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Abstract

Background: Epidemiology suggests that occupational exposure to welding particulate matter (PM) may increase
lung cancer risk. However, animal studies are lacking to conclusively link welding with an increased risk. PM derived
from stainless steel (SS) welding contains carcinogenic metals such as hexavalent chromium and nickel. We
hypothesized that welding PM may act as a tumor promoter and increase lung tumor multiplicity in vivo. Therefore,
the capacity of chromium-containing gas metal arc (GMA)-SS welding PM to promote lung tumors was evaluated
using a two-stage (initiation-promotion) model in lung tumor susceptible A/J mice.

Methods: Male mice (n = 28-30/group) were treated either with the initiator 3-methylcholanthrene (MCA;10 μg/g; IP)
or vehicle (corn oil) followed by 5 weekly pharyngeal aspirations of GMA-SS (340 or 680 μg/exposure) or PBS. Lung
tumors were enumerated at 30 weeks post-initiation.

Results: MCA initiation followed by GMA-SS welding PM exposure promoted tumor multiplicity in both the low (12.1 ±
1.5 tumors/mouse) and high (14.0 ± 1.8 tumors/mouse) exposure groups significantly above MCA/sham (4.77 ± 0.7
tumors/mouse; p = 0.0001). Multiplicity was also highly significant (p < 0.004) across all individual lung regions of
GMA-SS-exposed mice. No exposure effects were found in the corn oil groups at 30 weeks. Histopathology confirmed the
gross findings and revealed increased inflammation and a greater number of malignant lesions in the MCA/welding
PM-exposed groups.

Conclusions: GMA-SS welding PM acts as a lung tumor promoter in vivo. Thus, this study provides animal evidence to
support the epidemiological data that show welders have an increased lung cancer risk.
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Introduction
Welding, a process used to join metals, is common in the
manufacturing, construction, and other industrial sectors
in the U.S. and worldwide. Daily, millions of workers are
exposed to welding fume, a complex aerosol mixture of
gases and metal-rich particulate matter (PM). Because of
the presence of known human carcinogens, such as hexa-
valent chromium (Cr(VI)) and nickel (Ni), the potential
carcinogenicity of welding fume is a critical concern in oc-
cupational toxicology. In fact, the International Agency for
Research on Cancer (IARC) advisory group on the Mono-
graph priorities for 2010–2014 listed welding fume as a
high priority agent for further evaluation of carcinogenic
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risk to humans [1]. Currently, the IARC classifies welding
fumes as a group 2B carcinogen (possibly carcinogenic to
humans); however, this categorization was based on lim-
ited epidemiology and inadequate animal data [2-4].
Occupational exposure to welding fume is unique and

presents numerous physical (e.g. heat and UV radiation)
and chemical hazards to the worker. Mixtures of metal
compounds of iron (Fe), Cr(VI), manganese (Mn), Ni, and
gases (e.g., ozone, carbon monoxide, nitrogen oxides) all
may be present in the fume [5,6]. In addition, the fume is
classified as an incidental nanoparticle as significant num-
bers of ultrafine (< 0.1 μm) particles are formed during the
welding process [7]. As such, both respiratory and non-
respiratory adverse health effects are well-documented in
workers and can include bronchitis, immunosuppression,
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pneumonia, metal fume fever, siderosis, and neurological
effects [5,8].
Fume generated during gas metal arc (GMA)-stainless

steel (SS) welding is largely water-insoluble and closely re-
sembles the metal composition of the consumable electrode
wire used [5]. Cr(VI) and Ni are present in significant
amounts in this fume and are necessary for corrosion pro-
tection of the weld [9]. Previous experimental evidence
showed that welding PM, from SS welding wire in particu-
lar, caused epithelial injury as well as atypical and hyper-
plastic cellular changes in the lungs of mice. Interestingly, a
mild chronic lung inflammation was accompanied by an in-
creased persistence of these fumes in situ [10,11]. In
addition, evidence for a weak (borderline significant) car-
cinogenic effect in lung tumor susceptible mice was found
for PM from GMA-SS welding, one of the most prevalent
workplace processes [11]. Predicated on these findings and
suggestions by the IARC, this current study is a continu-
ation of previous investigations by our laboratory to evalu-
ate the carcinogenic potential of welding fume. Here, we
focus on carcinogenic metal-containing SS welding PM as a
tumor promoter using a two-stage (initiation-promotion)
mouse lung tumor bioassay.

