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Abstract

Background: Titanium dioxide (TiO,) nanoparticles and fullerene (C,,) are two attractive
manufactured nanoparticles with great promise in industrial and medical applications. However,
little is known about the genotoxic response of TiO, nanoparticles and C,j in mammalian cells. In
the present study, we determined the mutation fractions induced by either TiO, nanoparticles or
Cgo in gpt delta transgenic mouse primary embryo fibroblasts (MEF) and identified peroxynitrite
anions (ONOQO) as an essential mediator involved in such process.

Results: Both TiO, nanoparticles and Cg, dramatically increased the mutation yield, which could
be abrogated by concurrent treatment with the endocytosis inhibitor, Nystatin. Under confocal
scanning microscopy together with the radical probe dihydrorhodamine 123 (DHR 123), we found
that there was a dose-dependent formation of ONOO- in live MEF cells exposed to either TiO,
nanoparticles or C, and the protective effects of antioxidants were demonstrated by the nitric
oxide synthase (NOS) inhibitor, NG-methyl-L-arginine (L-NMMA). Furthermore, suppression of
cyclooxygenase-2 (COX-2) activity by using the chemical inhibitor NS-398 significantly reduced
mutation frequency of both TiO, nanoparticles and C,.

Conclusion: Our results provided novel information that both TiO, nanoparticles and C,, were
taken up by cells and induced kilo-base pair deletion mutations in a transgenic mouse mutation
system. The induction of ONOO- may be a critical signaling event for nanoparticle genotoxicity.

Background

Nanoparticles are referred to a class of particles with prop-
erties distinctively different from their bulk and molecular
counterparts [1,2]. Due to the unique electrical, thermal,
mechanical, and imaging properties, manufactured nano-
particles are highly desirable to improve the quality and
performance of materials in a diverse array of industrial

and medical applications, ranging from biomedicine,
nanoelectronics and mechanical engineering [3,4]. How-
ever, with the increase in large scale production of manu-
factured nanoparticles, the potential occupational and
public exposure to manufactured nanoparticles has
aroused concern because of their large surface areas and
the ability to deposit in the body [5]. Thus, a comprehen-
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sive study is clearly needed to fully explore the genotoxic-
ity of manufactured nanoparticles, which may help to
better understand their deleterious health effects and cre-
ate environmentally friendly and biologically relevant
nanoparticles.

Among the manufactured nanoparticles, titanium dioxide
(TiO,) nanoparticles have been already in mass produc-
tion for decades. In the early years, TiO, with the usual
size of > 100 nm is considered a poorly soluble particulate
and has been widely used as an additive in the production
of a white pigment, food colorant, sunscreens, and cos-
metic creams by virtue of its biologically inert mess in
both humans and animals [6-8]. Recent evidence, how-
ever, has suggested that nano-sized TiO, can cause inflam-
matory response in airways of rats and mice, fibrosis or
lung tumors in rats, and DNA damage in Chinese hamster
ovary (CHO) cells, Syrian hamster embryo fibroblasts and
human lymphoblastoid cells [9-12]. A significant decrease
in the level of glutathione was observed in rat lung alveo-
lar macrophage following exposure to TiO, nanoparticles,
indicating the induction of reactive oxygen species (ROS)
[13]. Furthermore, exposure of human bronchial epithe-
lial cells to TiO, nanoparticles was shown to induce oxida-
tive DNA damage, micronuclei formation, and increases
in the levels of hydrogen peroxide (H,0,) and nitric oxide
(NO) [14]. Although various in vivo and in vitro studies
have shown that TiO, nanoparticles are more toxic than
its larger, micron-size counterparts, the molecular mecha-
nisms responsible for the genotoxicity in nano-sized TiO,
are not yet understood.

