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Abstract

Background: Particles and fibres affect human health as a function of their properties such as chemical composition,
size and shape but also depending on complex interactions in an organism that occur at various levels between
particle uptake and target organ responses.
While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly
used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and
particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of
unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand
particles’ and fibres’ risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs:
bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of
the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle
effects and the developing body, and the link from the natural environment to human health. The importance of these
different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also
strongly influenced by production, use and disposal scenarios.

Conclusions: Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel
particles and fibres and for defining appropriate risk management and governance approaches.

Background
Particles and fibres of various sizes and shapes are
important for human health. According to the Global
Burden of Disease study [1], in the year 2015, 4.2 million
people died as a consequence of ambient particulate
matter (PM) exposure, 2.9 million from household air
pollution, 0.4 million from occupational PM exposures
and 0.2 million from asbestos. However, particles can
also have positive health consequences when used for
medical purposes such as drug delivery. Over the past
decades, an enormous amount of knowledge has been
amassed that describes the many different properties of
particles and fibres that shape the responses they can
evoke in humans and animals.

The growth of the knowledge is well reflected in the
series of international meetings on this topic that started
with a first conference in the UK in 1979 and has since
been held 11 times. The first conferences were domi-
nated by asbestos, crystalline silica and coal dust, which
were mostly issues for workers’ health. The focus stayed
for a long time in the occupational health domain by
looking next at man-made mineral-fibres and asbestos
substitutes. The scientific efforts then expanded to
include the public health domain with the realisation
that a large burden of disease was caused by ambient
fine and ultrafine airborne particles. The more recent
conferences reflect the change in risk management by
no longer just discussing recognised burdens of disease
but also anticipating newly emerging risks by discussing
widely the potential mechanisms via which engineered
nanoparticles could lead to toxic effects.
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The most recent conference in Singapore aimed to
recapitulate the knowledge we have gained in the field of
particle toxicology and to include also the positive
aspects of particle-biology interactions that are useful
for particle-based medicine. The keynote speakers of the
Singapore conference presented the concepts that in
combination help understand the large and complex
field of particle toxicology and medicine. They helped
create the here presented synthesis of the current state
of the art and where the field is heading. Discussions will
continue at the next conference, which will be in
September 2019 in Salzburg, Austria, addressing the
theme of “developing solutions for the benefit of
workers, consumers, patients and environment”.

Main Text
Particle Toxicology
Particle (and fibre) toxicology focusses on understanding
and describing the relationship between an exposure to
the agents and their capability to adversely affect human
health and aims to identify the underlying pathobiologi-
cal mechanisms. There is a long history of particle toxi-
cology that was recently summarized by Donaldson and
Seaton [2]. This substantial body of information on
quartz, coal and asbestos has been useful to identify
metrics that can be used to predict adverse health effects
for new challenges presented, as for example by engi-
neered nanomaterials with structures in the nanoscale
(between 1 to 100 nm) and especially nanofibers and
nanoparticles (NPs) with two or three dimensions,
respectively, in the nanoscale [3–5]. The famous fibre
paradigm originates from our understanding on how
asbestos can cause lung cancer including mesothelioma.
It includes issues like frustrated phagocytosis where the
macrophages are not able to fully engulf the fibres,
resulting in sustained generation of reactive oxygen
species, as well as blocking of the stoma in the chest wall
by fibres with subsequent inflammatory responses [6].
The many cases of silica exposure have exemplified that
this substance can cause irreversible lung disease known
as silicosis. Unlike asbestos, where much effort is put
into preventing exposures, silica exposure continues to
occur in the 21st century which goes hand in hand with
the occurrence of silicosis. The importance of particle
solubility was illustrated by silicic acid released from the
quartz surface as being the component responsible for
the toxicity. At the same time we know that the physical
aspects of particles and fibres will have a major role in
mechanical irritation in the lungs resulting in inflamma-
tion. Although inflammation in itself can be seen as a
host response that should protect us, excessive inflam-
mation, especially if it persists over prolonged time, can
cause fibrosis, oedema as well as the formation and
progression of tumours.

Following the cases of asbestos, coal and silica/quartz,
people became very much aware of the health risks asso-
ciated with being exposed at work to particles and fibres,
including man-made mineral and synthetic vitreous
fibres. By the end of the previous century (i.e. the late
1990s), scientific attention shifted from occupational
exposure to environmental exposures as a number of
epidemiological studies indicated that ambient PM
exposures were associated with premature mortality and
worsening of several diseases. Apart from the known
lung diseases like asthma and chronic-obstructive pul-
monary disease, cardiovascular diseases and cancer were
noted to be impacted by exposure to outdoor PM. The
levels of PM at which the associations were reported
were well below prevailing air quality standards, and
particle toxicology was needed to prove causality and
provide plausible biological mechanisms that could
explain and support these associations [7]. Although 2-3
decades of toxicological research have taught us a lot,
there is still a lot of uncertainty on how low levels of
particles can cause so many different effects in humans,
and a ranking of substances or sources of emissions can
be presented to guide risk management and policy
measures is still missing [8].
There are some common features to particle-induced

hazard. For example, inhalation of particles can cause oxi-
dative stress which may lead to genotoxicity and reversible
or persistent inflammation [9]. Some of the target organs,
such as the lungs and the cardiovascular system, are well
studied. More recently, it became evident that inhaled par-
ticles can also affect the central nervous system [10, 11]
and reproduction [12]. This seems to be by and large due
to translocation of the smallest particles in the mixture,
referred to as ultrafine PM or nanoparticles, into the
internal organs [13]. The evidence derived from studies
using ultrafine PM has also led to a rapidly growing inter-
est in the toxicology of man-made, manufactured or engi-
neered NPs in the last 15 years. Interestingly, there is a
significant overlap in the toxicology of ultrafine particles
and engineered NPs and cross talk between these two
areas can boost our understanding of the toxicology of
nano-sized particles [14].

Particle Medicine
The field of particle medicine started to emerge about 50
years ago [15, 16]. Research intensified when it became
clear that nanoparticles (NPs) have unusual properties
with exciting potential for the improvement of established
and the development of novel clinical applications. Areas
of high interest are imaging and diagnostics, drug delivery
and anticancer therapy [17–25]. To date, more than a
dozen anticancer nanomedicines have been approved for
clinical use, and almost 40 are in clinical trials. Particular
attention is currently paid to precision medicine. Here, in
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case of cancer treatments, the goal is to develop personal-
ized anticancer nanomedicines, which are engineered to
target, for instance, a particular type of tumour with a spe-
cific location and microvasculature pattern.
Anticancer nanomedicines have various beneficial prop-

