Skip to main content
Fig. 10 | Particle and Fibre Toxicology

Fig. 10

From: Sub-chronic inhalation of lead oxide nanoparticles revealed their broad distribution and tissue-specific subcellular localization in target organs

Fig. 10

Effect of inhalation of lead oxide nanoparticles on brain following 6 weeks exposure. a, b HE staining - hippocampal region in control (co) sample, round and palely stained nuclei of pyramidal neurons of Ammon’s horn in CA1 region. c, d HE staining - hippocampal region in treated sample. Black arrows (c, d) show region of spongiform changes in white matter. e-h Neurofilament staining of hippocampal region with affected neurons in CA1 region. Blue arrows indicate dark shrunken damaged pyramidal neurons (d, h). i-l HE staining of fiber tracts beneath hippocampal region. m-p Luxol fast blue staining. Black arrows (l, p) point to regions of spongiform changes in white matter. Scale bar in panels a, c, e, g, i, k, m, o = 200 μm. Scale bar in panels b, d, f, h, j, l, n, p = 100 μm. q-u’ Subcellular analysis of brain following 6 weeks exposure to lead oxide nanoparticles. q, r brain tissue in control sample with neuron nucleus (nu), its cytoplasm (cy), and surrounding neuropil (np), capillaries (ca) with continuous endothelial lining, thick basal lamina, pericyte (pe), and surrounding neuropil (np). s brain capillary after treatment, thrombocyte (thr) in capillary lumen, endothelial cell (ec) is unaffected, pericyte cytoplasm (pe) contains nanoparticle, neuropil (np) is surrounding. s’ detail of nanoparticle in pericyte. t, t’ nanoparticle observed freely in neuron process. u, u’ presynaptic (pre) terminal with synaptic vesicles and mitochondrion, and postsynaptic (po) terminal with observed nanoparticle. Arrowheads show nanoparticles

Back to article page