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Abstract
Background: An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to investigate
the size and chemical composition of fine concentrated ambient particles (CAPs) in the size range
0.2–2.6 µm produced by a Versatile Aerosol Concentration Enrichment System (VACES) contained
within the Mobile Ambient Particle Concentrator Exposure Laboratory (MAPCEL). The data were
collected during a study of human exposure to CAPs, in Edinburgh (UK), in February-March 2004.
The air flow prior to, and post, concentration in the VACES was sampled in turn into the ATOFMS,
which provides simultaneous size and positive and negative mass spectral data on individual fine
particles.

Results: The particle size distribution was unaltered by the concentrator over the size range 0.2–
2.6 µm, with an average enrichment factor during this study of ~5 (after dilution of the final air
stream). The mass spectra from single particles were objectively grouped into 20 clusters using the
multivariate K-means algorithm and then further grouped manually, according to similarity in
composition and time sequence, into 8 main clusters. The particle ensemble was dominated by pure
and reacted sea salt and other coarse inorganic dusts (as a consequence of the prevailing maritime-
source climatology during the study), with relatively minor contributions from carbonaceous and
secondary material. Very minor variations in particle composition were noted pre- and post-
particle concentration, but overall there was no evidence of any significant change in particle
composition.

Conclusion: These results confirm, via single particle analysis, the preservation of the size
distribution and chemical composition of fine ambient PM in the size range 0.2–2.6 µm after passage
through the VACES concentration instrumentation.
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Background
Epidemiological studies have consistently shown that ele-
vated levels of particulate matter (PM) air pollution are
associated with increases in asthma severity and worsen-
ing of respiratory ill-health, as well as increased mortality
not only from respiratory causes but also from cardiovas-
cular disease [1,2]. The associations are often strongest for
the fine (PM2.5) fraction [3] which penetrates to the alve-
oli of the respiratory system [4].

Two of the most important challenges for researchers in
this field are to establish (i) the physicochemical proper-
ties of the inhaled particles responsible for observed ill-
health associations, and (ii) the consequent biological
mechanisms of causation. Progress on the former requires
enhanced size and chemical characterisation of the ambi-
ent particles to which populations or panel members are
exposed, whilst progress on the latter requires experi-
ments testing potential causal mechanisms either in vitro
or, ideally, in vivo using model or genuine particulate mat-
ter. A major criticism of most mechanistic studies is that
the exposure route is artificial and the PM dose is very
high. In the last few years, however, instrumentation has
been developed that is designed to deliver a continuous
flow of air in which the concentration of ambient PM in
the sampled air stream is increased in real-time by roughly
an order of magnitude [5,6]. The concentrated PM is
generically referred to as CAPs (concentrated ambient par-
ticles). The advantage of these instruments is that they can
provide genuine inhalation exposures, at PM concentra-
tions not much greater than ambient, with the subject of
the exposure (animal or human) assessed under control-
led conditions. In example studies using human volun-
teers, exposure to fine or coarse CAPs has been shown to
induce mild pulmonary inflammation in healthy adults
[7], and to change heart rate variability in the elderly [8]
and in asthmatic and healthy younger adults [9].

It is important that particle concentrators do not alter the
size distribution (within the fraction being concentrated)
or chemical composition of the particles. In the past, par-
ticle composition has been checked using off-line chemi-
cal analyses of bulk filter-collected samples [5] but this
requires a raft of different analytical techniques, is time-
consuming, does not provide information on the state of
chemical mixing of individual particles and is necessarily
time-averaged. Very recently, single particle mass spec-
trometers have been deployed for more detailed investiga-
tion of the effect of concentrators on the ensembles of
individual particles. Using an Aerosol Time-of-Flight Mass
Spectrometer (ATOFMS) alongside particle sizing instru-
mentation, Moffet et al. [10] showed that the Harvard/
USEPA Ambient Particle Concentrator (HAPC) did not
induce observable changes to particles in the coarse
(PM2.5–10) size fraction. At the other end of the size range,

Zhao et al. [11] used the Rapid Single-particle Mass Spec-
trometer (RSMS-3) to investigate the chemical composi-
tion of 40–640 nm ultrafine particles pre- and post-
concentration by the Versatile Aerosol Concentration
Enrichment System (VACES) [12,13]. Although small dif-
ferences in composition were observed (manifested as a
shift of 8–10% of particles from one class to another), this
was suggested to be due to changes in the composition of
the ambient air rather than changes induced by the
VACES. Likewise, in a recent deployment of an Aerosol
Mass Spectrometer (AMS) with the VACES, only relatively
small changes in mass of semi-volatile material (ammo-
nia, nitrate, organics) was observed in post-concentrator
particle mass for particles <~1 µm [14].