erties. These include enhanced accumulation in solid tu-
mours with reduced off-target delivery and improved
safety. The enhanced permeability and retention (EPR) ef-
fect is thought to play a central role in the improved effi-
cacy. The EPR effect is based on leaky blood vessels and
impaired lymphatics in tumour tissue, which leads to
enhanced extravasation of NPs into tumour tissue and re-
duced clearance by lymphatic drainage [26–28]. However,
the EPR effect would only be relevant with respect to rela-
tively large and well-vascularized tumours, and various
challenges remain, including the treatment of leukaemia
and metastatic disease. Such challenges must be addressed
by more specific targeting strategies. These include surface
modifications of NPs with cancer cell targeting ligands,
such as folate or antibodies, and magnetic targeting [26,
29–31]. Specific targeting of nanomedicines may also be
helpful for addressing the challenge that the EPR was
effective in animal models, but it failed, so far, to perform
well in human patients [32, 33].
Surface modifications are not only important for tar-

geting, but also for preventing clearance of nanodrugs
by phagocytotic cells from the reticuloendothelial
system. This is critical for increasing the circulatory
half-life of nanomedicines, and for preventing damage of
non-target tissues due to activation of resident phagocy-
totic cells. The classical strategy for reducing interac-
tions with the reticuloendothelial system is to modify
the surface of the medical NPs with polyethylene glycol
(PEGylation), which hinders opsonisation (binding of
proteins recognised by phagocytotic cells), but may
shield targeting ligands [34]. Other strategies include
biomimetic coating with proteo-lipid membranes ex-
tracted from leukocytes [35], platelets [36] or other cells,
and autologous cells should be used for clinical applica-
tions. Such membranes contain biological functions
based on their protein content, which include “marker
of self/don’t eat me” signals. A more defined approach is
to modify the NP surface with markers of “self/don’t eat
me” signals such as the anti-phagocytotic SIRPα ligand
CD47 and respective synthetic peptides [37].
Tuning the shape and size of NP medicines is also crit-

ical. These features influence the radial drift (margination)
of NPs in blood vessels. Whereas small spherical NPs accu-
mulate within the center of blood vessels, disc-like parti-
cles display enhanced lateral drift due to tumbling, and
also have larger surface areas for endothelial adhesion [38].
Both are important for extravasation in tumour tissue. In
addition, NP density appears to influence margination,
with enhanced margination of high-density NPs. This leads

to an easier distribution of low-density NPs in the body,
which is associated with more rapid renal clearance [39].
Renal clearance is also strongly dependent on NP size,

shape and charge, not only due to indirect effects based
on margination, but also due to the properties of the
renal filtration barrier. Rigid spherical NPs are not
efficiently cleared by renal filtration if their hydro-
dynamic diameter exceeds 5.5 nm [40]. Surprisingly,
large nanofiber-like materials, such as individualized
carbon nanotubes with diameters and lengths of up to
20 – 30 nm and 500 – 2000 nm, respectively, easily
cross through the renal filtration barrier when aligned in
the right orientation, and are cleared with similar
efficiency as small molecules [41, 42]. Tuning of renal
clearance of nanomedicines must be carefully adjusted
to keep the balance between maintaining therapeutic
plasma levels and safe elimination from the body.
During the last decades, nanomedicines with a wide

range of structural features have been developed for the
delivery of small molecule drugs, biologics, nucleic acids,
or co-delivery of multiple compounds [24, 43]. The first
approved nanomedicines for drug delivery were a syn-
thetic polymer conjugated to the anticancer protein neo-
carcinostatin [44], and PEGylated liposomal doxorubicin
(Doxil/Caelyx) [45]. Since the 2000s, polymeric micelle-
based nanomedicines for drug delivery have been ap-
proved for clinical applications. Polymeric micelles consist
of amphiphilic block copolymers that self-assemble into a
core-shell structure. The hydrophobic core can be loaded
with hydrophobic small molecule drugs or biologics,
whereas the hydrophilic shell can be further modified by
PEGylation or with targeting ligands.
Until now, polymeric micelles or other types of NPs,

which did not have any anticancer activity themselves,
were used as vehicles for the delivery of anticancer
agents. An exciting more recent development are
micellar nanocomplexes (MNCs) for anticancer protein
drug delivery, which have anticancer activity themselves
(also in the absence of the anticancer protein) [46]. The
MNCs were based on derivatives of the green tea cat-
echin (-)-epigallocatechin-3-O-gallate, which has known
anticancer activity. After loading of the MNCs with the
anticancer protein drug Herceptin, synergistic anticancer
activity of the MNCs and Herceptin has been observed,
which resulted in enhanced antitumor activity in vitro
and in vivo compared to Herceptin alone [46]. In
addition, prolonged plasma half-life and enhanced accu-
mulation in the tumour tissue of the MNCs compared
to the protein drug alone were demonstrated [46].
The most important goal for the future is to achieve

personalized treatments by designing precision nanome-
dicines. Crucial for achieving this goal is an improved
understanding of the interactions between NPs and bio-
logical structures and tissues. This will help to guide the
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development of smart strategies for manipulating NP
surface chemistries, which is required for reducing
unspecific interactions and for increasing targeting of
tumors with specific, individual properties. Replacement
of conventional synthetic polymers by bio-inspired
molecules, such as antibodies for targeting and “don’t
eat me” signals, will play a central role in developing
smarter and personlized strategies. Important will be
also the tuning of the size and shape of nanomedicines
based on the understanding of how these features influ-
ence interactions in normal and disease states., Smarter
strategies for tuning size and shape will include further
development of multistage and tumor environment-re-
sponsive NPs, with larger parental NPs that have im-
proved circulatory half-life, which release smaller NPs at
the tumor that can easier penetrate into the tumor tissue
[47, 48]. Addressing the variability between patients as a
function of age, gender, ethnicity, their individual disease
state and other patient-specific factors will be essential
to guide the design of NPs for precision nanomedicine
and to achieve personalized treatments.

Dynamic Fate of Inhaled Nanoparticles in the Lungs of
Rodents
Deposition of inhaled NPs is governed by their diffusiv-
ity in the air leading to a rather homogeneous deposition
density on the epithelium of the various regions of the

respiratory tract. As a result, the deposited fraction in
the lungs reaches a maximum of about 50% of the in-
haled aerosol at a size of 20 nm [49, 50] with about 15%
alveolar deposition and 35% depositing in the conduct-
ing airways of the head and thorax. In other words, two
thirds of the deposited 20 nm sized NP will be cleared
rapidly within 24 hours by mucociliary action within the
ciliated conducting airways and one third will be
long-term retained in the lung periphery. Below that
size, increasing fractions deposit in the airways of the
head and thorax according to their increasing diffusivity
with decreasing size, such that less NP reach the distal
alveolar region (see Fig. 1). In this short summary a few
consequences on the biokinetics fate will be discussed
for insoluble NP.

Relocation and re-entrainment of Inhaled NPs in the rodent
lungs
In rodents, there is evidence that rather constantly about
80% of micron-sized particles can be lavaged from the
lung surface during six months post-exposure (p.e.)
when the lavaged particle fractions are normalized to the
contemporary lung burden at each time point [51–53].
In contrast, only 20% of 20-nm-sized NPs and about
30% of 70-nm-sized NP deposited during inhalation or
instillation can be lavaged – see Fig. 2 [54–59].