Results
Welding fume PM Cr(VI) and total metal analysis
GMA-SS welding PM contained the following metals
(weight %): Cr (20.2), copper [Cu] (0.2), iron [Fe] (57), Mn
(13.8) and Ni (8.8) with trace amounts of silicon, aluminum,
and vanadium. Cr(VI) levels in the fume were 2929 ppm
(μg/g) (n = 3, SD = 120).
Morbidity and mortality
A timeline of the experimental protocol for the two-stage
(initiation-promotion) carcinogenesis model is shown in
Figure 1 and described in detail in the methods section.
Body weights were recorded at 2 week intervals through-
out the study and no effect of exposure was found. Body
weight changes from week 0 to 30 were (mean ± standard
error [SE]) 6.83 ± 0.27, 7.19 ± 0.37, and 6.41 ± 0.37 for the
corn oil/sham, GMA-SS low and high groups, respectively.
For the MCA/sham, GMA-SS low and high groups body
weight changes were 7.30 ± 0.36, 7.36 ± 0.39 and 7.23 ±
0.31, respectively. Morbidity and mortality throughout the
study was low and no abnormalities, such as other tumor
types besides lung, were found at the terminal sacrifice at
30 weeks. In total, 13 mice died during the course of the
study (~93% survival rate) and were not included in the
final analysis of the data. Of the >880 pharyngeal aspira-
tions performed for the study, 4 mice died from effects
likely related to anesthesia during the exposures. Nine
mice died with typical morbidities including head tilt,
scrotal or mesenteric abscesses, kidney masses, enlarged
hearts or from unknown causes. This indicated that the
experimental protocol was well tolerated.

Gross tumor multiplicity and incidence
In the presence of MCA, GMA-SS welding PM was a
highly significant promoter of lung tumor number in the
A/J mouse 30 weeks after initiation. Figure 2 shows the
grossly observed tumor multiplicity (average tumor num-
ber/mouse lung ± SE) (left panel) and the total tumor
numbers (right panel) for all groups. Tumor multiplicity
in the low and high dose group was 12.1 ± 1.5 (p = 0.0001)
and 14.0 ± 1.8 (p = 0.0001), respectively, compared to
MCA/sham 4.77 ± 0.7 Multiplicity was also highly signifi-
cant across all five individual lung regions of GMA-SS-ex-
posed mice (p < 0.004) (Table 1). In the corn oil groups,
tumor multiplicity was 0.21 ± 0.09, 0.42 ± 0.11, 0.21 ± 0.08
in the sham, GMA-SS low and high groups, respect-
ively, and was not significant across exposure groups.
No significant difference in multiplicity was found be-
tween the low and high dose GMA-SS groups initiated
with corn oil or MCA. Average tumor incidence (% of
tumor-bearing mice) was 25.8 ± 6.4% and was not signifi-
cantly different across exposure groups treated with corn
oil. As expected, incidence was >93% in all MCA-initiated
groups which verified successful experimental administra-
tion as well its carcinogenic effectiveness in A/J mice.
Gross lung morphology from a welding PM-exposed

mouse initiated with MCA is shown in Figure 3. Tumors
(arrows) appeared white in color and semi-translucent to
opaque upon initial gross exam (A). After fixation, tumors
were more defined which facilitated enumeration (B). At
30 weeks, all tumors were ≥1 mm and ≤4 mm in diameter;
however, the majority were ~1 mm. Welding PM (*) was
found in all exposed mouse lungs and appeared dark
brown to black in color.

