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Abstract

liver tissues were collected for further studies.

Background: Deposition and accumulation of silver nanoparticles (Ag-nps) in the liver have been shown to induce
hepatotoxicity in animal studies. The hepatotoxicity may include oxidative stress, abnormalities in energy
metabolism, and cell death. Studies have indicated that autophagy is an intracellular event involving balance of
energy, nutrients, and turnover of subcellular organelles. The present study was undertaken to test the hypothesis
that autophagy plays a role in mediating hepatotoxicity in animal after exposure to Ag-nps. Focus was placed on
interrelationship between energy metabolism, autophagy, apoptosis and hepatic dysfunction.

Methods: Sprague Dawley rats were intraperitoneally injected with Ag-nps (10-30 nm in diameter) at
concentration of 500 mg kg’]‘ All animals were sacrificed on days 1, 4, 7, 10 and 30 after exposure and blood and

Results: Uptake of Ag-nps was quite prompt and not proportional to the blood Ag concentration. Declination of
ATP (=64% in days 1) and autophagy (determined by LC3-II protein expression and morphological evaluation)
increased and peaked on the first day. The ATP content remained at low level even though the autophagy has
been activated. Apoptosis (based on caspase-3 protein expression and TUNEL-positive cells staining) began to rise
sigmoidally at days 1 and 4, reached a peak level at day 7, and remained at the same levels during days 7-30 post
exposure. Meanwhile, autophagy exhibited a gradual decrease from days 1-10 and the decrease at day 30 was
statistically significant as compared to day O (sham group). Inflammatory reaction (histopathological evaluation) was
found at day 10 and preceded to an advanced degree at day 30 when liver function was impaired.

Conclusions: These results indicate that following Ag-nps administration, autophagy was induced; however, failure
to preserve autophagy compounded with energy reduction led to apoptosis and the eventual impairment of liver
function. The study provides an in-vivo evidence of hepatotoxicity by continuous exposure of Ag-nps in rats.
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Background

Nanoparticles are defined as particles having a diameter
smaller than 100 nm [1]. Due to their unique physico-
chemical properties, nanoparticles are widely used in nu-
merous aspects such as chemical industry, biotechnology,
environmental technology and biomedicine [2]. Among
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products available in the market, those containing silver
nanoparticles (Ag-nps) are the largest and the fastest grow-
ing category because of their unique characteristics of anti-
bacterial activities [3-5]. Currently, manufactured products
containing Ag-nps may include wound dressings, drugs,
clothing, cosmetics, bedding, water purification, washing
machines, deodorants, and humidifiers. With increasing ap-
plications of Ag-nps containing products, it is important to
study their adverse effects.

Ag-nps have been reported to enter the body through in-
halation, ingestion, injection and dermal contact, resulting
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in a dose-dependent increase of silver concentration in vari-
ous organs in animal studies [6-8]. Most foreign Ag-nps
were found to accumulate in the liver, a major organ of de-
toxification [8,9]. Excessive accumulation/deposition of Ag-
nps in the liver caused certain adverse effects including
marked pathological changes in liver morphology, bile-duct
hyperplasia, inflammatory cell infiltration [10-12], gener-
ation of excessive reactive oxygen species, DNA damage,
changes in liver enzyme activities [9] and finally leading to
apoptosis and necrosis [11,13]. However, while facing an
adverse situation, cells execute a homeostasis mechanism, i.
e., autophagy, to promote cell survival [14-16]. Autophagy
is a conservative intracellular protein degradation system
that consists of several sequential steps. In brief, after for-
mation of double-membrane-enclosed autophagosomes,
the autophagosome engulf cytoplasmic misfolded proteins,
injured and unwanted organelles, and subsequently deliver
them to lysosomes for digestion. Several key molecules are
involved in autophagy process, especially the processing of
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microtubule associated protein 1-light chain 3-II (LC3-II)
which is regarded as an autophagosome biomarker [17].
This phenomenon has been found to take place under both
normal and pathophysiological situations, including cell
survival, cell death, cell metabolic stress, development, in-
fection and immunity, and aging [18]. On the other hand, it
has also been reported that the prolonged autophagy in-
creased cellular stress and directly or indirectly induced cell
death through excessive self-digestion and activation of
apoptosis [19]. Therefore, the aim of the present study was
to investigate sequential changes of autophagy and apop-
tosis and their relationship to energy homeostatic state in
rat liver after an intraperitoneally injection of Ag-nps.

