Skip to main content

Table 2 A summary of nanomaterial-induced autophagy perturbation

From: Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity

Nanomaterial Size and charge of the nanomaterial Models Autophagy markers examined Experimental techniques used to evaluate autophagy perturbation Reference
Manganese nanoparticles 30 - 50 nm* Rat N27 dopaminergic neuronal cells LC3 and Beclin 1 Immunoblot, GFP- LC3 transfection [79]
Neodymium oxide nanoparticles 80 nm* NCI-H460 human lung cancer cells None TEM, acridine orange staining [80]
C60 fullerene pentoxifylline dyad nanoparticles 79 nm# Mouse neuroblast neuro 2A cells LC3 Immunoblot and TEM [81]
Fullerenol 20 nm; negative charge# LLC-PK1 porcine kidney cells LC3 Lysotracker assay, Immunoblot, TEM [32]
Gold nanoparticles 10, 20, 50 nm; negative charge# Rat kidney (NRK) cells LC3 Immunoblot, GFP- LC3 transfection, TEM [82]
Iron oxide nanoparticles 115 nm; negative charge# A549 human lung cancer cells LC3, ATG5, ATG12; AKT signaling Immunoblot [83]
Polymeric nanoparticles (Eudragit RS) 54 nm; positive charge# NR8383 rat alveolar macrophage cell line LC3 Immunoblot, TEM, LC3-Immunostaining [84]
EGFR-plasmonic magnetic nanoparticles 73 nm; negative charge# Non-small cell lung cancer cells LC3 Immunoblot, TEM, GFP-LC3 transfection [31]
Yttrium oxide nanoparticles 177 nm# HeLa cells LC3 Immunoblot, TEM, GFP-LC3 transfection [85]
Ytterbium oxide nanoparticles 279 nm#
Fullerene C60 nanoparticles 50-100 nm; negative charge# MCF-7 human breast cancer cell line LC3 Immunoblot, GFP- LC3 transfection [86]
Uncoated, ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles 8 nm; positive charge* HCEC Human brain endothelial cells LC3 Immunoblot, TEM [87]
Titanium dioxide nanoparticles 21 nm; negative charge*
Silica nanoparticles 25, 50 nm; negative charge*
Cadmium selenide quantum dot 5.1 nm# LLC-PK1 porcine kidney cells LC3 Immunoblot, TEM, Lysotracker assay [88]
Indium gallium phosphide quantum dot 3.7 nm#
PAMAN Dendrimer Several different generations (varying in sizes and charge)* A549 human lung cancer cells; Balb\c mice LC3, AKT signaling Immunoblot, TEM, GFP-LC3 transfection [89]
Silica nanoparticles (spheres, worms, cylinders) Several# A549 human lung cancer cells, RAW 264.7 mouse macrophages LC3 Immunoblot, TEM [27]
Fullerene C60/70 nanoparticles 100 nm# Rat C6 glioma cell line None Acridine orange staining [90]
Iron core with gold shell nanoparticles 10 nm# OEMC1 human oral cancer cell line LC3 Immunoblot, TEM, LC3 Immunostaining [91]
Titanium dioxide nanoparticles <25 nm* HT29 human colon cancer cell line None GFP-LC3 transfection [92]
Palladium nanoparticles 5-10 nm Peripheral blood mononuclear cells (PBMC) LC3 TEM [93]
Single walled carbon nanotube- carboxylic acid nanoscale* A549 human lung cancer cell line/Balb/c mice LC3, AKT signaling Immunoblot, TEM, ATG6 siRNA transfection [94]
Gold nanoparticles 22 nm; negative charge# MRC-5 human lung fibroblast cells LC3, ATG7 Immunoblot, TEM [95]
Fullerene C60 nanocrystals 20-100 nm# MCF-7 human breast cancer cell line, HeLa human cervical cancer cell line LC3 Immunoblot, TEM, GFP-LC3 transfection [96]
Samarium oxide; Europium oxide; Gadolinium oxide; Terbium oxide nanoparticles 50 nm# HeLa human cervical cancer cell line LC3 Immunoblot, TEM, GFP-LC3 transfection [97]
Fullerenol nanoparticles 7.1 nm# HUVEC human umbilical vein endothelial cell line LC3 Immunoblot, TEM [98]
Quantum dots nanoscale* Human mesenchymal stem cells LC3 LC3 immunostaining, TEM [30]
Alpha alumina nanoparticles 60 nm# Dendritic cells LC3 LC3 immunostaining, Immunoblot, TEM [28]
  1. *characterized by manufacturer; #characterized by author.