measured
continuously with a Langan T15v monitor (Langan, Inc,
San Francisco, CA); and humidity with a HOBO 8 Pro
Series monitor (Onset, Bourne, MA).
Exhaled breath condensate
We collected 1–2 ml of EBC using an EcoScreen device
(Jaeger, Wurzburg, Germany) with 20 minutes of tidal
breathing. We triple rinsed all surfaces with nitrite-free
water prior to contacting the EBC, and froze samples
at −80 C for later analysis. We measured concentrations
of nitrite and nitrite + nitrate using selective catalytic re-
duction and chemiluminescence detection (NOA 280i, GE
Analytics, Boulder Co.). The detection limits and precision
for nitrite and nitrite + nitrate were 1 μM and 8.2% (mea-
sured as %RSD from 10 replicates) and 2.5 μM and 12.0%
(6 replicates), respectively.
For MDA analysis, a mixture of EBC, phosphoric acid,

and thiobarbituric acid, was heated and injected into an
HPLC-fluorescence system [50]. The detection limit, re-
covery and precision of this method were 1.8 nM, 75.9%,
and 2.2% (8 replicates), respectively.
Concentrations of 8-isoprostane in EBC samples were an-

alyzed using a modified immunoaffinity purification com-
bined with a LC-MS/MS method [51]. After addition of
0.25 ng of 8-iso-PGF2α-D4, the extract from 8-isoprostane
affinity sorbent (Cayman, Ann Arbor, MI, USA) was ana-
lyzed on a quadrupole mass spectrometer (ThermoFisher
Scientific, San Jose, CA, USA). The method recovery was
98.4% with analytic precision (8 replicates) of 11.2% and a
detection limit of 2.5 pg/mL.
Heat rate variability
A two-channel, three-lead, Holter monitor (Trillium
3000; Forest Medical, East Syracuse, NY) recorded ECG
for 12 min with the subject lying supine at the pre-
exposure, post-exposure, 6-hr and 24-hr time-points.
For HRV analysis, the best quality (minimum artifact by
visual inspection), continuous 5-min period was selected
from the last 7 min of the 12-min recording. We proc-
essed the digital ECG signal, sampled at 256 Hz, and cal-
culated the HRV parameters using PC-based software
(Trillium Gold; Forest Medical, East Syracuse, NY), after
reviewing and correcting mislabeled beats or artifacts.
We included all normal-to-normal (NN) intervals in the
5-min recording in computations of the standard devi-
ation of normal to normal intervals (SDNN), square root
of the mean of the squared differences between adjacent
NN intervals (r-MSSD), high-frequency power (HF; 0.15
to 0.4 Hz), low-frequency power (LF; 0.04 to 0.15 Hz),
and LF:HF ratio.
Statistical analysis
We used mixed linear models to evaluate the effect of
exposure (unfiltered vs. filtered) on EBC and HRV out-
comes, with post-exposure measures as the response, ex-
posure as the predictor, and pre-exposure level of the
corresponding measure as a covariate, with a random ef-
fect for subject. We used linear models to examine the
effects of single pollutant levels during unfiltered rides
on EBC markers at post-exposure time points. Statistical
significance was set at α = 0.05.
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