Histopathological evaluation of lung lesions,
inflammation, and welding PM presence
Figure 4 shows the histopathological assessment (includ-
ing preneoplastic epithelial proliferations) for multiplicity
(left panel) and the total numbers of lung lesions (right
panel) from all groups. Histopathology confirmed the
gross results and showed a remarkable similarity between
the ratios for gross tumor counts and those enumerated
microscopically (see Figure 2). Tumor incidence was not
different among the corn oil- or MCA-treated groups and
was, as expected, lower than that obtained by gross exam,
21.9 ± 3.4% and 85.0 ± 4.1%, respectively. Inflammation
and welding PM severity scores and number of each lung
lesion type are shown in Table 2. Welding PM was found
in all exposed lungs and detected in slightly greater
amounts in the high dose groups. Lymphoid cell infiltrates,
an indicator of inflammation, consisted of peribronchial/
perivascular associated lymphocytes, macrophages, and



Figure 1 Experimental protocol and block design for the two-stage carcinogenesis model to assess GMA-SS welding PM as a tumor
promoter in A/J mice. Mice were IP injected with MCA (initiator) or corn oil (vehicle) then 1 week later exposed to GMA-SS (340 or 680 μg) or
PBS (vehicle; sham) by pharyngeal aspiration once a week for 5 weeks. The study was carried out in four blocks (1 block/day for 4 days/week) for
randomization. All treatment combinations were represented in each block. Body weights were recorded at week 0, then at each weekly
aspiration exposure and at every two weeks thereafter. Mice were sacrificed 30 weeks post-initiation and tumor multiplicity was evaluated.
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plasma cells and were increased in all welding PM-exposed
groups (Figure 5, left panel). Of note, there was no signifi-
cant difference in inflammatory cell infiltrates in the sham-
exposed mice treated with MCA or corn oil 30 weeks after
IP injection. This dose of MCA has also been shown
to be non-inflammatory by bronchoalveolar lavage ana-
lysis in the A/J mouse [12]. Microscopically, adenomas
and preneoplastic epithelial proliferations were in the
Figure 2 Lung tumor multiplicity (left panel) and total lung tumor nu
with PBS (sham) or GMA-SS welding PM. At 30 weeks, MCA initiation foll
number of tumors/mouse ± SE) in both the low dose (12.1 ± 1.5) and high do
**p < 0.0001; *p < 0.0001- compared to corn oil/sham. Right panel shows incre
groups above that of the MCA/sham.
majority, which is consistent with the model and previ-
ous observations [11,13]. There were a greater number
of malignant lesions in the MCA/GMA-SS high group
compared to MCA/sham; 7 out of 29 mice were found
to have a CA or C (Figure 5, right panel). In the MCA/
GMA-SS low group, there were 2 animals with ad-
vanced lesions, one with a multiple CA, so the signifi-
cance in this case should likely be dismissed.
mber (right panel) upon gross examination in A/J mice promoted
owed by GMA-SS exposure increased lung tumor multiplicity (average
se (14.0 ± 1.8) groups significantly above that of MCA/sham (4.77 ± 0.7).
ased total lung tumor numbers in the MCA/GMA-SS low and high dose



Table 1 Total tumor number across individual lung lobes in A/J mice following exposure to GMA-SS welding PM at
30 weeks post-initiation with MCA or corn oil

n Left Apical Cardiac Diaphragmatic Azygos

Corn oil/Sham 28 1 1 2 2 0

Corn oil/GMA-SS low 26 4 3 2 1 1

Corn oil/GMA-SS high 28 4 1 0 1 0

MCA/Sham 26 52* 12* 13* 39* 8*

MCA/GMA-SS low 26 119** 46** 40# 81# 28#

MCA/GMA-SS high 29 132** 64** 66** 106** 37#

GMA-SS gas metal arc-stainless steel, PM particulate matter, MCA 3-methylcholanthrene.
*p < 0.002 - compared to corn oil/sham.
**p < 0.0007, #p < 0.004 - compared to MCA/sham.
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Discussion
The novel finding of this study was a highly significant
increase in lung tumor multiplicity in mice promoted
with SS welding PM, which was consistent and signifi-
cant across all five individual lung regions. This response
was observed 30 weeks after MCA-initiation. Also of
note, there were more malignant lesion types in the
MCA/high dose welding PM group which suggests that
not only is the rate of tumor formation being increased
by welding PM, but the progression to malignancy ap-
pears to be affected with higher doses of particulate.
This study is the first to link enhanced lung tumor for-
mation and welding fume exposure in vivo and provide
animal evidence to support epidemiological findings.
A 25% to 40% increased risk of lung cancer has been as-