Results

Transmission electron microscopic (TEM) observation of
Ag-nps

Figure 1 show particle deposition of Ag-nps in liver tissues
(Figure 1C) and size distribution of Ag-nps following
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Figure 1 Characterization of Ag-nps. Size distribution of Ag-nps following dispersion in water (A-B) and their distribution in suborganelles of
liver tissues obtained from rats at day 30 following Ag-nps administration (C). Tissues were processed for TEM evaluation as described under
Materials and Methods. Accelerating voltages and magnifications were indicated at right lower corner. A-B: particle size distribution evaluated
from the corresponding TEM micrograph (n=109). C: scale bars size represent 0.5 um in panels 1 and 6, 0.1 um in panel 2, 1 um in panel 3,

0.2 um in panel 4, and 2 um in panel 5. Panel 2 represents the enlargement of white square area indicated in panel 1. Panel 4 and 6 represents
the enlargement of white square area indicated in panel 3 and 5, respectively. White dotted lines in panel 2 indicate diameters of Ag-nps. White
arrow in panel 4 indicates endosome. Black arrow in panel 6 indicates lysosome.
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dispersion in water (Figures 1A-1B). As shown in Figure 1A
and 1B, the TEM images reveal that all nanoparticles were
not appeared in aggregated form and they were rounded in
shape (Figure 1A). Approximately 86% of the dispersed par-
ticles were in sizes ranging from 10-30 nm in diameter
(Figure 1B). The mean diameter of the dispersed Ag-nps
was 22.32 +7.07 nm ( M + SD, n = 109). These data demon-
strate that under our experimental conditions, the
suspended Ag-nps were in the individual form with a uni-
form size distribution. As shown in Figure 1C (Panels 1-6),
most of the intracellular Ag-nps appear to be rounded in
shape with a diameter ranging from 25-59 nm in hepato-
cyte. Meanwhile, Ag-nps were not appear in hepatocyte of
sham group (Additional file 1). The distribution of the Ag-
nps was confined to and localized in endosome (Panel 4)
and lysosome (Panel 6) of the cytoplasm. These results
demonstrate that Ag-nps deposited in the liver and distrib-
uted in endosomal-lysosomal compartments. It should be
noted that the deposition of Ag-nps in other cell type, i.e.
Kupffer cells was also observed (Additional file 2).

Silver concentration in liver tissue and whole blood
Figure 2 depicts the time course of silver deposition in liver
tissues and whole blood following i.p. administration of Ag-
nps. In sham groups, small but measurable amounts of sil-
ver were detected in the liver and whole blood (0.10 +
0.23 pg/g for liver; 0.05 + 0.06 pg/ml for blood) (Figure 2).
In treatment groups, deposition of silver in the liver were
found to be highest at days 1 and 4 (in wet weight of liver;
81.84 + 4.37 for day 1; 81.36 + 4.26 for day 4) and reduced
gradually from day 7 to day 30. However, it retained at a
high level at day 30 (58.76 + 2.84 pg/g wet weight). These
findings indicate that Ag-nps were rapidly absorbed into
liver cells. The slow decrease in silver concentrations
(~28.20%) from day 1 to 30 may indicate a time-dependent
increase in excretion. When the same data were expressed
as fractional deposition of the administered dose, similar re-
sults were obtained. In whole blood (Figure 2B), silver con-
centrations were increased from day 1 (2.62 +0.70 pg/ml)
and peaked concentration at day 7 (6.76 + 1.83 pg/ml) and
then declined moderately until day 30. The results from
Panel A and B indicate that dissociation in time consump-
tion reaching maximal level was present between liver tis-
sue and circulating blood.

Liver function changes

Table 1 shows changes in the enzymatic activities of
AST and ALT in serum at various time points following
i.p. administration of Ag-nps. AST activities were signifi-
cantly augmented in serum at each time point (day 1, 4,
7, 10, and 30) during the entire course of experiment
following an ip. injection of Ag-nps. ALT activities were
decreased at days 1 and 4 while they were increased at
day 30. These results indicate that at the concentration
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Figure 2 Time-course of silver deposition in liver tissues (A)
and whole blood (B) following Ag-nps administration. Ag-nps
were intraperitoneally injected at a dose of 500 mg kg™ for 1,4, 7,
10 and 30 days. Liver tissues and whole blood samples were
processed for ICP-MS analysis as described under Materials and
Methods. Empty columns represent sham groups while filled
columns represent Ag-nps treatment groups. Vertical bars indicate
standard deviations of the mean. Number of experiments was 8 for
each time points. p <0.05, " p <0071 vs. Sham; *p < 0.05, # p < 0.01

vs. Day 1; 'p <005, Tp <001 vs. Day 4; ®p < 0.05 vs. Day 7.

(500 mg kg body weight) of Ag-nps administered, liver
function was affected during the course of study.

Intrahepatic distribution of Ag-nps

Figure 3A shows intrahepatic distribution of Ag-nps over a
period of 30 days following ip. injection of Ag-nps in rats.
Based on the silver enhancement procedure, the formation
of brown/black signals are indicative of the precipitation of
metallic silver. Silver-stained signals were increased con-
secutively from day 1 to day 30 (Panel B to F), and the sig-
nals were mostly located around the blood vessels. These
results indicate that the accumulation/deposition of Ag-
nps was time-dependent and most prominently occurred
during days 4 to 7. Furthermore, the results indicate that
tissue accumulation/deposition is a result of diffusion of
Ag-nps from portal vein into liver cells. It should be noted
that the time-dependent accumulation/deposition of
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Table 1 Time course of changes in serum enzyme activities in rats following intraperitoneal administration of Ag-nps