Fig. 1 Overview on different types of NP’s translocation and clearance in the lungs. Artwork by Mark Miller, reproduced with permission
from [14].
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The low NP recovery becomes plausible since NPs
deposit rather uniform on the surface of an alveolus by
diffusion. Indeed, macrophages on the epithelial surface
will rapidly phagocytize all NP which happen to be depos-
ited close to where a macrophage happens to reside, while
distant NP are not recognized due to the weak opsonizing
signal of NPs. However, since only about 10 – 100 macro-
phages are residing in an alveolus of 300 nm diameter of a
healthy rodent [60], these surface macrophages cover only
a fraction of <0.001 of the alveolar surface [57]. Since epi-
thelial Type I+II cells possess well-identified endocytotic
mechanisms of NP uptake and less so for micron-sized
particles their endocytic NP uptake capacity competes
with the phagocytic capacity of surface macrophages. As
discussed in our previous paper [59], numerous authors
provided evidence that epithelial type 1 cells (EC1) can
endocytose NP at the epithelial surface and eventually
exocytose those towards the baso-lateral side at the end of
the last century, including the review of Lehnert [61] and
papers by Adamson and Bowden [62–64]. More recently,
Thorley and co-workers [65] provided evidence for prom-
inent NP uptake by EC1 while they ruled out uptake by al-
veolar epithelial type 2 cells (EC2) and the passage of NPs
by paracellular transport was also discounted. They stated
that NP uptake occurs preferentially by diffusive processes
into the cytoplasm which allows for exocytosis and trans-
port across the basal membrane into the interstitium, as
supported by in vivo studies. In collaborative studies [66,
67], localization of AuNP and TiO2-NP in interstitial
spaces was demonstrated by Transmission Electron Mi-
croscopy (TEM). According to [68, 69] the cytoplasmic
leaflets of EC1 provide the largest portion of their surface
area on the basal membrane which separates the adjacent
vascular endothelial cells to allow unhindered gas
exchange. Yet, data up to 24 hours do not support the

notion that neither AuNP nor TiO2-NP cross EC 1 at both
- the “active site of gas exchange” [68] and the basal mem-
brane, since any NP exocytosis would lead to rather rapid
uptake by vascular endothelial cells and translocation into
the circulation which was not observed. Instead the trans-
located AuNP or TiO2-NP fractions to blood were rather
small during the first 24 h p.e.. Hence, EC1 either exocy-
tose directly into septal interstitial spaces – which provide
only a relatively small surface area at the side of EC1 –
and/or the exocytosed NP migrate in between the basal
membrane and the EC1membranes to the next septal
interstitial space. Once there, NP may be phagocytized by
interstitial macrophages (IM), fibroblasts, etc. Referring to
[61, 70] there is a large population of IM such that the role
of IM in phagocytizing NPs and long-term retention in
the septal interstitial spaces appears plausible. For gradual
re-entrainment back onto the epithelium, Lehnert [61]
reviewed the pathway of IM onto the epithelium. In
addition, IM and fibroblasts may exchange their NP-load
with AM like in a relay. Hence, NP behave differently
compared to micron-sized particles which are retained on
the surface of the rodent epithelium to be eliminated by
long-term, macrophage-mediated clearance (LT-MC) at a
rate of initially 2-3%/d which declines gradually over time
[54, 71, 72]. Surprisingly, NPs are cleared with a similar
clearance rate dynamics via this macrophage-mediated
transport indicating re-entrainment of the NPs from the
interstitial spaces back on top of the epithelium for subse-
quent LT-MC towards the larynx and into the gastro-
intestinal-tract (GIT) [55, 56]. Re-entrainment may occur
across the alveolar epithelium and/or via interstitial-
lymphatic clearance to bronchus-associated lymphoid
tissue (BALT) entering the epithelial surface at the airway
epithelium for clearance by surface macrophages, as hy-
pothesized several decades ago [52, 73–76]. NP passage

Fig. 2 Panel A: Alveolar-macrophage (AM) associated percentages of inhaled NP (20 + 80 nm iridium NP, 20 nm gold + elemental-carbon NP and 20 + 70
nm titanium dioxide NP) versus instilled micron-sized particles (0.5, 3, and 10 μm polystyrene (PSL) particles) found in bronchoalveolar lavage (BAL) of rats
24 h after application [54]. Panel B: Percentages of inhaled NP (20 nm iridium NP from 3 - 180 days and 20 nm gold + titanium dioxide NP from 3 - 28
days after inhalation) found in bronchoalveolar lavage fluids of rats at various time points [54] versus micron-sized particles (either inhaled 3.5 μm PSL [52]
or intratracheally instilled fluorescent 2 μm PSL [51]. All percentages are relative to the contemporary lung burden.
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through BALT at bronchioles-alveolar duct junctions back
onto the bronchiolar epithelium [63] [77] cannot be
excluded; however, BALT may play an important
immunogenic role for fluid absorbed from the alveolar
surface, but the reverse flow onto the epithelial surface
was postulated in the literature but has not been proven
so far [68, 69]. Furthermore, there are only about 30-50
BALT sites in the rat lungs [61, 78] which are far too few
compared to the number required for NP re-entrainment
and LT-MC clearance.
As a result, LT-MC is the most prominent long-term

clearance mechanism for insoluble NPs from the periph-
eral lung of rodents. In fact, although the NP are retained
in the septal interstitial spaces close to blood vessels, only
rather small fractions are translocated via this pathway
into circulation leading to subsequent accumulation in
secondary organs and tissues which, however, depends
strongly on the physicochemical properties of the NPs.
For example, four different materials (iridium (Ir), elemen-
tal carbon (EC), TiO2, and gold (Au)), which were inhaled
as freshly generated 20-nm NP aerosols during a single 1–
2 h exposure by healthy, adult, female Wistar–Kyoto rats;
the translocation percentages (normalized to the alveolar
NP deposition) of IrNP (7.96 ± 0.47) and TiO2NP (6.95 ±
0.14) were significantly higher than those of elemental
carbon (2.18 ± 0.31) and AuNP (1.79 ± 0.39) as shown in
Table 12.1 of [79].
Retention in secondary organs was followed up to six

months after the inhalation of the IrNP aerosol showing
no detectable clearance [55, 58]. During chronic expos-
ure to insoluble NP, continuous accumulation is likely to
occur in secondary organs. This may play a modulating
role in adverse cardio-vascular health effects which have
been observed in epidemiologic studies after exposure to
ambient fine and ultrafine particles [80].

NP pathways from lungs to circulation and accumulation in
secondary organs and tissues
Systemically circulating NPs may accumulate in sec-
ondary organs and tissues by two particle clearance
pathways, (i) NP translocation across the air-blood-
barrier (ABB) either directly into blood circulation or
via the thoracic lymph duct and (ii) NP absorption
across the GIT walls, again either directly into blood
circulation or via the thoracic lymph duct, of those
NP which were eliminated from the lungs towards
the larynx and swallowed into the GIT. The latter
clearance pathway has a fast component of those NP
deposited on the epithelium of the conducting airways
which are cleared rapidly by mucociliary action
(MCC) followed by a slow component of those NP
from the peripheral lungs eliminated by LT-MC
towards the larynx.