Compared to TiO, nanoparticles that have been used for
over half a century, fullerene (Cq,) is a novel carbon allo-
trope, which was discovered in 1985 and consist of a
polygonal structure made up solely with 60 carbon atoms.
In the past few years, methods was established to consid-
erably improve its mass production capacity [15]. Cur-
rently, Cg, with spherical symmetry has aroused intense
interest for its multi-functional uses in materials science
and optics and is considered for a variety of biological
applications, such as imaging probes and drug carriers.
Although investigation of the biological properties of
pure, underivatized C,, has been hampered by its low
aqueous solubility, Cg, is lipophilic and can be localized
in the lipid-rich regions including cell membrane in vitro
[16]. It has been reported that equivalent doses of an
aggregated form of underivatized C, are 3-4 orders of
magnitude more toxic to human dermal fibroblasts, lung
epithelial cells, and normal human astrocytes than the
derivatized, highly water-soluble derivative, C;,(OH),,.
The increased toxicity is thought to be mediated through
ROS induced lipid peroxidation of cell membrane [17]. In
accordance with these data, a study performed using the
largemouth bass reveals significant lipid peroxidations in
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brains of this aquatic species after exposure to underiva-
tized Cg, [18]. In a recent study, Isakovic et al. confirmed
the greater toxicity of Cg, in a variety of cell lines [19].
Nevertheless, there is considerable evidence that Cg,
induces slightly toxic in bacteria, rats, as well as in murine
and human macrophages [20,21]. Thus, to define and
constrain the potential biomedical applications of Cg, it
is of great interest to identify the genotoxicity of C, in
mammalian cells.

In the present study, we assessed the genotoxicity of TiO,
particles of different size distributions and Cg, using gpt
delta transgenic mouse primary embryo fibroblasts (MEF)
[22-24]. We investigated the mutation frequencies at both
the redBA and gam loci and the contribution of endocyto-
sis to the mutagenic process. Since oxidative stress has
been widely implicated as a probable mechanism of gen-
otoxicity for a variety of environmental mutagens that
induce reactive oxygen and nitrogen species (ROS/RNS)
under either endogenous or exogenous insults [25,26],
the contributions of peroxynitrite anions (ONOO-) and
cyclooxygenase-2 (COX-2) were determined in the geno-
toxic response to TiO, nanoparticles and Cg,. Our results
provided direct evidence that both TiO, nanoparticles and
Cgo induced kilobase pair deletion mutations in mamma-
lian cells that were mediated by ONOO-. Furthermore,
COX-2 signaling pathway, which is essential in mediating
cellular inflammation, carcinogenesis, and genomic insta-
bility, might be a critical signaling event for nanoparticle
genotoxicity.

Methods

MEF cell culture

gpt delta transgenic mice were mated, and pregnant
females were sacrificed on day 14 of the gestation period.
The use of the transgenic animals and the experimental
protocol were previously approved by the Columbia Uni-
versity Institutional Animal Care and Use Committee. The
animals were treated humanely and with regard towards
the alleviation of pain and suffering. The embryos were
surgically removed and embryonic tissue prepared in cul-
ture according to standard procedures [27]. These cultures
were grown and maintained in Dulbecco's modified
Eagle's medium (Gibco-BRL) containing 15% heat-inacti-
vated fetal bovine serum and penicillin (100 U/ml), strep-
tomycin (50 pg/ml) in a 5% CO, environment at 37°C.

Preparation of aqueous dispersion of TiO, nanoparticles
and C,,

Anatase TiO, particles with different sizes were used in the
present study. TiO, nanoparticles with an average primary
particle diameter of either 5 nm (99.7% purity, referred to
as TiO, 5 nm) or 40 nm (99.9% purity, referred to as TiO,
40 nm) were purchased from Sigma-Aldrich (St. Louis,
MO, USA) and Inframat Advanced Materials LLC (Farm-
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ington, CT, USA), respectively. We purchased the com-
mercially available TiO, at -325 mesh in diameter (> 99%
purity, referred to as TiO, -325 mesh) from Sigma-Aldrich
(St. Louis, MO, USA). Pure (99.5%) Cq, (referred as to
Ceo) Was obtained from SES Research (Houston, TX,
USA). The BET Surface Area for 5 nm, 40 nm, and 325
mesh TiO,was 114.1261 m?/g. 38.2268 m?/g, and 8.9146
m?2/g, respectively, which was determined by ASAP 2020
Accelerated Surface Area and Porosimetry (Micromeritics,
Norcross, GA 30093, USA). The above materials were
used as received, and no further modifications were
applied. TiO, particles were suspended in distilled water
to a desired concentration and sterilized by heating to
120°C for 30 min. Cy, suspension was prepared by long-
term (60 days) stirring in water and sterilized by autoclav-
ing. Before being diluted with 5 ml tissue culture medium
for cell treatment in T-25 flasks, all particles were soni-
cated on ice for 30 min to ensure a uniform suspension.
For all experiments and analysis, distilled water was fil-
tered with a 0.45 mm nominal pore size polycarbonate
syringe filter (Millipore, MA, USA).