Time after treatment (day) Group AST (U/L) ALT (U/L)
Sham 84.00 £ 2746 ** 4593 + 12.70**
1 Ag-nps 12813 £ 40.99 2568 +10.72
Sham 84.00 + 27.55 * 49.13 + 11.80**
! Ag-nps 99.24 £ 20.90 36.09 £+ 13.21
Sham 87.17 £ 1682 ** 5131 +£11.63
’ Ag-nps 131.13 £ 3740 50.71 £ 10.03
Sham 86.75 £ 10.01** 50.00 = 11.07
10 Ag-nps 157.15 £ 4703 50.15 + 13.28
Sham 94.67 + 13.58* 4850 + 6.81*
. Ag-nps 139.25 £ 11.69 5844 +12.18

Values were mean + standard deviations of the mean. N =8 at each time point for each group. Ag-nps were administered, i.p., at 500 mg kg™’ body weight. AST =
aspartate aminotransferase; ALT = alanine aminotrasferase. *p < 0.05, **p < 0.01 as compared to sham groups.

Figure 3 Histopathological observation of rat liver. Intrahepatic distribution of Ag-nps (A), and histopathological changes in liver tissues at
different time points (B) after i.p. injection of Ag-nps. Experiments were carried out as described under Materials and Methods using silver
enhancement stain and hematoxylin and eosin stain. A: section thickness was 5-um. Ag-nps images were taken by optical microscopy with 200x
amplifications. B: high magnification of livers (400x).
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(See figure on previous page.)

Figure 4 A transient increase of autophagy in rat liver. Changes in autophagic structures (day 1) (A), LC3-Il aggregation (day 1-30) (B), and
LC3-Il protein expression (day 1-30) (C) in liver tissues at various time points following an ip. Injection of Ag-nps. Experiments were carried out as
described under Materials and Methods. A: TEM images of rat liver tissues. Scale bar = 0.5 pm. PAS = phagophore assembly site; Mit =
mitochondria; AP = autophagosome; AL = autophagolysosome. B: upper panel: LC3-Il aggregation was analyzed by immunofluorescence staining
under fluorescence microscopy. Lower panel: quantitative analysis of FITC-LC3-Il aggregation from each time points was estimated by counting
the number of bright green dots, as arrows indicated (upper panel), under 200x amplification. Data were means + SD of 8 individual rat
experiment, *p < 0.05, **p < 0.01. C: LC3-Il protein level changes based on Western blot analysis. Actin was used as a loading control. Values were
expressed as means + SD (n = 6), *p < 0.05 and **p < 0.01 versus sham group; “p < 0.05 versus Day 1 group.

Ag-nps as shown in this figure paralleled with intravascular
(whole blood) concentrations of silver as depicted in
Figure 2B.

Histopathological examination of liver tissues
Histopathological evaluations of liver tissues were con-
ducted under light microscopy with H&E stain as depicted
in Figure 3B. At day 1, no change of histological character-
istics of liver tissues was observed in Ag-nps group as com-
pared to the sham group. At days 4-7, there was no major
changes in the structural component of the liver while oc-
casional foci of inflammatory cell infiltrates were present
(Panel C and D). At day 10, foci of liver cell degeneration
appeared in addition to moderate inflammatory cell infiltra-
tion (Panel E). At day 30, liver cell degeneration became
prominent and it was accompanied by evidence of piece-
meal necrosis and chronic inflammatory cell infiltration.
These results indicate that following an ip. injection of
500 mg kg™ of Ag-nps, an inflammatory reaction was in-
duced in the liver beginning at day 4, and the inflammation
was proceeded modestly during days 7-10, and then to a
more advanced stage at day 30.

Induction of autophagy after Ag-nps administration

Figure 4 depicts changes in autophagic structures (day 1)
(Figure 4A), LC3-II aggregation (day 1-30) (Figure 4B), and
LC3-II protein expression (day 1-30) (Figure 4C) in liver
tissues at various time points following an ip. injection of
Ag-nps. The TEM examination (Figure 4A) reveals that
phagophore structure, double-membrane autophagosome
with engulfed damaged organelles, and autolysosome with
a large vacuole containing large amount of cellular debris
were all present in liver tissues. Autophagic vacuoles (AV)
also present in macrophage, in addition to, hepatocytes
(Additional file 3). These results demonstrate the autopha-
gic structures in liver cells were induced at day 1 following
Ag-nps administration. The induction of autophagy was
confirmed by immunofluorescence evaluation of liver tis-
sues (Figure 4B). As shown in Figure 4B, scant green FITC-
LC3-1II punctate dots were observed in sham group whereas
significant increases in LC3-1I punctate dots were observed
at day 1 (p < 0.01) following Ag-nps treatment. The LC3-II
punctate dots were reduced from day 4 and the reduction
was continues till day 30. The induction of autophagy was

further supported by changes in the expression of LC3-II
(Figure 4C), a protein widely used as a hallmark of au-
tophagy. As shown in Figure 4C, LC3-II protein expres-
sion was significantly increased at day 1 as compared to
sham group (p <0.01). The LC3-II protein expression was
gradually declined thereafter in a time-dependent manner.
The results from TEM studies (Figure 4A), LC3-II aggrega-
tion (Figure 4B), and LC3-1I protein expression (Figure 4C)
unequivocally demonstrate that the autophagy was in-
duced at vary early stage following Ag-nps administration
and it was gradually diminished thereafter.