The contribution of both pathways towards secondary
organs was quantitatively investigated for the first time
in a series of studies in which identical 70-nm-sized
TiO2NP were applied to rats either as a single bolus via
intratracheal (IT) instillation or via gavage (oral inges-
tion) or via intravenous injection. Their biokinetics were
determined quantitatively in the entire organism during
the next 28 days [81–83]. The biokinetics data obtained
from the gavage study were used to estimate the
absorbed TiO2NP fractions across the gut walls after
IT-instillation which had been cleared from the lungs
via the larynx into the GIT. In Fig. 3 the ratios Ri of
gut-absorbed and subsequently accumulated TiO2NP
divided by the sum of both – gut-absorbed and ABB-
translocated TiO2NP - are shown for liver, spleen, kid-
neys and the carcass (comprising of skeleton, muscles,
fat, skin, but without organs) and the integral absorbed
TiO2NP fraction at different time points between 1 and
28 days after IT-instillation. The integral absorbed
TiO2NP ratios increase with time up to 0.2 of all
systemically circulating TiO2NP due to the continuous
LT-MC transport leading to continuous absorption
across the gut walls. Ratios in liver, kidneys and the
various tissues of the carcass stay below 0.05, but the
absorbed TiO2NP ratios in the spleen are about 10.1 at
days 1 and 7. These data show that accumulation in
secondary organs and tissues is predominantly deter-
mined by ABB-translocated TiO2NP which, however,
occurs mainly during the first few days after IT-instilla-
tion (see Fig. 3). Yet, with increasing retention time the
gut-absorbed NP fractions become more and more
important.

Fig. 3 The ratios Ri represent the fractions of TiO22NP present in liver,
spleen, kidneys and carcass (without organs) and the integral sum of all
absorbed fractions determined after IT-instillation that have been
absorbed through the GIT relative to the sum of gut-absorbed
and ABB-translocated TiO2NP after 1, 7 and 28 days. Mean ±
SEM of n=4 rats at each time point.
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Interrelated Concepts of Exposure, Dosimetry and Dose-
Metrics for NP Risk Assessment
Results of numerous studies, in vitro and in vivo, have
revealed that engineered NPs and ambient ultrafine par-
ticles (UFPs, e.g. diesel exhaust) can induce significant
dose-dependent toxicity in primary and secondary or-
gans. In order to characterize appropriately the associ-
ated risk as a function of hazard and exposure,
exposure-dose-response relationships have to be estab-
lished. With respect to inhalation as the main route of
exposure - involving acute, subchronic or chronic rodent
studies - a minimum of three exposure concentrations
plus sham-exposed controls should be used [84]. The ex-
perimental design should include detailed aerosol
characterization and biokinetic data. Essential for the
evaluation of the results of inhalation studies is to deter-
mine the retained dose (lung burden) at the end of
exposure to establish dose-response relationships. This
is a fundamental requirement which is often forgotten
when reporting results only as exposure-response data.
Expressing the dose by different metrics such as particle
mass, surface area, volume, or number, will provide add-
itional information about potential underlying toxico-
logical mechanisms that control outcomes. The revised
OECD Test Guideline 413 [85] for subchronic rodent
inhalation now includes a requirement to determine
retained lung burdens.
Short-term inhalation studies (STIS, i.e., 5 days) are

useful for hazard identification and ranking. Full risk
characterization, however, requires subchronic (90-day) or
chronic (up to 2 years) studies. Because of the associated
ethical concerns (requiring large number of animals) and
high costs of longer duration exposures, subacute (28-day)
studies with sufficient post-exposure recovery time have

been suggested as replacements for longer-term studies.
Their usefulness for risk characterization still needs to be
validated however [84]. Table 1 lists objectives and design
for mammal (predominantly rodent) inhalation studies of
different duration.
Establishing toxicologically well-characterized particles

as positive and negative “Benchmark Materials” [86] for
a comparative Hazard and Risk Characterization will
facilitate the grouping of inhaled particulate materials
which are tested in subacute, subchronic or chronic
inhalation studies. This involves comparing the slope of
dose-response curves (potency) or the No Observed Ad-
verse Effect Levels (NOAELs) of rodent studies to obtain
a hazard ranking. If only a Lowest Observed Adverse
Effect Level (LOAEL) can be identified in the rodent
study, benchmark dose (BMD) analyses are appropriate.
Expressing the retained lung burden by different
dose-metrics (particle mass; surface area; number) will
help to identify the most appropriate metric by compari-
son to toxicologically well-characterized benchmark
materials. For example, if the measured response to
different particle sizes of the benchmark material shows
the same correlation with a chosen dose metric, then
this metric has better predictive value than other dose
metrics. The more predictive metric, then, should be
used for evaluating the unknown nanomaterial in
comparison to the benchmark material. For poorly
soluble particles, surface area has been found to be of
best predictive value [87, 88].
As a first step of risk assessment using results of a ro-

dent study, the exposure–dose–response relationship
can be analyzed by using a BMD approach in order to
derive an associated benchmark concentration (BMC)
as a “safe” exposure level for rodents [89]. Results

Table 1 Objectives and design for rodent inhalation studies of different duration, modified from [84]

Acute /Subacute
5-28 days)

Subchronic
(90 days)

Chronic
(2 years)

• To obtain hazard ID and ranking (ideally
compared to positive and negative controls)

• May be preceded by i.t. instillation or 1 day
inhalation with range of doses to estimate
inhaled concentration with MPPD model

• Ensure rodent-respirable aerosol stability over
a range of concentrations

• If available use workplace or consumer
exposure data to inform aerosol generation

• To determine concentrations for 90-day
exposures (range-finding)

• To collect biokinetic data for portal of entry,
and possibly identification of secondary
target organs, incl. pleura, and fetus

• To provide guidance of dose levels for
mechanistic in vitro testing, incl. secondary
organs

• Post-exposure observation period desirable
(~2 months)

• To derive NOAEL
• Use minimum 3 concentrations,
including known or expected
human exposure levels; both
sexes optional

• If no effect at 50 mg/m3 rodent
respirable aerosol, then no need
to do chronic study

• To identify hazard: total respiratory
tract, pleura, cardiovascular, central
nervous system (CNS), bone marrow

• To identify target organs
• To select concentration for chronic study
• Detailed biokinetics: retention, clearance,
organ accumulation,

• To predict long-term effects
• To inform human risk assessment via
dosimetric extrapolation

• Post-exposure observation period to
assess progression-regression (~3 months)

• To determine long latency effects (cancer); life
shortening; extrapulmonary target organs

• 3 concentrations based on 90-day or range-finding
study results; include human exposure level; high
dose: MTD; low dose: no significant effect

• To assess total respiratory tract, pleura and
systematic effects, nose to alveoli, cardiovascular,
CNS, bone marrow, others (reproductive?)