sociated with the welding occupation [14-16]. Indeed, the
proportionate mortality ratio for welders for lung cancer is
1.2 [17]. Even though some evidence exists to the con-
trary, epidemiological studies generally support an in-
creased risk, but they are limited in number; animal
studies are scarce [3]. Because welders work under widely
diverse conditions and co-exposures such as silica, smok-
ing, and asbestos may be involved, cumulative exposure
data and a complete occupational history may not always
be available [15,18,19]. Therefore, controlled animal
Figure 3 Gross images of lung tumors promoted by GMA-SS welding
lung tumor morphology before fixation panel B is 24 h after fixation. Aster
lung tumors. The majority of tumors were ~1 mm in diameter.
studies to elucidate the underlying factors of welding
fume-related lung carcinogenesis are long overdue.
Previously, we assessed the ability of different types of

welding PM to act as a complete lung carcinogen in
lung tumor susceptible A/J mice. Efforts of those studies
were ultimately negative but hinted at a potential weak
carcinogenic effect of SS welding PM, as a borderline
significant (p = 0.057) increase in grossly observed lung
tumor incidence (i.e., presence or absence of tumors)
was found [10,11,20,21]. In addition, histopathology at
78 weeks after exposure revealed presence of SS welding
PM which was associated with a mild, but significant,
chronic inflammatory cell influx in the lung tissue. Of
note, these effects were not observed following expos-
ure to mild steel (MS) welding PM composed largely of
iron oxide [11]. Also, to complement those studies, the
lung toxicity and gene expression profiles in the tumor
susceptible A/J and resistant C57BL/6J (B6) mouse were
compared following pharyngeal aspiration of GMA
welding PM [11,22]. Interestingly, a significantly greater
magnitude of overt lung toxicity (polymorphonuclear
leukocyte influx, lung cytotoxicity and permeability) and
an attenuated resolution of the inflammatory response to
different types of welding PM were found in the A/J versus
the B6 mouse strain. Results from the microarray analysis
PM 30 weeks after initiation with MCA. Panel A represents the
isks (*)-indicate areas of welding PM deposition. The arrows (↑)-indicate



Figure 4 Lung tumor/proliferation multiplicity (left panel) and total number (right panel) microscopically observed in A/J mice
promoted with PBS (sham) or GMA-SS welding PM. At 30 weeks, MCA initiation followed by GMA-SS exposure increased multiplicity (average
number of tumors and proliferations/mouse ± SE) in both the low dose (5.85 ± 0.76) and high dose (6.00 ± 0.87) groups significantly above that
of MCA/sham (2.15 ± 0.32). **p < 0.0001; *p < 0.0001- compared to corn oil/sham. Right panel shows increased total lung lesion numbers in the
MCA/GMA-SS low and high dose groups above that of the MCA/sham.
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confirmed those aforementioned responses and revealed a
greater lung transcriptional gene activation as well as a
prolonged dysregulation of immunomodulatory genes after
welding PM exposure in the A/J versus the B6 mouse [22].
In all cases, the lung toxicity and transcriptional effects
were greater with the carcinogenic metal-containing SS
welding fume when directly compared to a MS welding
fume. Therefore, historical data in our laboratory suggested
that fumes containing Cr and Ni were the most toxic,
persisted in the lung longer as compared to other types,
and were possibly tumorigenic in vivo.
The A/J mouse lung tumor bioassay is well-characterized,

has good inter- and intra-laboratory reproducibility, and has
been widely used for testing hundreds of potential
lung carcinogens, such as tobacco smoke and polycyclic hy-
drocarbons [23-25]. It also continues to be useful for evalu-
ation of chemointerventive agents of lung neoplasia
[24,26,27]. This strain is susceptible to both chemically-
Table 2 Severity scores for abnormal morphological findings
types in A/J mice following exposure to GMA-SS welding fum