Evaluation of apoptosis

To further assess the extent of cell death by Ag-nps, apop-
tosis was evaluated by fluorescence analysis based on
TUNEL and DAPI staining (Figure 5A), and Western blot
examination of caspase-3 protein expression (Figure 5B).
As shown in Figure 5A, significant increases of TUNEL-
positive cells were detected in a time-dependent manner
in Ag-nps administered group while few TUNEL-positive
cells were found in sham group. Increases of apoptotic
cells were observed at days 1 and 4 (1.47 +0.23% for day
1; 242 £ 0.41% for day 4), reached a peak level at day 7
(4.06 £ 1.11%), and remained at the same levels at days 7,
10, and 30 after Ag-nps treatment, as compared to sham
group (0.67 +0.15%). These results strongly indicate that
apoptosis took part in the mechanism of toxicity by Ag-
nps. As shown in Figure 5B, Ag-nps caused a significant
increase in caspase-3 protein levels in the liver of treated
rats. Since caspase-3 is an intracellular cysteine-aspartic
acid protease and a well-established cellular marker in the
initiation and the execution of apoptosis, the results
depicted in Figure 5B suggest that the intrinsic pathway
was involved in the rat liver apoptotic cell death upon ad-
ministration of Ag-nps.

Hepatic ATP depletion after Ag-nps administration

Figure 6 depicts time course of changes in ATP content
in liver tissues following Ag-nps administration. There
was a significant reduction (-63.6%) in ATP content of
livers at day 1 after Ag-nps treatment. The ATP content
remained at the reduced levels (-52.8% to -66.2%)
throughout the entire experimental period (days 4—30).
These results indicate that ATP may play a critical role
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Figure 5 Level of the apoptosis was observed in hepatocytes. A: Fluorescence images of TUNEL staining (red) and DAPI staining (blue) in
liver tissues at various time points following Ag-nps administration. Experiments were carried out as described under Materials and Methods.
Upper panel shows representative histograms of TUNEL and DAPI staining while lower panel depicts quantitative analysis of TUNEL/DAPI positive
cells. Values (means + SD) presented in lower panel were obtained by dividing numbers of TUNEL positive cells with total numbers of cells from
DAPI stain. Number of experiments was 6 for each time point. **p < 0.01 vs. sham group; p < 0.05 vs. Day 1 group. B: Changes in caspase-3
protein expression in rat liver at various time points following Ag-nps administration. The experiments were performed as described under
Material and Methods. Upper panel shows the representative immunoblots of caspase-3 while lower panel depicts densitometric analysis of
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in the induction of hepatic toxicity following Ag-nps
administration.

Discussion
In this study, we aimed to investigate interrelationship
between changes in energy metabolism, autophagy,
apoptosis and hepatic dysfunction in rats upon exposure
to Ag-nps as illustrated in Figure 7. Review of literature
shows that animals were exposed to Ag-nps by different
methods including intravenous, oral, inhalation and in-
traperitoneal administration. Tiwari et al. [9] reported
that following intravenous injection, the concentration
of silver in the liver was 18 pg/g. Loeschner et al. [7]
found that following oral exposure, the level of silver de-
posited in the liver was less than 1 pg/g. Sung et al. [12]
reported that following inhalation, the amount of silver
accumulated in the liver was 0.133 pg/g. In our study,
we found that following intraperitoneal injection, the
concentration of silver in the liver was 58—81 pg/g. Put-
ting these data together, it is clear that intraperitoneal
injection has achieved the highest tissue deposition of
Ag-nps in the liver as compared to other routes of ad-
ministration, i.e. intravenous, oral, and inhalation. Intra-
peritoneal administration has been widely used for
studies of the accumulation and the resorptive toxicities
of nanoparticles including nanosilver [20,21], nanogold
[21], and nano-Fe3O,4 [22]. Furthermore, most foreign
Ag-nps were found to accumulate in the liver, the major
organ of detoxification [8,9]. Accordingly, the intraperi-
toneal administration was then adapted in this studies.
Organ accumulation has been demonstrated with vari-
ous nanomaterials [23]. Among various organs, liver is
the main target of Ag-nps in addition to all blood de-
rived antigens [8,24]. Our histological observation re-
veals that Ag-nps mainly displayed around the blood
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autophagy, and apoptosis in rat livers after Ag-nps
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Figures 4, 5, and 6.

vessels, indicating that Ag-nps was absorbed through
mesenteric vein via portal system and then distributed
into hepatic tissues. The reactivity to silver staining sur-
rounding vessels became apparent from day 7 after ex-
posure, suggesting that the endothelial barrier started to
collapse and subsequent massive injury occurred to liver
cells.