• To determine detailed biokinetics: respiratory
tract retention, clearance, organ accumulation

• To perform extrapolation to human for risk
assessment

• Post exposure observation period up to a
total study duration of 30 months (if survival
of ≥20%)
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derived from a rodent study can then be the basis for
risk extrapolation to human exposure scenarios by
deriving a Human Equivalent Concentration (HEC),
provided that species differences in respiratory tract
dosimetry and retention kinetics are considered [90].
The HEC is defined as the exposure concentration pre-
dicted by modelling to result in the same normalized
retained lung burden as measured in rodents after
acute, subchronic or chronic inhalation. Normalization
of deposited or retained dose is frequently done using
species-specific lung weight or alveolar surface area. Ef-
fects, however, may be different between the species
due to different sensitivities or mechanisms of uptake
and effect. To account for this and possible toxicoki-
netic/toxicodynamic differences, assessment or uncer-
tainty factors may have to be included [91].
Dosimetric extrapolation of results from rodent inhal-

ation studies for deriving the HEC is achieved with the
MPPD (Multiple Path Particle Dosimetry) Model [92].
Important recent refinements of MPPD include
improved input values for allometrically adjusted re-
spiratory parameters [93] and the choice of specific rat
and mouse strains. A suggestion of how to extrapolate
a NOAEL and associated exposure concentration
(NOAEC) determined in a subchronic rodent inhal-
ation study to a chronic 2-year study has been proposed
by [94, 95]. The approach is shown in Fig. 4, it involves
the use of the MPPD model to estimate a NOAEC
which, after two years of exposure, results in the same
NOAEL that was determined in the subchronic study.
Such dosimetric extrapolation will avoid the use of an
uncertainty factor for extrapolation from subchronic
exposure to chronic exposure.

The deposition of airborne particles is affected by the
effective or actual density of aerosols, which makes it an
important input variable for the MPPD model. Specific-
ally, if the aerosol consists of agglomerated and aggregated
NPs, the void spaces between the individual particles of an
aerosol cluster change the effective aerosol density to be
significantly less than the material density. Whereas a
number of methods have described how to measure ef-
fective aerosol density (e.g., [96–99], a simple approach
for measuring the actual density present in a rodent inhal-
ation study is to perform a short-term inhalation, sacrifice
the animals at the end of exposure and measure the de-
posited lung burden. This allows calculation of the depos-
ition fraction. One then runs the MPPD model with rat
specific and body weight allometrically adjusted inputs
and changes the input value for the density iteratively until
it fits the calculated deposition fraction. Work on this ap-
proach is ongoing.
Among the intrinsic physico-chemical properties that

impact on NP toxicity, surface properties are, in theory,
most influential because of the direct interaction of the
particle surface with cells and subcellular components.
In addition, extrinsic or functional NP properties, such
as specific surface reactivity and dissolution rate are im-
portant for categorization and grouping of NPs. With re-
spect to dissolution, NPs are often grouped by their
solubility in water [100]. However, water solubility is not
always appropriate for predicting in vivo dissolution.
Obviously, dissolution rates of NPs can vary widely,
which has to be considered because the biopersistence
will be affected depending on the dissolution rate. There
are two basic approaches to determine solubility/dissol-
ution of particles in cell-free systems: the static system,

Fig. 4 Estimation of chronic NOAEC from subchronic rodent study using the MPPD Model.
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determining the equilibrium solubility, and the dynamic
system, determining dissolution rates. The latter mimics
more closely the in vivo situation, whereas the former can
reflect in vitro conditions. The composition of the dissol-
ution fluid is another critical factor with respect to closely
simulating in vivo conditions, e.g., phagolysosomal fluid
(pH ~4.5) or epithelial lung lining fluid (pH ~7.4). The
significance of reliably assessing the in vivo dissolution
rate of NPs lies in the possibility to characterize their bio-
persistence by estimating the overall pulmonary clearance
rate and retention halftime. This will be necessary for sub-
sequent use as inputs into the MPPD model for purposes
of human risk extrapolation modelling.
Furthermore, indications from acellular assays that dis-

solution in the respiratory tract takes place raises the ques-
tion about the fate and underlying mechanisms by which
tissues respond to the dissolving NPs. Bioprocessing or bio-
transformation events investigated using High Resolution
Transmission Electron Microscopy (HRTEM), Scanning
transmission electron microscopy (STEM) and Electron
energy-loss spectroscopy (EELS) analyses revealed subcel-
lular NP dissolution and chemical interactions resulting in
secondary very small NPs [101]. Amorphous nano-silica
(SiO2) in alveolar macrophages examined by HRTEM after
subchronic inhalation in rats at 27 days post-exposure
period had undergone significant in vivo breakdown and
transformation [102]. In particular, a portion of the original
NPs were partially dissolved and secondary SiO2-reaction
zones (precipitates) formed as a result of in vivo processing
(also called bioprocessing – see section “The 5Bs” below)
as shown in Fig. 5 ([102], previously not published). Com-
pared to the starting materials, the bioprocessed SiO2 parti-
cles showed dissolution patterns (voids/pore formation)

and outward growth of reaction zones. The degree of in
vivo processing of NP can be evaluated with HRTEM
which, coupled with dose-response monitoring, could pro-
vide further information for NP risk assessment.
As a look to the future, exploration of the physicochem-

ical changes at the particle surface over time following ex-
posure, i.e., bioprocessing, will improve our understanding
of tissue dosimetry, biodistribution, and, ultimately, the
mechanisms by which inhaled particulates exert toxico-
logical effects.

The 5 Bs: Bioavailability, biopersistence, bioprocessing,
biomodification, and bioclearance of nanoparticles and
the role of the biomolecule corona
For drugs and molecular chemicals, the proportion of a
drug or other substance which enters the circulation
when introduced into the body, and so is able to have an
active effect, is considered the bioavailable dose, while
the length of time that a molecule (typically a toxicant)
remains in the biological organism without being meta-
bolised or excreted is termed biopersistence. Clearly, the
route of introduction will affect this proportion, with
direct intravenous injection resulting in close to 100%
bioavailability, while oral or nasal introduction for
example, might result in lower bioavailability due to the
biological barriers that exclude some of the compound.
Given some of the unique aspects of NPs, however, such
as their tendency to agglomerate at higher concentra-
tions [103], their tendency to interact with biomolecular
constituents of their surroundings to form so-called bio-
molecular coronas [104–106], and the size-modulated
cellular uptake mechanisms [107, 108], the bioavailable
dose for NPs is poorly understood compared to that for

Fig. 5 Bioprocessing of inhaled nano-SiO2 particles: (left) large agglomerates of amorphous precursor material; right) dark field STEM image
showing breakdown of SiO2 NPs in alveolar macrophage (Zone 1) and formation of Zone II.