Treatment with inhibitors

Nystatin (Sigma-Aldrich, St. Louis, MO, USA), an endocy-
tosis inhibitor, was diluted directly from stock solution
with medium to a final concentration of 10 U/ml. NG-
methyl-L-arginine (L-NMMA; Molecular Probes, Inc.,
Eugene, OR, USA), nitric oxide synthase inhibitor, was
dissolved in distilled water (10 mM stock) and filter steri-
lized. Stock L-NMMA was diluted with medium to a final
concentration of 500 uM and added to the cultures 24 h
before particle treatment and remained in the medium or
buffer throughout the treatment period. NS-398 (Cayman
Chemical, Ann Arbor, MI, USA), a selective inhibitor of
cyclooxygenase-2 (COX-2), was dissolved in dimethyl for-
mamide to a desired stock concentration. Stock NS-398
solution was diluted with medium to a working concen-
tration of 50 pM.

Cytotoxicity assay

Cell viability was evaluated by MTT assay based on the
ability of viable cells to convert a water-soluble tetrazo-
lium salt into a water-insoluble formazan product [28].
The enzymatic reduction of the tetrazolium salt happens
only in living, metabolically active cells but not in dead
cells. Cultures were incubated in two-well chamber slides
at a density of 5.0 x 105 cells per well at 37°C for 24 h.
Graded doses of particles were added to the culture
medium and incubated for another 24 h. At the end of the
treatment period, the medium was removed and 200 pl of
5 mg/ml MTT was added into each well and the cultures
were incubated for another 4 h. The supernatant was
removed and 1 ml acidic isopropanol was added to dis-
solve the formazan crystals. The absorbance at 570 nm
was determined by a spectrophotometer.
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Genomic DNA isolation

Genomic DNA was isolated from MEF cells using the
RecoverEase™ DNA isolation kit (Stratagene, La Jolla, CA,
USA) according to the protocol developed by the supplier.
Briefly, about 5.0 x 10° cells were transferred to a chilled
Wheaton dounce tissue grinder and the homogenate
obtained was filtered and centrifuged at 1100 x g for 12
min at 4°C. The pellet was resuspended in digestion
buffer containing RNAses (RANse-It™, Stratagene) con-
taining proteinase K solution (2 mg/ml pre-warmed to
50°C). Using wide-bore pipette tips, the samples were
transferred to dialysis cups floating on the surface of TE
buffer (500 ml) and dialyzed for 24 h. The purity and con-
centration of DNA was checked spectrophotometrically
and samples were diluted with TE buffer to a final DNA
concentration of about 0.5 mg/ml, and stored at 4°C for
up to 3 months prior to mutation analysis.

In vitro packaging of DNA

The A-DNA was recovered from approximately 5 pg of
genomic DNA and packaged with terminase and phage
proteins contained in the Transpack™ kit (Stratagene, La
Jolla, CA, USA) to produce infectious A-phages. Viable
phages were infected into E. coli XL-1 Blue MRA (Strata-
gene, La Jolla, CA, USA), mixed with lambda-trypticase
agarose and poured onto 100 mm plates containing 30 ml
bottom agar. Plates were incubated overnight at 37°C.
The average of rescued phages per packaging reaction was
1.8 x 10%in the present studies. There was no significant
difference in the titers between control and exposed
groups.