In our study, the deposited Ag-nps in hepatocytes
were found to be individual particles with a size smaller
than 100 nm in diameter. Examination of TEM images
reveal that Ag-nps were localized predominantly in
endosomes and lysosomes of hepatocytes. These findings
provide evidence to corroborate previous in-vitro reports
describing the uptake of Ag-nps occur mainly through
endocytosis. In addition to hepatocyte, Ag-nps were
found to be accumulated in macrophages (Kupffer cells).
The Ag-nps in Kupffer cells were in agglomerates (>
100 nm), indicating partial agglomeration of Ag-nps

-

[ Sham group
= Ag-nps group
e R -66.2%* 5% -60.1%%* -52.8%*
I 1 I 1 I 1 I 1
120 1
g
£ 100
w1
ot
=]
© 80f
g oot
=
S
o 40t
=
<
20t
0
Dayl1 Day4 Day7 Day10 Day30
Time after treatment
Figure 6 Time course of changes in ATP content in rat liver tissues following Ag-nps administration. ATP contents in liver tissues were
determined by luciferin-luciferase assay as described under Material and Methods. Values were presented as means + SD (n = 4-6). **p < 0.01
compared to the corresponding sham group.
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after cell internalization. These observations demonstrate
that endosome and lysosome compartments are the ultim-
ate fate of Ag-nps for deposition and degradation, in the
liver. We have also observed in our study that Ag-nps
deposited in Kupffer cells while hepatocytes exhibited
mild infiltration of inflammatory cells in portal vein area
(Figure 3B). These findings indicate that Kupffer cells were
involved in the process of inflammation following Ag-nps
exposure. Further studies may shed light on the precise
role of Kupffer cells in the Ag-nps mediated hepatic injury.

Following i.p. injection, a rapid and maximal increase of
silver concentration was detected as soon as day 1 in the
liver, indicating that Ag-nps were precipitously absorbed
into liver tissues. The hepatic silver concentration showed
a slight decline thereafter in which 72% of silver were still
retained towards day 30. However, the accumulation of
silver in the blood peaked at a later time, i.e., day 7. The
difference in the time course of peak concentrations of sil-
ver in the liver and blood suggests that blood concentra-
tion may not be a reliable indicator of organ storage for
Ag-nps and should be cautious in clinical practice.

Most of the administered nanoparticles have been
reported to be excreted from kidney or hepatobiliary
pathways within 15 days [25,26]. In case of Ag-nps, we
found that Ag-nps failed to be cleared completely from
the body within 30 days. There are several possibilities
which could account for this event. The formation of
silver-protein complexes due to strong binding of Ag-
nps to thiol groups of various protein moieties that di-
minish Ag expulsion. Alternatively, combination of silver
with DNA bases in the nucleus [27,28], or the interfer-
ence on the activation of autophagy/exocytotic processes
due to failure of bioenergetic supply could slow the
elimination process [29].

Hepatic function was evaluated by measuring AST and
ALT [30]. The fact reveals that serum ALT and AST levels
were both elevated till day 30, indicating that liver tissues
were damaged at late stage following Ag-nps administra-
tion. The less than overwhelming activation, i.e., increase
in AST activation during days 1 to 10 accompanied with
decrease in ALT activation during days 1 to 4, suggests
that liver tissues were less damaged during the early and
mid stages of experiments. This notion is supported by
histological findings that no significant alterations were
observed during early stage, and that evidence of damages
including apoptosis and necrosis appeared in a later stage.

Lack of biochemical and morphological changes ob-
served in our study during early stage of Ag-nps exposure
does not necessarily indicate a muted cellular response.
Perceived as a foreign material, nanoparticles lead cells to
initiate a self-protective mechanism by induction of au-
tophagy. The in-vitro studies show that gold and TiO,
nanoparticles induced autophagy as a defensive mechanism
in human fibroblasts and cerebral endothelial cells within
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2-3 days [31,32]. However, no in-vivo study, to be best of
our knowledge, has been reported. In this study, autophagy
was induced in liver tissues 1 day after Ag-nps exposure at
which time tissue concentration of silver was at its max-
imal level. The proficiency of autophagy decelerated grad-
ually within days and weeks while tissue accumulation of
Ag-nps remained high. Interestingly, apoptosis of hepato-
cytes began to rise sigmoidally along with the declination
of autophagy by evidence of increased expression of its
marker protein, caspase-3 and TUNEL-positive cells iden-
tification. It implies that the decline in autophagy along
with a high concentration of silver may cause insuffi-
cient self-protection, which contributes to cell damage.
It is noteworthy that increasing number of reports has
demonstrated that autophagy disturbances, either over-
induction or inhibition, can be responsible for the autoph-
agy dysfunction-mediated apoptosis [33]. In this study, we
found that LC3-II protein expression was diminished dur-
ing mid and late stages, indicating that the observed au-
tophagy in the liver was not a result of over-induction.

Mitochondrial dysfunction has been established to be
a sensitive target of oxidative stress-induced cytotoxicity
and genotoxicity by Ag-nps [27]. Ag ions have been
reported to cause disturbance and destruction of mito-
chondrial function through interaction with thiol groups
of inner mitochondrial membrane proteins [34]. More-
over, it has been reported that Ag-nps decrease the ac-
tivity of mitochondrial respiratory chain complexes and
reduce antioxidant factors like glutathione, thioredoxin,
superoxide dismutase and N-acetylcysteine in liver cells
[11,35]. In response to these changes, cells induce com-
pensatory pathways including autophagy. Autophagy is
the primary mechanism for removal of damaged organ-
elles, such as mitochondria. Rikiishi [36] reported that in
periods of metabolic stress, autophagy provides ATP and
other macromolecules as energy sources to enable cell
survival. In this study, we found the ATP content de-
creased on the first day after exposure to Ag-nps and the
decreased persisted till the end of the experimental period.
It is apparent that energy synthesis was perturbed during
early phase following Ag-nps administration and the per-
sistence on the impaired energy metabolism eventually
leading to deceleration of autophagy and acceleration of
apoptosis.