Lymphoid
infiltrates*

Welding-fume
laden cells*

Preneoplasia

Corn oil/Sham 0.25 ± 0.07 0.00 ± 0.00 5

Corn oil/GMA-SS low 1.79 ± 0.07** 2.12 ± 0.04 1

Corn oil/GMA-SS high 1.84 ± 0.06** 2.29 ± 0.07# 0

MCA/Sham 0.15 ± 0.00 0.00 ± 0.00 16

MCA/GMA-SS low 1.44 ± 0.08** 1.90 ± 0.05 61**

MCA/GMA-SS high 1.57 ± 0.06** 2.12 ± 0.06# 65**

GMA-SS Gas metal arc-stainless steel, PM Particulate matter, MCA 3-methylcholanthr
*Severity scores were average of the right and left lung lobe score and are presente
associated lymphocytes, macrophages, and plasma cells. Severity was scored as: 1 =
**p < 0.01 - compared to the corresponding sham in the corn oil- or MCA-treated gr
#p < 0.001 - compared to the corresponding GMA-SS low in the corn oil- or MCA-tre
induced and spontaneous lung adenomas compared to the
resistant B6 mouse [23]. Morphological, molecular, and
histological features of the lung tumors that arise in these
mice resemble human adenocarcinomas; therefore, findings
in this model have direct human relevance [28]. Indeed,
tumor susceptibility in the A/J strain has been associated
with a polymorphism in intron 2 of Kras and this finding is
pertinent to human lung adenocarcinoma development be-
cause ~35% of these human tumor types contain Kras onco-
genes [29,30].
In humans, chronic lung inflammatory conditions

such as asthma and chronic obstructive pulmonary dis-
ease are associated with increased risk of lung cancer
and epidemiology suggests ~25% of human cancers are
attributed to chronic inflammation [31-33]. Microenvi-
ronments of chronic lung inflammation, largely domi-
nated by macrophages and other leukocytes, create a
milieu rich in reactive oxygen species and cytokines that
and number of microscopically observed lung lesion
e PM at 30 weeks post-initiation with MCA or corn oil

Adenoma within
preneoplasia

Adenoma Adenocarcinoma Carcinoma

2 2 0 0

0 3 1 0

1 4 0 0

5 34 0 1

17** 70** 4** 0

9 93** 6** 1

ene.
d as mean ± standard error, lymphoid infiltrates are peribronchial/perivascular
minimal, 2 = mild, 3 = moderate, 4 = marked, 5 = severe.
oups.
ated groups.



Figure 5 Photomicrographs of lung tissue from MCA-treated mice. Representative photomicrographs were captured at 30 weeks after
MCA-initiation and show presence of lymphoid infiltrates (i.e., inflammatory cell infiltrates consisting of peribronchial/perivascular associated
lymphocytes, macrophages, and plasma cells) and welding PM (arrows) in the MCA/low GMA-SS group (left panel). An area of malignant
transformation (rectangle)—larger cells with irregular nuclei and associations—in the MCA/high GMA-SS group (right panel).
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may promote tumorigenesis [34-36]. Indeed, in the mouse
model, quantitative trait loci (QTL) that control genetic
susceptibility to lung inflammation colocalize with tumor
susceptibility QTL [37]. Two-stage carcinogenesis in lung
tissue was first reported by Witschi et al. when repeated
IP injections of butylated hydroxytoluene (BHT), a syn-
thetic food additive and antioxidant, increased lung aden-
oma multiplicity in both Swiss-Webster and A/J mice
initiated with a single dose of the potent carcinogen ureth-
ane 9–15 weeks prior [38]. The model of BHT tumor pro-
motion continues to provide mechanistic insight into the
critical role that inflammation has in lung tumor initiation
and promotion [35,39,40]. More recently, this two-stage
model was used to demonstrate the in vivo promoter ac-
tivity of vanadium pentoxide (V2O5), a component of en-
vironmental and occupational PM, in A/J, BALB/cJ, and
C57BL/6 J mice initiated with MCA 20 weeks prior [12]. In
agreement with our earlier findings that strain-dependent
(A/J > B6) lung responses were evident after welding PM
exposure, Rondini et al. found that V2O5-mediated lung in-
flammation and subsequent tumor multiplicity also showed
strain dependency (A/J > BALB/cJ > B6) [11,12,22]. In this
study, the observed inflammatory cell infiltration and highly
significant increased tumor multiplicity after MCA/GMA-
SS welding PM exposure, combined with our previous
evidence of chronic inflammation due to SS particle persist-
ence in the lung, further supports the role of inflammation
in the promotion of lung tumors in A/J mice.
GMA-SS welding PM is poorly soluble and contains