The Mobile Ambient Particle Concentrator Exposure Lab-
oratory (MAPCEL) used in this work contained a VACES
concentrator, with the aim of concentrating particles of
diameter <2.5 µm and delivering them directly to an expo-
sure chamber at a flow rate of 50 L min-1, suitable for
human breathing. In the first exposure study of its kind,
the MAPCEL has recently been used to investigate the
effects of inhalation of CAPs on systemic inflammation
and vascular function in patients with ischemic heart dis-
ease [15]. Twelve male patients with stable ischemic heart
disease and twelve age-matched non-smoking volunteers
were exposed either to CAPs or to filtered air during 2 h of
intermittent exercise using a randomized double-blinded
cross-over study design during a 4-week period in Febru-
ary 2004. The CAPs were derived from urban background
air outside the Royal Infirmary Hospital in Edinburgh, UK
(3.22°W 55.95°N). A bus route passed adjacent to the
MAPCEL and an arterial city-route was located a few hun-
dred metres away. Vascular function and systemic inflam-
matory markers were measured 6–8 hours following
exposures [15].

The VACES apparatus has not yet been evaluated with a
single particle mass spectrometer over its full operational
particle size range up to ~2.5 µm (the upper particle size
in the Zhao et al. study was 0.64 µm [11]), so the oppor-
tunity was taken during this exposure study to deploy an
ATOFMS to investigate the effect of the enrichment proc-
ess on particle composition in this specific size fraction.
The advantage of the ATOFMS for this work is that its inlet
and sizing system is optimised to detect and ablate parti-
cles in the size range 0.2–3.2 µm [16], which overlaps well
with the upper part of the size range of CAPs produced by
the VACES [12]. The ATOFMS instrument was also used to
provide data on PM chemical composition during the
human exposures, which in turn will be useful to identify
dominating sources of PM emissions.
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Instrumentation and methods
A schematic diagram of the concentrator operational prin-
ciples is shown in Figure 1. Incoming ambient air at a flow
of 500 L min-1 passes through a unit that saturates the air
stream with warm water vapour. Incoming particles larger
than ~3 µm are lost by impaction and deposition to the
walls of the inlet and saturator and do not make it
through the system. In the condensation unit each fine
particle grows to a few µm in size by water vapour conden-
sation. The number concentration of the enlarged parti-
cles is then stepwise increased by taking the minor flow of
the air each time it passes through three virtual impactors
of ~1.5 µm cut-off in series, (the minor flow contains par-
ticles larger in size than the impactor cut-off). The result-
ing outward flow of 25 L min-1 from the virtual impactors
then passes through a number of silica gel dryers which
remove the condensed water to return the particles to
their original size. To provide a flow of 50 L min-1 required
for the human subjects in the body box, the air flow con-
taining the enhanced fine particle concentration was
finally diluted with particle-free conditioning air. Particles
smaller than ~15–20 nm will not grow in the condensa-
tion unit and are lost to the exhaust in the major flow
from the impactors.

The ATOFMS was housed inside a transit van adjacent to
the MAPCEL and its sample inlet was connected to the air-