Ag-nps dispersed in aqueous medium release Ag ions.
It is necessary to distinguish toxic effects between Ag-
nps and the dissolved Ag ions. Ag-nps and the released
ions readily bind to proteins and DNA, thereby poten-
tially causing cell damage. Pratsinis et al. [37] separated
the released Ag ions from the particles and measured
their toxicity; they found that the observed toxicity was
a function of nanoparticle size. The size of the Ag-nps
dictates its mode of cytotoxicity, ie., Ag ion-specific
and/or particle-specific. Smaller Ag-nps release or leach
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larger fractions of their mass as Ag ions upon dispersion
in water. The toxicity of small Ag-nps (<10 nm) is
mostly mediated by the released Ag ions due to its larger
surface area per unit mass and its higher Ag ion concen-
trations. For large Ag-nps (>10 nm), from which fewer
Ag ions are released, the toxicity is attributed primarily
to the dispersed particles rather than their initially re-
leased ions. Furthermore, Kim et al. [38] demonstrated
that the cytotoxicity of Ag-nps is primarily the result of
oxidative stress and is independent of the toxicity of Ag
ions in human hepatoma cells. Nevertheless, we cannot
rule out possible involvement of Ag ions in the Ag-nps
-mediated toxicity observed in our studies.

It is noteworthy that the accumulation and the toxicity
of nanomaterials in humans happen insidiously. Experi-
mental assessment of nanotoxicology performed in-vivo
by using appropriate dosing amounts and routes of expos-
ure may carry greater significance because of the diversity
of systemic phenotypic response and the physiologic/ana-
tomic influence that can be translated from animal models
to human exposures. In this study, in order to facilitate
observation of experimental purposes, we selected the
route of exposure and the dose that could be tolerated in
the rat for experimental duration. The high dose used in
our study may not necessarily reflect actual tissue levels of
Ag-nps found in human organs, nevertheless, our results
provide timely information fulfilling the gap in regard to
the deficiency in the rapidly evolving area of human ex-
posure to silver nanoparticles.

Conclusions

In conclusion, we provide an in-vivo evidence of hepatic
toxicity caused by continuous absorption of Ag-nps in
rats. The 30-day observation period revealed that follow-
ing Ag-nps administration, ATP content (cellular energy
state) was decreased rapidly while autophagy was in-
duced as a defensive mechanism. However, failure to
preserve autophagy was compounded with bioenergetic
defect which eventually lead to apoptosis and impaired
liver function.

Methods

Materials

Silver nanoparticles (The physical characteristics of the
particles according to the manufacturers data are; size
(<100 nm), purity (99.5% trace metal basis), surface area
(5.0 m*/g), density 10.49 g/cm? (lit.), Polyvinylpyrrolidone
(PVP) as dispersant [19,39], anti-LC3B antibody, epoxy
resin and DAPI (4, 6'-diamidino- 2-phenylindole) were
purchased from Sigma-Aldrich (St. Louis, MO, USA). A
cleaved caspase-3 primary antibody was obtained from
Cell Signaling Technology (Danvers, MA, USA). Fluores-
cein isothiocyanate (FITC)-conjugated AffiniPure goat
anti-rabbit IgG were supplies by Jackson ImmunoResearch

Page 10 of 13

Laboratories (West Grove, PA, USA). Anti-pB-actin mouse
monoclonal antibody was purchased from Santa Cruz Bio-
technology, Inc. (Delaware Avenue, California, USA). ECL
Rabbit IgG, HRP-linked whole antibody and goat poly-
clonal secondary antibody to mouse IgG were obtained
from GE Healthcare Life Sciences and Abcam (Pittsburgh,
PA, USA and Cambridge, MA, USA), respectively. Anti-
fade fluorescent mounting medium was supplies by
DakoCytomation (Carpinteria, CA, USA). HQ (high qual-
ity) silver enhancement kit was obtained from Nanoprobes
(Yaphank, NY, USA). ATP determination kit was supplied
by Molecular Probes (Paisley, UK). In situ cell death detec-
tion kit, TMR red was purchased from Roche Applied Sci-
ence (Mannheim, Germany). Other chemicals and regents
were of analytical grade.