Spi- mutation analysis

The mutant frequencies at red/gam loci were determined
by Spi- selection as described previously [24,29,30].
Briefly, packaged phages were infected into E. coli XL-1
Blue MRA (P2) (Stratagene, La Jolla, CA, USA). Infected
cells were mixed with molten soft agar, poured onto
lambda-trypticase agar plates and incubated at 37°C. The
plaques detected on the plates (Spi- candidates) were sus-
pended in 50 pl of SM buffer. The suspension was spotted
on the two types of plates where E. coli XL-1 Blue MRA
(P2) or WL95 (P2) strain was spread. The plates were
incubated for 24 h at 37°C. The numbers of mutants that
made clear spots on both strains were counted as con-
firmed Spi- mutants. Mutation frequencies were calculated
by comparing the titration and number of confirmed
mutant plaques.

Quantification of cell-particle interaction

Based on the principle of flow cytometry technology, the
sizes and the shapes of all the cells can be determined by
the measurement of forward scattered (FSC) and side scat-
tered (SSC) lights [31]. Generally, FSC is related to the cell
size and the optical refraction index of the outer mem-
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brane of the cells, whereas SSC indicates surface or cellular
granularity. Exponentially growing MEF cells were
exposed to graded doses of particles for 24 h. After treat-
ment, cells were rinsed with balanced salt solution and
fixed. The uptake of particles were determined by flow
cytometry (Becton Dickinson, San Jose, CA) equipped
with an air-cooled laser providing 15 mW at 488 nm.

Measurement of peroxynitrite anions (ONOO") in
particles treated cells

DHR123 is a nonfluorescent, noncharged dye that easily
penetrates cell membrane. Once inside the cell, DHR123
selectively reacts with peroxynitrite to yield thodamine
123, a highly fluorescent compound, which subsequently
accumulates in the mitochondria [32]. Exponentially
growing MEF cells (2 x 10> cells) grown on 35 mm glass
bottom microwell dishes (DTC3 dishes, BiopTechs) were
pretreated for 30 min with a 5 uM dose of dihydrorhod-
amine 123 in ACAS buffer (127 mM NaCl, 0.8 mM KClI,
1.2 mM CaCl,, 1.2 mM KH,PO,, 4.4 mM C.H,,0,, 10
mM HEPES, pH 7.4) at 37°C. Graded doses of particles,
with or without L-NMMA, were then added to the cul-
tures. The fluorescence of rhodamine 123 in cultures was
measured using a confocal microscope and a semi-quan-
titative estimation of the fluorescent signal was obtained
using the composite images generated by Adobe Pho-
toshop (Adobe Systems, Inc., San Jose, CA) as described
above.

Statistical analysis

All numerical data were calculated as mean and standard
deviation (S.D.) and evaluated by Student's t-test. Differ-
ence between groups was considered significant when p <
0.05.

Results

TiO, particles and C,, induced cytotoxicity in transgenic
MEF cells

The viability of MEF cells exposed to graded doses of
either TiO, particles or C,, was analyzed by using the MTT
assay. As shown in Figure 1A-C, exposure of MEF cells to
different particle sizes of TiO, at doses ranging from 0.1 to
30 pg/mlfor 24 h produced various dose response curves
in cell viability. Addition of either TiO, 5 nm or TiO, -325
mesh to the culture medium had essentially no effect on
the viability of MEF cells. In contrast, treatment of MEF
cells with TiO, 40 nm resulted in a dose-dependent
decrease in cell viability. The viability of MEF cells was
reduced by 24%, 34%, 44%, 52%, and 60%, when the
concentrations of TiO, particles were 0.1, 1, 10, 30 and 60
pg/ml, respectively. The LD, dose of TiO, 40 nm, which
resulted in 50% cell killing, was about 30 pg/ml. Likewise,
there was a dose-dependent decrease of cell viability of
MEEF cells treated with Cg, at doses ranging from 0.1 pg/ml
to 10 pg/ml (Figure 1D). However, there was no further
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decrease in cell viability with C,, concentration > 10 pg/
ml.