flow in the MAPCEL unit either upstream or downstream
of the particle concentration section (as shown in Figure
1) using 1 cm i.d. copper tubing. During the human expo-
sure studies the ATOFMS sampled the ambient air being
drawn into the body box. Portable heaters inside the van
maintained a constant environment of ~20°C around the
ATOMFS instrument. The key operational feature of the
ATOFMS is that size and chemical information is
obtained simultaneously for each individual particle
detected [17,18]. Particles in the sampled air are colli-
mated by a nozzle into a low pressure air-stream and scat-
ter light from two continuous-wave lasers (wavelength
532 nm) spaced a few cm apart. The transit time of a par-
ticle between the two laser beams (of the order of 0.5 ms)
yields the aerodynamic diameter of the particle, the arrival
time of the particle in the subsequent ablation region, and
the appropriate delay for firing the frequency-quadrupled
Nd:YAG ablation/ionisation laser (266 nm). The resultant
positive and negative ions are accelerated into two oppos-
ing reflectron time-of-flight mass analysers and detected
by microchannel plates, yielding positive and negative ion
mass spectra for each ablated particle. The major strength
of the ATOFMS is the detailed chemical compositional
data provided for each individual particle detected. The
major limitations are that only a small proportion of par-
ticles in a given air sample are sized and ablated, hence
there is uncertainty in scaling up ATOFMS-detected parti-

Schematic diagram depicting the operation of the ambient particle concentrator used in this studyFigure 1
Schematic diagram depicting the operation of the ambient particle concentrator used in this study. The dotted 
lines illustrate sampling points for the ATOFMS. The ATOFMS was connected to each sampling line in turn for approximaetly 
40 minutes.
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cles to a true particle number, and that because of the
intrinsic variability of a laser desorption ionisation proc-
ess chemical information is not fully quantitative
[16,19,20].

The analysis of the particle mass spectra dataset was car-
ried out using the MINITAB statistical package. The prin-
cipal multivariate technique employed was non-
hierarchical K-means clustering (Euclidian distance, cen-
troid linkage) using peak area at each integer m/z value as
the variables. For inclusion as a variable, the area of each
peak had to constitute >0.001 of the total peak area in that
spectrum. Correlation, rather than co-variance, between
variables was used so that clustering was not dominated
by one or two persistently large peak areas in the spectra.
Twenty clusters were initially specified to classify the data
set. Although this resulted in a number of the clusters con-
taining <1% each of the total number of particles in the
whole dataset, it allowed a sufficient number of clusters to
be created to describe different types of particle. If subse-
quent inspection showed that two or more clusters con-
tained particles with similar mass spectra, size
distribution and temporal trends, the clusters were com-
bined.

Results and discussion
Pre- and post-concentrator characterization of CAPs
Air from the concentrator to the ATOFMS was switched
every 40 minutes between the upstream and downstream
of the concentrator ("pre-" and "post-concentration")
during two sampling periods 11:02–12:40 GMT on 17/
03/04 (Study A) and 10:53–12:54 GMT on 18/03/04
(Study B).

When sampling relatively warm and humid air into the
ATOFMS there is the possibility that condensation of
water vapour onto the particles may occur, as reported in
the study by Moffet et al. [10] carried out in North Caro-

lina. However, for the duration of the CAPs-ATOFMS
study reported here (February and March in Edinburgh),
the temperature of the ambient air was below that of the
temperature in the MAPCEL and ATOFMS (Table 1) so
condensation onto sampled particles is not expected.

Enrichment factors and effect on size distribution
The pre- and post-concentration particle size distributions
measured by the ATOFMS are shown in Figure 2. Differ-
ences in particle size distribution between the two charac-
terisation studies, with modes of 1.2 µm and 1.5 µm
respectively, reflects differences in the chemical composi-
tion of the particles detected (see below). Although the
ATOFMS detects particles with diameter in the range 0.2–
3.2 µm, only a proportion of particles are detected, and
this proportion varies with particle diameter [16,20]. Thus
the curves in Figure 2 are not the true particle size distri-
bution but nevertheless permit comparison of relative
numbers pre- and post-concentration. With proper parti-
cle number instrumentation it is possible to derive scaling
factors for the ATOFMS-derived number concentration as
a function of particle diameter [16,20]. No scaling was
undertaken in this study but, in principle, the enrichment
factor, EF (the ratio of post- and pre-particle concentra-
tion) at a given particle size can be derived from a propor-
tional or absolute measure of total particle number.
However, it should be recognised that EFs derived from
ATOFMS data will be subject to uncertainty introduced by
the inevitable instant-by-instant variability in the propor-
tion of particles detected by the ATOFMS.

Table 2 lists the concentrator EFs in this study as a func-
tion of particle diameter between 0.2 and 2.6 µm. The EF
was essentially constant across this size range, consistent
with the data presented by Kim et al. [12]. (Quantification
of an EF for particles >2.6 µm was not reliable because
extremely few particles of this size passed through the
VACES). The overall EF integrated over the whole size

Table 1: Dates, times and meteorological data during the studies presented.