toxic metals, namely Cr(VI), which is carcinogenic, espe-
cially in the particulate form [3]. In vitro, this fume has
also been shown to cause greater DNA damage, lipid per-
oxidation, and radical generation compared to MS fume
[41]. Increased DNA damage has also been reported in
blood leukocytes from welders exposed to Cr and Ni
fumes [42,43]. Once inhaled, Cr(VI) particles are retained
primarily by the lung and tend to accumulate near major
bifurcations, where they may persist for as long as twenty
years [44,45]. A possible mechanism for Cr(VI) carcinogen-
icity involves the slow release over time of chromate ions
from particulate compounds adhered to the cell surface.
These ions may escape extracellular reduction by ascorbate,
which then allows for uptake by lung epithelial cells causing
tumor formation [46]. Indeed, a concentration-dependent
induction of aneuploidy has been shown in normal human
bronchial fibroblast and immortalized human bronchial
epithelial cells exposed to particulate chromate [47,48]. In
addition, Cr(VI) may act synergistically with Ni, present
in lower amounts in this fume, as suggested by co-
mutagenicity studies [49]. In rats and mice, GMA-SS fume
exhibited a slower lung clearance timeline compared to a
more soluble manual metal arc-SS (MMA-SS) and GMA-
MS fume [11,50]. Thus, slower lung clearance, together
with the greater lung toxicity profile of this fume in vivo,
may significantly contribute to its increased tumor pro-
moter activity.
No threshold limit value-time weighted average (TLV-

TWA) exists for welding fume. The previous TLV-TWA
of 5 mg/m3 for welding fume was retracted in 2004 by the
American Conference of Governmental Industrial Hygien-
ists [51]. In this study, we used welding PM exposures
equivalent to 1.84 and 3.67 years of work exposures at
5 mg/m3 and Cr(VI) exposures of 5.4 and 10.8 years at
5 μg/m3 in a human for the low and high doses, respect-
ively. Previously published reports have indicated that air-
borne concentrations of Cr(VI) in industries using SS
welding can be 50–400 μg/m3 [52]. Welders oftentimes
work in confined spaces which can increase the total fume
exposure to > 20 mg/m3 [53]. Because freshly generated
welding fume induces greater lung inflammation than
“aged” fume, such as that used in this study, and one-third
of the dose by inhalation results in about 2 to 3 times the
pulmonary toxicity, the exposures used herein are reason-
able [11,21,54]. However, the bolus delivery of the particles
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is an obvious limitation in this study, even though the
doses were repeated over a five- week time frame (1 ex-
posure/week). As such, welding fume by inhalation is 6 to
9 times more potent than by pharyngeal aspiration [55].
The mechanisms of increased toxicity by inhalation are
likely related to the free radical generation of freshly gen-
erated welding fume compared to “aged” fumes that are
collected onto filters then used in instillation studies
[41,54]. Given the role of inflammation in tumor promo-
tion described above, the combined interpretation of our
previous studies strongly suggests that a significantly lower
mass deposition by inhalation would have similar results
as those in this study.

Conclusions
The current research supports epidemiological findings
that SS welding fume may have carcinogenic potential. At
30 weeks after MCA-initiation, an average of 7.33 to 9.23
tumors/mouse were grossly enumerated after exposure to
GMA-SS welding PM. Indeed, the effect was highly signifi-
cant (p < 0.0001). GMA-SS welding PM did not increase
multiplicity or incidence by 30 weeks in the corn oil-
treated A/J mouse. Therefore, in this experimental model,
this fume does not appear to be a potent initiator and
shorten the timeframe for induction of lung tumors,
which agrees with previous results [11,21]. Taken together,
the intrinsic toxicity of GMA-SS welding PM, the chronic
lung inflammatory milieu, and the leaching of Cr(VI) from
the particles may allow for potential tumor promotion in a
susceptible population.