Mutation frequencies at red/gam gene loci were
determined in response to either TiO, particles or C,
exposure

To investigate the mutagenicity of TiO, and C,, in the gpt
delta assay, a Spi- mutation assay was used to determine
the mutation frequencies induced by either TiO, or Cg,
exposure for 3 days in transgenic MEF cells. The average
number of spontaneous red/gam gene mutants per 10°
recovered plaques in MEF cells used for these experiments
was 5.69 + 1.87. In cells treated with a dose of 0.1 pg/ml
TiO, 5 nm, there was a 2.2-fold increase in mutation yield
above the background (Figure 2A). However, with further
increase in the concentration of TiO, 5 nm, there was no
further increase in mutant yield. In contrast, treatment of
MEEF cells with TiO, 40 nm resulted in a dose-dependent
induction of mutation yield atthe red/gam gene locus (Fig-
ure 2B). A significant increase in mutation yield over the
background level was observed at TiO, 40 nm at concen-
trations > 0.1 pug/ml (p < 0.05). The mutant fraction in
cells treated with a dose of 10 pg/ml of TiO, 40 nm was
2.7-fold higher than background. In contrast, the muta-
tion yield at the red/gam gene locus was not much altered
by TiO, -325 mesh at doses ranging from 0.1 pg/ml to 30
pg/ml (Figure 2C). A clear dose-dependent induction of
mutation at the red/gam gene locus was observed when
MEF cells were subject to C, treatment at doses ranging
from 0.1 pg/ml to 30 pg/ml (Figure 2D). There was a 2.6-
fold increase in the mutation yield in cells treated with C,,
at a concentration of 10 pg/ml (p < 0.05). These results
indicated that TiO, nanoparticles and C,, were able to
produce deletion mutations in gpt delta transgenic muta-
tion assay system.

Quantification of TiO, particles and C,, uptake

The elastically scattered light from cells/tissues provides a
convenient and non-invasive approach to monitor mor-
phological parameters and structural modifications of
cells/tissues. The relative intensity of forward scattered
(FSC) and the side scattered (SSC) light from single cell is
often used in flow cytometry for qualitative measurement
of size and granularity of cells. There were significant
increases in cellular granularity induced by different parti-
cle size of TiO, in an exponentially, dose-dependent man-
ner (Figure 3 A-C). However, it was difficult to quantify
C,ouptake. These results were consistent with the findings
that TiO, particles were taken into phagosomes while C,
was difficult to visualize under the electronic microscopy
[33].
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Effect of endocytosis inhibitor on TiO, particles and C,,
induced genotoxicity in MEF Cells

To determine the particle uptake effect on the genotoxicity
of either TiO, particles or C,, Nystatin, an endocytosis
inhibitor which disrupts internalization via caveolae, was
used in the present experiments [34]. As shown in Figure
4, the Spi- mutant yields in MEF cells induced by either
TiO, 5 nm, TiO, 40 nm or C,,at a concentration of 10 g/
ml were suppressed in the presence of 10 U/ml Nystatin

by 1.6-fold, 1.8-fold and 2.2-fold, respectively. However,
the presence of Nystatin had no effect on the mutation
yield induced by TiO, -325 mesh treatment. The dose of
Nystatin used in these experiments was non-cytotoxic nor
mutagenic.
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TiO, particles and C,, stimulated peroxynitrite anion
(ONOO") production in MEF cells

ONOO:-is a strong oxidant and nitrating species resulting
from the near diffusion-controlled reaction of superoxide
with NO. Treatment of MEF cells with either TiO, 5 nm,
TiO, 40 nm, or Cg, resulted in a dose-dependent induc-
tion of ONOO- (Figure 5A, B, and 5D). The fluorescent

intensity in cells treated with a 10 pug/ml dose of TiO, 5
nm was 1.9-fold higher than the background (p < 0.05)
(Figure 5A). A significant increase in fluorescent intensity
over the background level was observed with either TiO,
40 nm or Cg, at concentrations > 1 pg/ml (p < 0.05) (Fig-
ure 5B, D). For example, the average fluorescent intensity
in cells treated with either TiO, 40 nm or C, at a dose of
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10 pg/ml was 2.2-fold and 2.4-fold above nontreated
cells, respectively. It should be noted that the fluorescent
intensity obtained in cells treated with TiO, -325 mesh
was slightly higher than the background level; however,
the difference was not statistically significant (Figure 5C).
In the presence of NG-methyl-L-arginine (L-NMMA),

which has been shown to competitively block the activity
of NOS in various cell lines, the fluorescent signals in
either TiO, nanoparticle-treated or C-treated cells were
suppressed significantly (p < 0.05).
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exposed to either TiO, particles or C,yat a dose of 10
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expressed as the total number of confirmed A mutants
divided by the total number of rescued phages. The average
number of preexisting mutants per |0é plaques used for
these experiments was 5.69 + [.87. Data were pooled from
3 independent experiments. Bars, = SD.