Date Sampling time Mean temp (°C) Mean wind 
direction (°)

Mean wind speed 
(m/s)

Mean RH (%)

02/02/04 7:51:28 – 12:00:32 7.6 228 4.5 81
03/02/04 No ATOFMS data 13 207 10.5 82
04/02/04 7:39:54 – 10:31:07 9.1 230 6.3 78
05/02/04 7:57:09 – 10:31:09 10.6 234 8.5 70

09/02/04 8:59:42 – 11:04:09 1.5 255 2.8 72
10/02/04 7:46:12 – 10:53:01 8.7 250 9.7 85
11/02/04 9:55:03 – 12:11:06 8.9 230 2.4 83
12/02/0 7:44:37 – 10:56:50 4.2 242 0.8 97

17/02/04 10:53:37 – 12:54:57 5.5 280 1.5 75
18/02/04 11:02:12 – 12:40:46 5.4 223 0.7 71
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range 0.2–2.6 µm in both studies was 5, in agreement
with the EF range of 4–6 measured concurrently by filter
gravimetry for each of the human exposures in the MAP-
CEL, but somewhat lower than the EF of ~10–30 (varying
inversely with virtual impactor minor flow rate) reported
by Kim et al. [12] (although these authors also observed a
decline in EF between 1 and 2 µm). Zhao et al. [11], also
using only a single-particle mass spectrometer, reported
variation in "hit rate enhancement" from ~30 for particles
of 18 nm diameter to ~5 at 1 µm. The differences in EF

between studies presumably arise from different concen-
trator operational conditions, including the requirement
in this study for final air flow to be diluted to 50 L min-1

for the exercising volunteers. The invariant fractions of
sub- and super-micron particles before and after concen-
tration (Table 3) further supports the lack of effect of the
concentrator on the particle size distribution.

Effect on composition
As described in the experimental section, the entire data-
set of particles hit by the laser (i.e. particles for which mass
spectra were obtained) were initially assigned to 20 clus-
ters by K-means clustering. After further manual examina-
tion of the individual mass spectra, size distributions and
temporal trends, a number of the clusters were combined,
yielding a total of eight particle classes within four broad
categories of particle composition: sea-salt (pure, mixed
and reacted classes), carbonaceous (elemental carbon and
mixed organic/elemental carbon classes), dust (CaSO4
and Al/Fe/Li classes) and a mixed-KCl class. The evolution
of sea-salt particles, from pure through mixed to reacted,
is a consequence of the progressive replacement of chlo-
ride with nitrate by reaction with HNO3[18]. The distin-
guishing peaks in the mass spectra of particles assigned to
each named class included the following:

(i) pure sea-salt class, peaks of composition NaxCly
+/- only,

with no peaks indicating nitrate ions;

(ii) mixed sea-salt class, peaks for NaxCly
+/- plus also nega-

tive ion signals at -46 (NO2
-) and -62 (NO3

-);

(iii) reacted sea-salt class, +23 (Na+), +39 (NaO+), +40
(NaOH+), plus nitrate ion signals in the negative spectra,
and no peaks corresponding to Cl;

(iv) elemental carbon class, peaks of the Cn
+ series but no

hydrocarbon signals;

(v) mixed OC/EC class, +15 (CH3
+), +27 (C2H3

+), and +43
(C3H7

+);

Table 3: Percentage of sub-micron and super micron particles 
detected during the two characterisation studies A and B.

% Sub-micron 
particles

% Super-micron 
particles

Study A
Pre-concentration 32 68
Post-concentration 33 67

Study B
Pre-concentration 11 89
Post-concentration 14 86

Pre- and post-concentrator particle size distributions for characterisation studies A and BFigure 2
Pre- and post-concentrator particle size distributions 
for characterisation studies A and B. Particle numbers 
are plotted as a function of geometric mean diameter for the 
size ranges (in µm): 0.2–0.5, 0.5–0.8, 0.8–1.1, 1.1–1.4, 1.4–
1.7, 1.7–1.9, 1.9–2.3, 2.3–2.6, 2.6–2.9 and 2.9–3.2.
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Table 2: Enrichment factors (EF) as a function of particle 
diameter (Da) for the two characterization studies A and B.