Methods
Animals
Male A/J mice, age 5–6 weeks, were purchased from
Jackson Laboratories (Bar Harbor, ME) and housed in an
AAALAC-accredited, specific pathogen-free, environmen-
tally controlled facility. All mice were free of endogenous
viral pathogens, parasites, mycoplasmas, Helicobacter, and
CAR Bacillus. Mice were individually housed in ventilated
cages and provided HEPA-filtered air under a controlled
light cycle (12 h light/12 h dark). Animals were acclimated
to the animal facility for a minimum of 1 week and
allowed access to a conventional diet (6% Irradiated NIH-
31 Diet, Harlan Teklad, Madison, WI) and tap water
ad libitum. All procedures were performed using proto-
cols approved by the National Institute for Occupational
Safety and Health Institutional (NIOSH) Animal Care and
Use Committee.

Generation of GMA-SS welding PM and analysis of
Cr(VI) levels
Welding fumes were generated for this study by the
NIOSH robotic welding system which includes a 6-axis
robotic arm, power supply, water-cooled arc welding
torch, and a wire feeder; as previously detailed [7]. SS
welding wire was Lincoln Electric E308 LSi; the shield gas
was Ar/CO2 95%/5% at 19 liters/min. The welding material
in the baseplates was ¼ inch A-36 carbon steel. Welding
was done in axial spray mode at 26.5 volts, 240 amperes,
325 inches/min wire feed, and 15 inches/min travel.
Fumes from the weld area were sampled onto electro-

static medium filters (PE 13060NA, Hollingsworth and
Vose, East Walpole, MA), and PM was recovered by
gentle suction, then ground by shaking for 30 sec in a
Wig-L-Bug grinder using a metal-free disposable poly-
ethylene vial with two 1/8 inch silicon nitride-coated cer-
amic balls. The ground material was anti-static treated,
and 5 mg samples were weighed into 15 ml polycarbonate
centrifuge tubes.
Three replicate welding PM samples were analyzed for

Cr(VI) levels using NIOSH method 7605 [56]. Briefly,
5 ml of extraction solution (3% Na2CO3/2% NaOH) were
added to each 5 mg sample, and the tubes were sonicated
in a bath for 30 min. This procedure extracts both soluble
and insoluble Cr(VI) present in the fumes. Analysis used a
Dionex HPIC-AS7 column with 250 mM (NH4)2SO4/
100 mM NH4OH mobile phase and a postcolumn reagent
(2.0 mM diphenylcarbazide/10% methanol/1 N H2SO4)
with absorbance detection at 540 nm. Four concentrations
of standards were made from a certified Cr(VI) solution,
covering a range of 0.4-4 μg/ml. The estimated limit of de-
tection is 0.02 μg, and the method range is 0.05 to 20 μg
of Cr(VI). Total metal analysis was done as previously de-
scribed using inductively coupled plasma-atomic emission
spectroscopy (ICP-AES) using NIOSH method 7300
modified for microwave digestion [7,57]. The metal solu-
bility of this fume is low (0.006 soluble:insoluble) and the
mass median aerodynamic diameter of the sample is
0.255 μm, as previously determined [58].

Experimental protocols for animal exposures and sacrifice
A/J mice, 176 in total, were organized into 6 groups using
a block design for randomization (Figure 1). During week
1, mice were intraperitoneally (IP) injected with an initi-
ator, 3-methylcholanthrene (MCA), (Sigma, St. Louis,
MO) dissolved in corn oil (Sigma, St. Louis, MO) at a dose
of 10 μg/g body weight or corn oil alone. One week post-
initiation, mice were exposed to GMA-SS welding PM
suspended in phosphate-buffered saline (PBS) without cal-
cium and magnesium by pharyngeal aspiration as previ-
ously described [59]. Briefly, each mouse was placed in a
bell jar with gauze moistened with isoflurane (Abbott
Laboratories, Abbott Park, IL) until slowed breathing was
observed. The mouse was then suspended by its top inci-
sors, on a slanted board in a supine position. The tongue
was extended with forceps and the test suspension was
placed by pipette at the back of the throat. The tongue
was held until the solution was aspirated into the lung and
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3 deep breaths were observed. The mouse recovered
fully in its cage within ~15 sec. Mice were exposed once
a week for 5 weeks to either 340 or 680 μg of freshly
prepared GMA-SS welding PM or PBS (sham control).
Welding PM was briefly sonicated (< 1 min) after sus-
pension in PBS, then vortexed immediately before each
individual animal exposure.
The cumulative exposures over the 5 week time course