Effects of NOS inhibitor on TiO, particles and C,,-induced
genotoxicity in MEF cells

The nitric oxide synthases (NOS) are hemoproteins with a
cytochrome P450-like active site that catalyze the oxida-
tion of arginine to nitric oxide and citrulline [35]. To eval-
uate the contribution of ONOO- in TiO, and Cg,
mutagenesis, MEF cells were exposed to either TiO, parti-
cles or Cg either in the presence or absence of L-NMMA
(Figure 6). Concurrent treatment of MEF cells with either
TiO, 40 nm, TiO, 5 nm or Cy, at a dose of 10 pg/ml and
L-NMMA at a concentration of 500 uM dramatically sup-
pressed the mutation yield by 2.7-fold (column 5 versus 6),
1.9-fold (column 7 versus 8), and 3-fold (column 9 versus
10), respectively (p < 0.05). Consistent with our previous
studies, treatment of MEF cells with TiO, -325 mesh
resulted in little or no Spi- mutations. Addition of L-
NMMA (500 uM) had no effect on the overall mutation
yield induced by TiO, -325 mesh (column 3 versus 4). The
dose of L-NMMA used here has been shown to be non-
toxic and non-mutagenic in mammalian cells. These
results strongly suggested that RNS, and especially
ONOO-, were causally linked to the mutagenic response
of both TiO, nanoparticle and C, exposure.
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Effects of COX-2 inhibitor on TiO, particle and C,,~
induced genotoxicity in MEF cells

Nitric oxide synthase, which is critical to the biosynthesis
of ONOO:-, has been shown to be involved in the regula-
tion of COX-2 expression [36]. Figure 7 showed the effect
of a noncytotoxic and nonmutagenic dose of NS398, a
specific inhibitor of COX-2 activity, on either TiO, parti-
cles or C,;, mutagenesis at redBA/gam loci in MEF cells.
Treatment of cells with a 10 pg/ml dose of either TiO, 40
nm, TiO, 5 nm, or Cg,resulted in mutant fractions of 15.2
+ 7.9 (column 5), 11.3 + 2.4 (column 7), and 14.8 + 5.7
(column 9), respectively. While NS398 treatment by itself
induced no redBA/gam loci mutations, its presence in the
culture medium during either TiO, nanoparticle or Cg,
treatment reduced the mutant fractions by 2.2-fold, 2.8-
fold, and 2-fold to 7 + 3.1 (column 6), 4.1 + 0.6 (column
8), and 7.5 + 4.5 (column 10), respectively, for the 10 pg/
ml dose treatment. In contrast, NS398 treatment had min-
imal effect on the mutagenic potential of TiO, -325 mesh
such that there was no decrease in mutant yield in cells
treated with both NS398 and TiO, -325 mesh as com-
pared to those treated with TiO, -325 mesh alone.

Discussion

During the last few years, research on toxicologically rele-
vant properties of manufactured nanoparticles has
increased at an exponential rate. Currently, most of the
toxicological work on nanoparticles have been generated
with a small set of nanoparticles, such as carbon black,
Ceo, TiO,, iron oxides and amorphous silica, which have
been manufactured by the chemical industry for some
decades and are produced in bulk quantities each year
[5,37]. There is evidence that a number of factors are likely
to contribute to the toxicity of nanoparticles, including
particle number and size, surface area and charges, and
chemical composition [38]. Nevertheless, experimental
conditions, type or dose of nanoparticles used, or the
nature of the assays can also modulate the assessment out-
come. It is, therefore, necessary to establish an efficient
system to determine the genotoxic events induced by nan-
oparticles both in vivo and in vitro.