Animal model and administration of Ag-nps

Male Sprague—Dawley rats (300-350 g; BioLasco Taiwan
Co., Ltd) were used for our study. All animal experiments
in this study were conducted with the approval of the Ani-
mal Care Committee of the Kaohsiung Medical Univer-
sity. Rats were randomly divided into two groups: sham-
operated and treatment groups. Number of experiment
was 6-8 for each group. Ag-nps were dispersed in de-
ionized water to a concentration of 150 mg / 1.5 ml by
vigorous vortexing followed by sonication for 5 min
(amplitude of vibration were 10 microns and the fre-
quency of vibration 46 kHz) to ensure uniformity.
Under light ether anesthesia the treatment group re-
ceived an intraperitoneally (ip.) injection of Ag-nps
preparation at a dose of 500 mg kg™ [22]. Only one dose
was given during the entire experimental period. Pre-
liminary experimented were performed to determine
the dosage. A single ip. injection of 1000 mg kg™ of
Ag-nps resulted in a 20% mortality at day 30 in rats
(data not included). When the dose was reduced from
1000 mg kg™ to 500 mg kg*, the mortality was reduced
to zero (0). Furthermore at day 30, there was no eleva-
tion of serum bilirubin level (Additional file 4) indicat-
ing that liver function remained intact. During the time
course of study (days 1-30), the serum ALT level
remained constant throughout the experimental period
until the day 30. These findings indicate that the dosage
(500 mg kg™') adapted was appropriate for allowing us
to study hepatotoxicity without harming hepatic func-
tion. Sham-operated groups received equal volume of
deionized water, and time-matched. The values obtained
at different time points (1, 4, 7, 10 and 30 days) for
sham groups were virtually identical. The animals were
then sacrificed at 1, 4, 7, 10 and 30 days following treat-
ment. Blood samples and liver tissues were collected at
each time point for biochemical and histopathologic
analyses.
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Measurement of silver concentration in whole blood and
liver tissues

Silver concentrations in liver tissues and whole blood
were determined based on quantification of '“’Ag using
an inductively coupled plasma-mass spectrometry (ICP-
MS) with modification [8]. In brief, prior to the elemen-
tal analysis, samples of whole blood (500 pl) and liver
tissues (300 mg) were digested in 5 ml nitric acid for
3 days followed by the addition of 0.5 ml hydrogen
chloride for 2 days. The acidic digested solution was di-
luted to a total volume of 25 ml with deionized water.
Concentrations of silver in the samples were analyzed by
ICP-MS (Thermo XSeries-II, Germany). The detection
limit of silver was 0.007 pg L. To ensure the accuracy
and precision of the technique, the indium was used as
an internal standard.

TEM studies

Ag-nps were characterized with TEM. After sonication for
5 min, samples were prepared by spraying homogeneous
suspensions of Ag-nps on a carbon film-coated Cu grids
and allowing it to dry in air. All images were taken at
200000x magnification and an accelerating voltage of
100 kV. Liver tissues were dissected into 1-mm?® pieces,
and then immersed in a fresh 2% paraformaldehyde mixed
with 2.5% glutaraldehyde in 0.1 M PBS (phosphate- buff-
ered saline) overnight. The samples were post-fixed in 2%
osmium tetroxide for 2 h at 4°C and dehydrated with as-
cending grades of alcohol. The tissue block was then infil-
trated and embedded in epon resin at 60°C for 72 h.
Ultrathin sections (70 nm) were cut with an automatic
ultra-microtome (Reichert Ultracut E, Vienna, Austria)
using a diamond knife. The sections were collected on cop-
per grids (200 meshes) and stained with uranyl acetate and
lead citrate solutions. TEM images were observed under a
transmission electron microscope (JEM2000 EXII; Jeol Ltd,
Tokyo, Japan) operating at an accelerating voltage of
100 kV. Ag-nps diameter was estimated by analyzing the
TEM photos with Image] 1.42q software.

Determination of liver function

Whole blood samples were collected from tail vein and
allowed to clot followed by centrifugation at 1500 x g
for 10 min, and then used for determination of liver
function. Liver function was determined based on en-
zymatic analysis of aspartate aminotransferase (AST)
and alanine aminotrasferase (ALT) activities [8,30]. AST
and ALT activities were assayed by a biochemical blood
analyzer (DRI-CHEM 3500 s, FUJIFILM, Japan).

Histopathologic evaluation of liver injury and Ag-nps
distribution

At each designated time points, rats were perfused
under ether anesthesia with 0.9% normal saline and 4%
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paraformaldehyde through left ventricle. Liver tissues were
removed and post-fixed in 4% paraformaldehyde for 24 h,
followed by dehydratation with graded percentages of al-
cohol. After embedding in paraffin, the tissues were sec-
tioned in 5-um thickness and stained with hematoxylin
and eosin (H&E) for histopathologic evaluation of liver in-
jury. To assess distribution of Ag-nps in liver tissues,
paraffin-embedded tissue sections were stained with silver
enhancement method using HQ silver enhancement kit
(Nanoprobes) [40]. Ag-nps distribution and liver injuries
were examined under optical microscopy (ECLIPSE 80i,
Nikon, Japan).