were 1.7 mg and 3.4 mg, respectively, and these were
chosen based on previous published results [10,11,20].
Previous research has estimated that a welder exposed to
5 mg/m3 for an 8 h day would be expected to have a lung
burden of 7.7. mg alveolar deposition [60]. Utilizing
102 m2 for human and 0.05 m2 murine alveolar surface
area [61], 7.7 mg is converted to a murine equivalence of
3.77 μg. Assuming 100% alveolar deposition of the aspir-
ate, the low dose of GMA-SS PM used in this study would
be equivalent to 450 days, or 1.84 working years, of a
worker being exposed at 5 mg/m3 for 8 h/d. The high dose
would be equivalent to 900 days, or 3.68 working years.
The current PEL for Cr(VI) is 5 μg/m3 which was
readjusted in 2006 from 52 μg/m3 [62]. Therefore, a hu-
man exposed to 5 μg/m3 Cr(VI) for 8 h would result in
7.7 μg alveolar deposition with a murine daily equivalence
of 3.77 ng. In this study, Cr(VI) in the welding PM was
measured to be 2920 μg/g, or 0.29%. Thus, the low and
high doses contained 4.96 μg and 9.93 μg of Cr(VI), re-
spectively. An exposure level of 5 μg/m3 Cr(VI) for 8 h/d,
would be equivalent to 5.4 years for the low and 10.8 years
for the high dose.
One block/day (4 days/week) was completed for each

stage of the 6-week protocol. MCA was chosen as the
initiating agent based on the efficient response of the
A/J mouse to this carcinogen compared to other mouse
strains [63]. The dose of MCA and basic protocol in A/J
mice were derived from a study by Rondini et al. [12].
At 30 weeks post-initiation, mice were sacrificed over a

4 day period (1 block/day). Mice were anesthetized with
an IP overdose of Sleepaway (26% sodium pentobarbital,
7.8% isopropyl alcohol and 20.7% propylene glycol, Fort
Dodge Animal Health, Fort Dodge, IA) then weighed.
Once unresponsive, the abdomen and thoracic cavity were
opened and examined for any abnormalities and the vena
cava was cut to exsanguinate the mouse. The whole lung
was excised then inflated and fixed with 10% neutral buff-
ered formalin for 24 h. Lungs were then examined and tu-
mors were enumerated and measured in a blinded fashion
by two individuals with the aid of a Leica MZ6 stereo-
microscope (Leica Microsystems, Inc., Buffalo Grove, IL).
Apparent merged tumors, defined as a single tumor pat-
tern in double-nodule form or an apparent collision of
two different tumors, were counted as one. Gross images
were taken using an Olympus DP21 digital camera
(Olympus America, San Jose, CA).
Whole lungs were embedded in paraffin then a 5 μm
standardized section was cut. Slides were stained with
hematoxylin and eosin and interpreted by a contracted
board certified veterinary pathologist in a blinded fashion
for morphological changes and proliferative/neoplastic le-
sions. All lung lobes were evaluated from every animal in
each group. If abnormal changes were found, severity was
scored as follows: 1 =minimal, 2 =mild, 3 =moderate, 4 =
marked, 5 = severe. The final severity score reflects the
average of the right and left lung lobe scores (see Table 2).
Proliferative/neoplastic changes were counted and identi-
fied as P = preneoplastic epithelial proliferation, AP = ad-
enoma arising within a proliferation, A = adenoma, CA =
carcinoma arising within an adenoma, C = carcinoma, or
MC = microcarcinoma [64]. Since examination of a single
histological section per lung underestimates the total num-
ber of lesions per lung, the gross count at necropsy would
be more representative of the response. However, for com-
pleteness, both microscopic and gross exam total lung
tumor numbers were statistically evaluated in this study.

Statistics
All analyses were performed using SAS/STAT version 9.3
(SAS Institute Inc., Cary, NC) for Windows. Binary out-
comes of tumor incidence (presence or absence) for each
region and for the total were analyzed using Fishers Exact
test. Tumor counts were analyzed using negative binomial
regression for each region and the total because the
Poisson regression on counts was overdispersed. All ana-
lyses were stratified by promoter. Only animals surviving
the entire 30 week time course were used for analysis.
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