Genetic alterations, such as point mutations, chromo-
somal rearrangements, recombination, and insertions or
deletions of genes, are thought to be one of the earliest cel-
lular responses caused by physical and chemical carcino-
gens and may play an important role in the initiation and
progression of carcinogenesis [39]. Previous studies from
this laboratory have shown that the gpt delta transgenic
mouse system provides a unique opportunity to assess the
mutagenic potential of asbestos fibers [30]. The gpt mice
carry tandem repeats of L. G10 DNA in the chromosome,
which are retrievable as phage particles by an in vitro pack-
aging reaction. The rescued phages are then used to quan-
tify the mutation yield upon exposure to genotoxic agents.
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The Spi- selection based on deletions extending into or
through both the redBA and gam genes is an efficient
mutation assay system for detecting small to kilo-base-
sized deletions in different cells, organs, and tissues [24].
Since gene mutation, mitotic recombination, chromo-
some loss, and interstitial deletion largely contribute to
the development of malignancy, the establishment of the
gpt delta transgenic mouse mutation model may provide
new insight on understanding nanoparticle-induced
mutagenesis. Our present findings demonstrated that
TiO, at nano-scale increased the mutant yield at the gam
and redBA loci in MEF cells, while TiO, at micro-scale had
little effect on the mutation induction. These data were

consistent with several in vivo and in vitro findings that,
upon transition from the micro-scale to nano-scale size
range, diameter of inhaled or instilled particles are impor-
tant factors influencing the toxicity response [19,40,41].
The BET surface area for TiO, 5 nm was increased by 3-
fold from 38.2268 m2/gto 114.1261 m2/g as compared to
TiO, 40 nm, however, there was no statistically significant
difference among groups expsoed to either TiO, 5 nm or
TiO, 40 nm at the same dose (Figure 2), which are in con-
flict with the notion that toxic response is generally con-
sidered to be higher in particles with large surface area
than those with smaller area [42]. Although a surface area
dependence and correlation have been observed in instil-
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lation studies [5], recent evidence from rats and mice
showed that the surface area for TiO, nanoparticles was
not a significant factor in inflammatory response [12,43].
In addition, we showed here that C,, was cytotoxic and
mutagenic in transgenic MEF cells, although the exact
mechanisms are largely unknown.

Endocytosis is a conserved process in eukaryotes by which
extracellular components are taken up into cells by invagi-
nation of the plasma membrane to form vesicles that
enclose these materials [44]. There are several possible
uptake pathways for internalizing nanoparticles, such as
phagocytosis, macropinocytosis, clathrin-mediated endo-
cytosis, caveolae-mediated endocytosis, and clathrin-
caveolae-independent endocytosis (5, 45). Several recent
evidence has shown that certain nanoparticles, such as
iron oxide and silica, as well as carbon nanotubes, are
internalized in cells via the endocytic pathway [46,47].
After 24 h incubation, we observed that the cellular gran-
ularity of MEF cells exposed to TiO, particles was
increased in a dose-dependant manner. In contrast, Cg,
had no effect on the cellular granularity, which might be
due to their low contrast and small diameters. Our results
with the lipid raft-disrupting agent Nystatin, which binds
to cholesterol in cell membranes and disrupts the forma-
tion and trafficking of caveolae, provided further support
of the idea that the endocytotic process modulated the
mutagenic response of nanoparticle treatment [34]. Given
Cq, is lipophilig, it is possible that C,, may interact with
plasma membrane lipids and exert toxicity directly in the
absence of cellular uptake [18]. It is also likely that C,,
interact with cell membrane receptors to trigger or alter
intracellular signal transduction pathways. Due to high
energetic adhesive forces close to the surface, nanoparti-
cles are easily agglomerated to form larger particles. Thus,
whether single particles or agglomerates are important in
the genotoxicity of nanoparticles has not been identified
yet.