Evaluation of autophagy

Autophagy was evaluated based on evidence of LC3-1I ag-
gregation and its protein expression in liver tissues [41].
LC3-II aggregation was determined by immunofluores-
cence staining. The deparaffinized tissues sections were
incubated with hydrogen peroxide followed by incubation
with serum blocking solution (10% normal goat serum,
1% bovine serum albumin and 1% Triton X-100 in 0.1 M
PBS). Samples were then incubated with anti-LC3B anti-
body at 1:100 dilution for 2 h at room temperature
followed by incubation overnight at 4 °C. After thorough
rising the sections were incubated with FITC-conjugated
goat anti-rabbit IgG antibody (1:500) for 1 h, following de-
hydration and mounting. Images were analyzed using a
fluorescence microscopy (Zeiss AxioVert 200 M; Jena,
Germany) equipped with a computer-controlled mechan-
ical stage and a camera. Image acquisition was controlled
by RSImage (Photometrics, Tucson, Ariz). For further
quantification of autophagy, LC3-1I protein levels were de-
termined by Western blot analysis. Briefly, samples of liver
homogenate containing 50 pg protein were denatured and
subjected to sodium dodecyl sulfate (SDS)-polyacrylamide
gel electrophoresis (PAGE). Proteins separated by SDS-
PAGE and transferred onto polyvinylidene difluoride
membranes by electro-blotting for 1 h (100 V). The mem-
branes were then blocked with 5% nonfat milk in Tris-
buffer saline (TBS). Membranes were washed with TBST
(TBS containing 0.5% Tween 20), followed by incubation
with primary antibody against LC3 (1:1000) at 4°C over-
night. Subsequently, membranes were incubated with sec-
ondary antibody (1:10000) at room temperature for 1 h. p-
actin was used as an internal housekeeping control. Pro-
tein bands were enhanced with chemiluminescence
(Amersham), visualized on FUJI Medical X-ray film, and
the relative densities were quantified. All values were nor-
malized for -actin expression.

Analysis of apoptosis

Apoptosis was analyzed based on caspase-3 protein expres-
sion and terminal deoxynucleotidyl transferase dUTP nick
end labeling (TUNEL) assay [42,43]. Caspase-3 protein
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expression was determined as described in the preceding
paragraph for LC3 except that cleaved caspase-3 was used
as a primary antibody and rabbit IgG, HRP-linked whole
antibody as a secondary antibody. TUNEL assay was
employed to detect apoptotic cells using In Situ Cell Death
Detection Kit (Roche Applied Science). In brief, the
deparaffinized sections (5 um thick) were treated with
10 pg/ml proteinase K in 0.1 M PBS (pH 7.4) for 30 min at
37°C. Subsequently, these sections were incubated with
0.1 M citrate buffer (pH 6) under microwave irradiation.
After thorough rinsing, samples were incubated with
TUNEL reaction mixture for 1 h at 37°C in humidified
chamber that contains TdT and TMR-dUTP. After wash-
ing, the fluorescence-labeled images were visualized by a
fluorescence microscopy. Total nucleoli were identified
based on DAPI staining. Percentages of TUNEL-positive
cells, indicative of DNA damage, were calculated by divid-
ing the number of TUNEL-positive cells by total number
of nucleoli.

Determination of ATP content

ATP content was quantified based on bioluminescence
assay with recombinant firefly luciferase and its substrate
p-luciferin [44]. The assays were performed using a
commercially available ATP determination kit (Molecu-
lar Probes). Briefly, liver homogenates were added to a
standard reaction solution containing firefly luciferase,
p-luciferin and DTT. Under the effects of luciferase, the
luminescence evoked by the interaction of ATP and lu-
ciferin was detected by a luminometer (HIDEX, Turku,
Finland) and ATP content was calculated.

Statistical analysis

All values were expressed as mean + standard deviations.
Data analysis and evaluation of statistical significance be-
tween the two groups of parameters were subjected to
ANOVA followed by Tukey’s least significant difference
procedure. Significant difference was accepted at P-
values less than 0.05.

Additional files

Additional file 1: Transmission electron micrograph of hepatocyte
in sham group. TEM images of hepatocyte of liver tissues obtained from
rats at day 1 following deionized water administration.

Additional file 2: Characterization of silver nanoparticles in Kupffer
cells. Transmission electron micrograph images on the deposition of
silver nanoparticles in Kupffer cell of liver tissues obtained from rats at
day 1 following Ag-nps administration. Tissues were processed for TEM
evaluation as described under Materials and Methods. Accelerating
voltages and magnifications were indicated at right lower corner. Scale
Bar size represent 5 um in panel A, 2 um in panel B, 0.5 um in panel C,
and 0.2 ym in panel D. Panel B represents the enlargement of yellow
square area indicated in panel A. Panel C represents the enlargement of
yellow square area indicated in panel B. Panel D represents the
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enlargement of yellow square area indicated in panel C. White arrows in
panel D indicate silver nanoparticle agglomerates.

Additional file 3: Transmission electron micrograph image of
autophagic vacuoles in macrophage. Ag-nps induced the formation of
autophagic vacuoles in macrophage of rat liver tissues at day 1 following
Ag-nps administration. Scale bar size represent 2 pm. Accelerating
voltages and magnifications were indicated at right lower corner. Black
arrows indicate autophagic vacuoles (AV).

Additional file 4: Serum bilirubin level following intraperitoneal
exposure to Ag-nps in rats. There were no significant differences
between the treatment and the sham groups. Values were expressed as
means + SD (n = 8).
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