Study A Study B

Da (µm) EF Da (µm) EF

0.20 – 0.79 6 ± 2 0.20 – 0.79 5 ± 1
0.80 – 1.39 5 ± 1 0.80 – 1.39 5 ± 1
1.40 – 1.99 5 ± 3 1.40 – 1.99 4 ± 1
2.00 – 2.59 4 ± 1 2.00 – 2.59 5 ± 2

Errors are 95% confidence intervals
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(vi) CaSO4 dust class, +40 (Ca+), +56 (CaO+) and sulphate
peaks, -96 (SO4

-) and -97 (HSO4
-), in the negative ion

spectrum;

(vii) Al/Fe/Li dust class, +27 (Al), +54/56 (Fe+), and +7
(Li+) and signals in the negative ion spectra for silicates, -
60 (SiO2

-) and -76 (SiO3
-), and phosphates, -63 (PO2

-)
and -79 (PO3

-);

(viii) mixed-KCl class, +39 (K+), +113/115 ((KCl)K+) and
peaks for nitrate and sulphate in the negative ion spec-
trum indicating presence of secondary inorganic aerosol.

Particles containing CaSO4 (gypsum) are readily identi-
fied as arising from a construction-type source (construc-
tion was taking place at the site), whilst particles in the Al/
Fe/Li class are due to a crustal/sand source (nearby roads
were having rock-salt and grit applied to them daily).

A comparison of the overall particle composition between
upstream (pre-concentrator) and downstream (post-con-
centrator) airflows during the two studies is shown in Fig-
ure 3. A time-series of particle class abundances is shown
in Figure 4. In general, the majority of particles were clas-
sified as pure, mixed or reacted sea-salt. This is not surpris-
ing given Edinburgh's maritime climate. Nevertheless the
particle chemical composition did differ somewhat
between the two studies so the pre- and post-concentrator
particle compositions must be compared separately for
each study. For example, during characterization study A
the particle composition was completely dominated by
sea-salt, whereas carbonaceous and dust particles consti-
tuted a greater fraction of the particles in characterization
study B.

Overall, however, when comparing pre- and post-concen-
trator particle composition, no significant difference in
the proportion of each broad particle type was observed.
Close examination of the dataset revealed that the particle
type classified as mixed-KCl, which did appear to show a
change in abundance between pre- and post-concentra-
tion, was in fact only detected during the first session of
post-concentrator sampling in the second characteriza-
tion study (illustrated by the circled region on the time-
series in Figure 4). Since this particle type only appeared
during one short period of time, it is concluded that this
particle type reflects a genuine difference in ambient par-
ticle composition at this time rather than a compositional
change induced by the particle concentrator. Particles in
this class were within the size range 0.4 to 1.9 µm. These
particles are likely to have originated from burning of bio-
mass, for which potassium is a known marker [21].

Figure 3 indicates a slight tendency (particularly in the
first characterization study) for the proportion of pure

sea-salt particles downstream of the concentrator to be
enhanced at the expense of mixed sea-salt particles
upstream of the concentrator. It is possible to speculate
that the condensation of water onto the particles and the
subsequent evaporation process causes a slight loss of par-
ticulate nitrate as gaseous HNO3, in a reverse of the sea-
salt aging reaction that occurs in ambient air (described
above). The trend is not observed in the second character-
ization study so there is inconclusive evidence for a con-
centrator effect with this particle class.

One of the 20 particle clusters originally identified by the
K-means process contained particles with mass spectra
identical to other particles subsequently classed as Al/Fe/
Li dust except that the spectra of the former particles con-
tained more intense high mass negative ion signals for sil-
icates, phosphates and aluminium oxides (e.g. -119
(AlSiO4

-), -122 (AlPO4
-), -140 ((SiO2)(HPO3)-), -179

(AlSi2O6
-)) than spectra for the latter, and were only

apparent when sampling the post-concentration air flow.
The former cluster contained <2.4 % of the total particle
dataset, and since there was no actual difference in particle
composition, only in intensities of the ion signals, it was
concluded that the concentrator had not caused changes
to these particles so they were also assigned to the Al/Fe/
Li dust class. Although ion intensities in LDI analyses are
known to be matrix-dependent [22], the consistent mass
spectra overall indicate that there was no difference in the
matrices in this instance. A more likely explanation is a
straightforward cluster-boundary artefact introduced by
the clustering algorithm as has been noted previously by
Zhao et al. [11] who observed that the ART-2a neural net-
work algorithm split an ensemble of mixed carbonaceous-
ammonium nitrate particles into two depending on the
intensity of the nitrate signals.