The mechanism of oxidative stress induced by nanoparti-
cles is not well understood. There is evidence that free rad-
icals can be induced at the surface of nanoparticles such as
single-wall carbon nanotube (SWCNT), semiconductor
quantum dots, TiO,, environmental particles (e.g. PM-
10), asbestos, and a range of man-made fibers [14,48,49].
Among the most biologically active oxyradicals such as
superoxide anions (O,-), hydrogen peroxide (H,0,), and
hydroxyl radical (OH"), NO is relatively long lived and
catalyzed by nitric oxide synthase (NOS) [50]. The few cell
culture experiments on nanoparticles, such as metal
oxides and quantum dots, have identified particles within
or around the mitochondria [17,33]. Since mitochondria
constitute a major locus for the intracellular formation
and reactions with NO, it is likely that multiple radical
species are involved in the genotoxic response of TiO,
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nanoparticle and Cg, exposure. NO reacts with O, and
can be rapidly converted into more reactive nitrogen com-
pounds such as ONOO:- that can cause nitration of pro-
teins, hydroxylation or nitration of DNA, and mutations
[51] Nano-sized TiO, exposure has been reported to
increase the production of NO and oxidative DNA dam-
age in human bronchial epithelial cells [14]. In the
present study, TiO, nanoparticle exposure dramatically
increased the generation of ONOO-in MEF cells. It should
be noted that nano-TiO, particles in the anatase crystal
phase were reported to be superior catalysts and more
cytotoxic as compared to the rutile particle type, which
might be due to differences inherent in the crystal struc-
tures of the two phases, rather than differences in surface
area (11). There is evidence that the unique structure of
Cq, facilitates absorption of light and transfer of this
energy to triplet oxygen, thereby forming the highly reac-
tive singlet oxygen state, which may cause oxidative dam-
age in exposed organisms [52]. Recent reports have
showed that C,,induces cytotoxic effects via the induction
of reactive oxygen species in mouse cells, human cells,
and fish. However, it should be noted that some data indi-
rectly suggest that oxyradical-mediated cytoxicity of Cg,
might not be an inherent property of pure Cg,, but rather
a result of the residual presence of tetrahydrofuran (THF),
the organic solvent used for Cg, preparation, which
remains intercalated into its lattice [53]. Here, C,, suspen-
sion prepared by long-term stirring in water. The oxida-
tion of DHR 123 by ONOO-, as detected using confocal
microscopy, provided direct evidence that C, induced a
dose-dependent increase of ONOO:- in single cells, which
could be inhibited by the NOS inhibitor L-NMMA. More-
over, the mutation yields induced by either nano-sized
TiO, or Cg, in MEF cells decreased by concurrent treat-
ment with L-NMMA, indicating a key role of ONOO- in
the mechanisms of nano-sized TiO, and C-induced gen-
otoxicity. It's woth notice that the redox events might be
caused by the signaling events associated with the trans-
porting of naoparticles into the cellular structure, rather
than the chemical composition/surface area combiantion
of the nanoparticles.

COX-2 is a member of the COX family, which plays
important roles in modulating cellular inflammation, car-
cinogenesis and genomic instability [39]. Nitric oxide syn-
thase, which is critical to the biosynthesis of ONOO-, has
been shown to be involved in the regulation of COX-2
expression [36,54]. Since COX-2 is the initial and rate-
limiting enzymatic step in the metabolism of arachidonic
acid into a complex group of signaling lipid mediators,
the particle-induced oxidative stress may lead to transmit
external signals into the cell and activate COX-2 signal
pathway. In the presence of NS-398, a specific inhibitor of
COX-2 [55], the genotoxic effects of both nano-sized TiO,
and Cg, was reduced dramatically in MEF cells, thereby

http://www.particleandfibretoxicology.com/content/6/1/3

establishing the functional link for the role of ONOO-and
COX-2 in mediating the genotoxic events of both nano-
sized TiO, and Cg,.

The toxicological data specific to nanoparticles remains
insufficient currently [5,56]. However, the potential toxic-
ity of nanoparticles has attracted attention because of
their apparent similarities to asbestos and other carcino-
genic fibres/particles. Our present studies provided direct
evidence on the genotoxicity of two specific types of man-
ufactured nanopatrticles, TiO, and Cg,, and highlight sev-
eral key health risk assessment issues associated with
manufactured nanomaterial, such as the paucity of infor-
mation on nanoparticle toxicology and exposure assess-
ments as well as the extent to which nanoparticle toxicity
can be extrapolated from existing particle and fiber toxi-
cology databases.
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