Riediker et al. Particle and Fibre Toxicology           (2019) 16:19 Page 9 of 33



molecular substances, leading to enormous challenges in
determining meaningful dose-response curves [109,
110]. Additionally, the dynamic nature of NPs and their
tendency to evolve and transform during storage [111]
or upon interaction with media [112] makes dose char-
acterisation challenging. Indeed, due to interactions with
their surroundings, the dispersion media play an import-
ant role in defining the NPs dose, but also in determining
the NPs “biological” identity, which is the set of proteins
and other biomolecules associated with the NP and specif-
ically the outer surface of the absorbed corona which
forms the interface to engage with biological receptors
[113–116]. Indeed, proteins such as Bovine Serum Albu-
min (BSA) have long been used as agents for dispersal of
NPs for toxicity assessment [117], as has its environmental
equivalent, natural organic matter (NOM) for ecotoxico-
logical studies [118, 119]. However, in some cases, adsorp-
tion of biomolecules induces partial agglomeration of the
NPs thus altering the bioavailable dose [120]. The
absorbed biomolecule corona can also alter the biopersis-
tence of the NPs, for example, by changing the rate of dis-
solution of NPs. For example, the corona adsorbed to NPs
has been shown to slow dissolution by blocking oxidative
processes [121] or by promoting sulfidation process and
entrapping nanocrystals of Ag2S in the hard corona [122],
while in other cases, adsorbed coronas have been found to
accelerate dissolution, especially where there is a strong
affinity for the metal ions by the proteins and an excess of
the proteins [123].
Recent work using the model organism Daphnia

magna has shown that proteins secreted by the Daphnia
into the media induce some agglomeration of NPs but
since this brings the NP-agglomerates into the size range
of Daphnia’s normal food source, it appears to increase
uptake / bioavailability of the NPs [108]. Similar findings
have suggested that cellular response to the presence of
NPs also involves secretion of proteins in response to
the initial form of the NP taken up by the organism,
causing the “initial” corona to evolve, which can lead to
altered uptake and impacts not currently considered in
assessing toxicity [124]. Thus, NPs interacting with liv-
ing organisms are dynamic systems where the NPs affect
the organism and the organism affects the NPs. This
suggests that there is more than one biological identity
for each NP and that this identity evolves as the NPs
interact and are internalised and processed by organisms
and cells. Indeed, early work to model the corona evolu-
tion experimentally, whereby NPs were sequentially
incubated in biological fluids representing the external
environment (serum) and the cellular environment (e.g.
cytosolic fluid) indicated that the resulting corona had
proteins from both fluids [125]. .
The physicochemical changes that particles undergo in

tissues following exposure, which include dissolution,

deagglomeration, secondary particle formation, etc., have
been termed bioprocessing. As noted above, the highly
reactive surface area of NPs leads to adsorption of a bio-
molecule corona, which plays a key role in the subse-
quent bioprocessing of NPs, determining for example
the rate of dissolution, the uptake mechanism, and the
subsequent biodistribution. From the discussion of the
biomolecule corona above, it is clear that the decision as
to which bioprocessing step occurs is determined by the
biomolecule signals that are associated with the NPs.
For example, it has long being recognised that certain
proteins trigger recognition by phagocytic cells, leading
to rapid clearance of NPs associated with these proteins,
which are known as opsonins [126]. Examples of pro-
teins known to enhance phagocytotic uptake include
collectin molecules such as surfactant protein A (SP-A)
and SP-D, as well as members of the complement cas-
cade involved in wound healing. On the other hand,
enormous effort in nanomedicine has been devoted to
the development of so-called stealth NPs that can evade
the immune system and avoid uptake by phagocytes, ei-
ther by reducing overall protein binding or by selectively
binding the so-called deopsonising proteins such as al-
bumin [34]. Clearly, the specific proteins that bind to
NPs will be influenced by the route of internalisation,
with the lung surfactant proteins being the main candi-
dates for binding following inhalation, serum proteins
being the first binders in the case of intravenous expos-
ure, and a range of enzymes and food biomolecules be-
ing potential corona constituents for gastric exposure
[127]. Other transformations included under the broad
term bioprocessisng include enzymatic digestion [128],
such as has been reported for carbon nanotubes [129]
and graphene materials [130].
Studies of the biodistribution of NPs as a function of

exposure route correlate with this assumption that bio-
modification, as determined by the NP-associated bio-
molecules, strongly influences the distribution of the
NPs. For example, in vivo studies using radiolabelled
gold NPs in rats indicated that different exposure routes
led to different biodistributions of the NPs, which is
most likely a result of different biomolecule adsorption
and thus different bioprocessing signals [131, 132]. Also,
radiolabelled Au NPs in different sizes (1.4-200 nm) ex-
posed by intra-oesophageal instillation into healthy adult
female rats resulted in detectable NPs (ng/g organ) in
the stomach, small intestine, liver, spleen, kidney, heart,
lung, blood and brain after 24 h as measured by
gamma-spectroscopy, with the highest accumulation in
secondary organs being for the smallest particles, while
the 18 nm particles showed a higher accumulation in
brain and heart compared to other sized particles [132].
On the other hand, Au NPs delivered tracheally to rats
resulted in the majority of NPs remaining in the lungs
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(> 95% of the initial dose, ID) with < 1% of the ID
translocated to the kidneys, liver, blood and urine, and
< 0.01 of the ID reaching the spleen, uterus and heart
[131]. While these studies did not explicitly attempt a
comparison on the basis of adsorbed biomolecules, it is
clear that such a study, including recovery of the NPs
and assessment of their biomolecule coronas following
translocation and final localisation, would shed import-
ant new light on the biomodification of NPs and the
role of the biomolecule corona in the bioprocessing
steps. Indeed, the hope for both nanomedicine and
nanosafety is to “design” NP surfaces to acquire the de-
sired corona to direct the bioprocessing to minimise
the risk of harm to humans. Designing the NP surface
to tailor the corona is already underway, via the design
of stealth particles as discussed above, or indeed via
surface modification with small molecules that induce
protein-misfolding in a component of the
NP-associated protein corona, and which enhances or
reduces the NPs’ susceptibility to cell-specific receptor-
mediated endocytosis [133]. Such unfolding could lead
to unintended immune responses though via display of
so-called cryptic epitopes [134], and thus such ap-
proaches needed to be conducted with care.
The term biomodification is normally used to indicate

some modification of a biological organism, e.g. via genetic
or mechanical means, while we use the term to understand
the impact of the NPs on the biological organism‘s bio-
chemistry. Thus, we attempt to distinguish between physi-
cochemical transformations of the NP that occur post
uptake (biotransformation, bioprocessing) and cellular pro-
cesses that result in the incorporation of the NP degrad-
ation products into existing biological pathways.[128–130]
Biomodification pathways, via which the degradation prod-
ucts can be incorporated into existing biological pathways,
are especially interesting in terms of the design of safer
NPs. One example of a biomodification pathway, proposed
for iron oxide NPs, showed that 10 nm iron oxide NPs
were degraded in macrophages and the resulting free iron
was transformed to ferritin and hemosiderin iron-protein
complexes and used to make haemoglobin and myoglobin
[135]. In this case the biotransformation also leads to bio-
clearance of the NPs. Other biomodification routes include
lysosomal degradation of NPs as a result of the low pH in
the lysosomes coupled with their high enzymatic compos-
ition and indeed their role as the “dustbin” of the cell.
The composition of NPs can be conceptually divided

into the often inorganic core; the engineered surface coat-
ing comprising of the ligand shell and optionally also
bio-conjugates; and the corona of adsorbed biological
molecules [136]. Empirical evidence shows that all three
components of NPs (core, shell and corona) may degrade
individually in vivo and can drastically modify the life
cycle and biodistribution of the whole heterostructure,