Chemical characterization of Edinburgh CAPs during 
human exposure study
The ATOFMS was used to analyse the ambient particular
matter in parallel with human CAPs exposures. Details of
the ambient conditions are given in Table 1. Air-mass
source attribution plots for the 5 days prior to arrival at
the sampling location were calculated for each of the
exposure periods using the UK Met Office "NAME" model
[23]. In all cases air clearly originated either predomi-
nantly from the Atlantic or the Arctic with very little con-
tribution from air passing over land apart from final
arrival over central Scotland (Figure 5).

The whole dataset of particles was classified using the
methodology previously described. The CaSO4 dust class
was so infrequent in the exposure study that it was amal-
gamated with the other dust particle class to form an Al/
Fe/Ca dust class. There was no detection of particles corre-
sponding to the previous mixed-KCl class. The time-series
Page 6 of 11
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of the resulting six particle classes (data not shown)
reveals that the composition of the particles remained
broadly constant throughout the whole exposure study.
Particles classified as one of the sea-salt classes completely
dominated the particle types detected, together contribut-
ing 90% of all particles detected. This is entirely consistent
with the universal marine air-mass source during this
study. The sea-salt particles were predominantly in the
super-micron size range (Figure 6).

Carbonaceous particles constituted 4% of all particles
detected overall and dominated the finer size fraction.
These must arise from local traffic and solid-fuel burning
sources, given the predominant clean-air source regions.
Dust particles contributed the remaining 6% of particles
and had a broad monomodal size distribution (Figure 6).
There was a slight increase in proportion of both carbon-
aceous and dust particles in the last couple of days of the
exposure sampling period.

Pie charts showing the pre- and post-concentrator fractional abundances of the eight main classified particle types for charac-terization studies A and BFigure 3
Pie charts showing the pre- and post-concentrator fractional abundances of the eight main classified particle 
types for characterization studies A and B. The particle classes detailed in the legend are plotted clockwise from the top 
of each pie chart. (Particle diameters in the range 0.2–3.2 µm).
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A detailed report on the health effects of the CAPs expo-
sures will be presented elsewhere, but in summary, expo-
sure either to the above-described Edinburgh CAPs or to
filtered air did not affect vascular function in either
patients with stable ischaemic heart disease or age-
matched controls [15]. In contrast, a parallel double-blind
study of the effects of a similar mass-concentration of die-
sel exhaust particulates, dominated by carbonaceous and
organic particles, demonstrated impairment of both vaso-
motor and endogenous fibrinolytic vascular function fol-
lowing exposure to particulate [24].

Conclusion
In conclusion, we find no evidence that the VACES
installed in the MAPCEL causes any substantive changes
in particle size distribution or individual particle compo-
sition during concentration of particles within the size
range of 0.2–2.6 µm. Contrasting results in controlled
human exposure studies using this apparatus highlight
the importance of particle composition in determining

the adverse vascular effects of exposure to PM2.5. Detailed
characterisation of particle exposures, including the use of
single-particle mass spectrometry, will be essential in
future experimental studies to determine the impact of
inhaled environmental particulate matter on public
health.
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Time-series of the eight particle cluster types (with diameters from 0.2 – 3.2 µm) identified during characterization studies A and BFigure 4
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zation studies A and B. The vertical dotted lines mark the change-over between downstream and upstream sampling. The 
black ellipse outlines the short episode in which a large number of particles were detected containing KCl and carbonaceous 
material.
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Five-day back maps for air arriving in the boundary layer in Edinburgh during the CAPs exposure dates/times indicatedFigure 5
Five-day back maps for air arriving in the boundary layer in Edinburgh during the CAPs exposure dates/times 
indicated. The scale units indicate the relative contribution of the given source area to the air passing over the receptor loca-
tion at the time of measurement.
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