such that the biodistribution and fate of each
sub-component would need to be analyzed individually
for regulatory and nanomedical approval purposes [136].
Approaches to do that, based on stable isotope and radi-
olabelling of core and shell separately are emerging, with
differential biomodification process demsonstrated for
polymer-coated FeOx NPs [136] versus Au NPs [137].
Thus, approaches to assess biomodification, bioproces-
sing, and bioclearance are emerging, and these are intrin-
sically linked. The co-evaluation of core and shell need to
be determined on a case-by-case basis until predictive
models can be developed.
A range of studies have looked at the correlation be-

tween NP properties such as size and surface charge with
uptake, biodistribution and bioclearance (defined here as
removal from specific organs (e.g. the lung or gut) or from
the organism overall. Blanco, Shen and Ferrari looked at ef-
fect of size (<5nm, 20-150nm and > 150nm), shape
(20-150nm spheres, rods and discs) and surface charge
(20-150nm spheres with negative, neutral or positive) on
where the NPs accumulated [138]. The findings indicated
that the kidney was the main target organ for <5nm NPs,
whereas for the 20-150nm spheres, positive charge corre-
lated with enhanced accumulation in liver and spleen.
Discs appeared to show most accumulation, collecting in
liver, spleen and lungs, with the order of accumulation for
shapes being discs > rods > spheres [138]. There is clear
evidence that each of these parameters also influences
the nature of the biomolecules bound [139–141], and
that different coronas lead to different biodistributions
of NPs in vivo, as indicated above and demonstrated
by Wang et al. [142]
It becomes clear from the snapshot of studies pre-

sented above that it is very difficult to untangle the 5Bs
– they are interrelated and inter-dependent, but a clear
understanding of each, and their combined impact, is
vital for regulatory certainty. Fig. 6 provides an overview
of our current conceptual understanding. There is a
clear need for parallel in vitro and in vivo studies in the
short term in order to untangle the pathways and mech-
anisms involved, with the in vivo studies in particular
providing important insights into the final biomolecule
coronas following in vivo biodistribution and/or during
bioclearance [143]. While there is a strong drive to re-
duce reliance on animal testing, this can only be
achieved once in vitro and in silico methods have proven
to be predictive of in vivo health outcomes. Finally, it is
clear that the adsorbed biomolecules play a central role
in each of the processes underpinning NP bioavailability,
biopersistence, bioprocessing including biodistribution,
biomodification and bioclearance. Taken together, these
studies suggest that there is still a major gap from funda-
mental science to regulatory relevance, but that progress is
being made, and that the biomolecule corona may provide
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important insights and lead to the potential for predictive
toxicology based on the bioprocessing signalling predicted
from maps or fingerprints of NP-associated biomolecules.
The formation of the biomolecule corona around NPs also
raises the question of what is the relevant “form” to assess
in regulation (e.g. the evolving NP-corona complex versus
the pristine NP), especially as numerous studies show that
bare particles are both more toxic, and rapidly acquire a
biomolecule corona from their surroundings.
Future directions for research into the 5Bs include de-

velopment of predictive models for NP corona formation
and composition, and for corona influence on cellular at-
tachment and uptake, biodistribution, bioprocessing and
bioclearance, and as well as elucidation of key initiating
events and the subsequent adverse outcome pathways re-
lated to biomodification resulting from exposure to NPs.
From a biomedical perspective, significant research direc-
tions include understanding and controlling targeting of
NPs to the desired location and the role of the biomol-
ecule corona in driving this, as well as understanding and
predicting the impact of the biomolecule corona on drug
release rates and reducing off-target effects arising from
sub-populations of the NPs being bioprocessed or biodis-
tributed differently to the ideal. Significant effort is needed
to elucidate the in vitro – in vivo correlations, especially

given the very different biomolecule concentrations typical
of each (10% versus >80% biomolecules, respectively), and
the different biomolecule compositions in discrete tissue
compartments in vivo, and the consequences of this for
NP bioavailability, bioprocessing and bioclearance.

Immunity and systemic responses
Nanosafety assessment needs simple and affordable, but
at the same time robust and meaningful, assays. Read-
outs reflecting immune activation are in this context
pursued by many groups [144]. This is reasonable, since
the immune system has evolved to recognize non-self
and to decide whether a defensive action is appropriate.
In addition, immune cells are concentrated at the poten-
tial routes of entry for pathogens, which are the same
routes by which NPs enter the body. This perspective
will discuss what information can be gained when focus-
ing on systemic rather than local immune responses.
Entry of a potentially dangerous non-self entity stimu-

lates local reactions. If danger signals are sensed, a local
inflammation ensues. The symptoms are familiar: Red-
dening and swelling (edema formation due to immigra-
tion of immune cells, stimulated by locally produced
chemotactic factors), heat (from increased blood flow, to
limit bacteria and viruses which often have a narrow

Fig. 6 Conceptual understanding of the inter-relationships between the 5Bs and the working definitions of these terms as used in this section.
Bioavailability indicates the amount of the applied dose that is in the right form to enter the organism, which for NPs depends on the dispersion
conditions and the interplay between the medium components and the NP surface. Biopersistence provides an indication of how long the NPs
remain in circulation and/or are retained by the organs to which they biodistribute (i.e. the retention half-life) as determined by their adsorbed
biomolecule corona. Retention is affected by bioprocessing, which we define as the physicochemical transformation of the NPs by cells or organisms,
which are often driven by the acquired biomolecules. Bioprocessing reflects the fact that NPs and their degradation products may impact on the
biochemical functioning of the cell or organism, including assimilation into cellular reactions. Finally, bioclearance describes the elimination pathways
by which organisms remove NPs, which are dependent upon the uptake route and the biodistribution pattern as different organs have different
clearance mechanisms available, as well as the bioprocessing following localisation to the target organs.
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temperature optimum), as well as pain and impaired
function (limiting movement to avoid further injury and
support wound healing). However, most contacts with
non-self do not result in defence, due to the lack of dan-
ger signals. Still, the immune system will respond: Either
with homeostatic fluctuations of no further conse-
quence, or with the development of tolerance via several
active mechanisms. The majority of immune responses
indeed result in tolerance, which can be a source of mis-
interpretation. Nanosafety assessment requires distin-
guishing whether a response is merely adaptive or truly
defensive, which can be addressed by the choice of end-
points. Most studies on immune effects of NPs have ad-
dressed the inflammatory (innate) immune response,
with respect to local reactions [145–147].
Parameters that are characteristic for local responses are

well detectable in many professional immune cells, but also
in tissue cells which in vivo produce alarm signals to attract
immune cells into a potentially threatened site. A good
marker for local response is activation of the transcription
factor NF-kB, which indicates cell stress that occurs during
immune stimulation [45, 148]. The chemokine IL-8 is an-
other example: It is produced very early and can be defined
as a relatively unspecific alert signal, which indicates local
inflammation that can be extreme enough to induce cyto-
toxicity [149–152]. These markers are readily measured
and convenient for simple and affordable tests, but their
use with not well characterized materials and cells requires
care to confirm that an observed response is indeed defen-
sive. In this respect, NPs present the challenges of hetero-
geneity and of batch-to-batch variation. Readouts like
NF-kB and IL-8 are popular since they can be readily mea-
sured in cell lines and primary cells on the transcriptional
and the protein secretion level, using methods like
qRT-PCT, reporter genes and ELISA. However, , there is a
risk of false positives when a normal homeostatic fluctu-
ation in response to a stimulus is mistaken for an indication
of danger to the body. Even worse, inflammation may be
due to contamination, most commonly with the ubiquitous
bacterial compound LPS [153] .
One way to deal with this problem is to look for pa-

rameters indicating systemic responses. For example,
IL-1 is a major pro-inflammatory, fever inducing cyto-
kine produced by several immune cell types, so detecting
substantial IL-1 secretion would suggest a systemic in-
flammation which is certainly not indicating tolerance
[154]. The related cytokine IL-18 shares many functions
of IL-1 (but not fever induction) and offers the advan-
tage that it is produced by numerous cell types [155].
Such readouts indicate a systemic inflammation that
evolves from a local one: Think about flu that after a
while affects the whole body, despite a very local occur-
rence of virus. The advantage of systemic inflammation
markers is that they more clearly indicate a defensive

reaction, thus immune mechanisms have assessed a
stimulus as being dangerous.
Inflammation is often considered to be synonymous with

innate immunity. This is an evolutionary ancient package
of defensive mechanisms, which has the attractive feature
that similar readouts can be made in invertebrates, offering
opportunities to directly link human toxicology and eco-
toxicology. In contrast, adaptive immunity has fully devel-
oped first in teleost fish and is thus limited to vertebrates.
Adaptive reactions are always systemic, since they require
the interaction of several cell types (especially antigen pre-
senting cells, T-cells and B-cells) and involve secondary im-
mune tissues, mainly lymph nodes and spleen. As in the
case of innate immunity, a response is not the same as a
defensive action. T-cells may be activated to proliferate
and differentiate, but if they should be of the Treg type
(regulatory T-cells), they will produce immunosuppressive
cytokines and thus promote tolerance.
Adaptive immune responses can develop in three direc-

tions, of which the “default” is tolerance. Type 1 and type 2
responses are defensive, the first being directed mainly
against bacteria and viruses, the second mainly against
macroparasites. Both are distinguished by their cytokine
pattern, especially for the cytokines produced by T-cells.
IFN-α and IL-4 are among the tell-tale markers for type 1
and type 2 responses, respectively. A functional definition
can be made via the isotypes of antibodies that are pro-
duced by B cells. IgG1 is the most prominent antibody type
in blood and it increases substantially during type 1 re-
sponses. Since adaptive reactions develop more slowly than
innate ones (days vs. hours), it makes sense that type 1 ef-
fectors like IgG1 interact productively with innate immune
mechanisms. Assessing type 1 responses is more challen-
ging than testing for inflammation and cell stress, since a
full response can be mimicked only in co-culture systems
rather than in single cells. Some NPs have been shown to
influence the development of antibodies, even though they
are themselves only rarely recognized by antibodies [156].
Type 2 responses are associated with parasites, but are

for many people more familiar as a pathophysiological
response in allergic diseases. IgE antibodies mediate
these responses. They have very low levels in serum, but
are bound to high-affinity receptors on the surface of
effector cells (basophils, mast cells, eosinophils). So far,
no case has been described where NPs act as allergens
[157], but it has been shown that binding of allergens to
NPs can enhance their allergenicity [158].
So far, most studies have investigated immune effects of

NPs as single agents. In the future, we can expect an
increasing number of studies that treat NPs as one compo-
nent in a complex exposure situation, which corresponds
more closely to real life. In addition, NPs can have effects
on the development of a systemic antibody-mediated
response, but it is not well known under which
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circumstances and to which extent this takes place in the
body. Nanomedicine can address these issues more easily,
since it deals with high concentrations and controlled ex-
posure. Developing methods that allow considering adap-
tive immune reactions for risk assessment is at present a
challenge. The effects of co-exposure to NPs and to stimuli
that induce either systemic type 1 or type 2 responses will
increasingly become a subject for nanoimmunotoxicology
research aiming at risk assessment.

Non-Specific Effects of Particles
As non-specific effects of particles, mixed dust pneumo-
coniosis and response of autonomic nervous system to
exposure to particles are discussed.

Mixed dust pneumoconiosis
Specific effects of particles can be typically observed in
silicosis and asbestosis. Silicosis and asbestosis show the
very special features of pneumoconiosis. The silicotic
nodule is one of the characteristic histopathological
changes observed in the lung during silicosis [159], with
large areas of opacity being one of the typical radio-
graphic patterns observed in silicosis. In silicosis, small
opacities are dominantly distributed to the upper lung
field, and in asbestosis, small opacities are mainly
distributed to the lower lung field. Pleural changes can
be specific to asbestosis, whose histopathology shows
interstitial fibrosis and formation of asbestos bodies.
On the other hand, the mixed dust pneumoconiosis

might be one of the non-specific types of pneumoconiosis
[160]. It is important to note that there is no full consensus
on a definition for mixed dust pneumoconiosis. Neverthe-
less, several reports showed that similar histopathological
features, which are different from silicosis or asbestosis, are
associated with exposure to different kinds of dust. These
suggest the existence of non-specific effects from different
kinds of particles in humans. Small rounded opacities are
specific to silicosis, while small irregular opacities are ob-
served in asbestosis or mixed-dust pneumoconiosis. Mixed
dust pneumoconiosis is found in foundry and welding
workers [160] or coal miners, who are exposed to dust con-
taining less crystalline silica. Contrary to silicosis, mixed
dust pneumoconiosis produces mixed dust fibrous nodules
characterized by a stellate shape of the nodule. According
to the Honma in Japan, the causative agent for mixed dust
pneumoconiosis is non-fibrous silicate plus a low content
of free (crystalline) silica. The characteristics of X-ray find-
ings of this pneumoconiosis are irregular opacities and
ill-defined small rounded opacities. Histopathologically
interstitial fibrosis and fibrotic stellate nodules are observed
in mixed dust pneumoconiosis. Lastly the prevalence of this
disease is 34% of the entire pneumoconiosis [161]. There
are case reports suggesting that a variety of particles may
induce mixed dust pneumoconiosis [161]. Pathology shows

mixed dust nodules outnumbering the silicotic nodules
consistent with mixed dust pneumoconiosis. Graphite was
detected in biopsy samples using laser microprobe mass
analysis [162]. The sample was obtained from a foundry
worker with mixed dust pneumoconiosis. While the preva-
lence or incidence of silicosis has been decreasing, there are
concerns with pneumoconiosis which may be induced by
different kinds of particles other than silica. Mixed
dust pneumoconiosis may be one such pneumoconio-
sises. Although an epidemiological study showed less
excess risk of cancers in mixed dust pneumoconiosis
than in silicosis, there are still concerns with possible
cancers or autoimmune disease resulting from the
mixed dust pneumoconiosis.

Effects of particles on cardiovascular or autonomic nervous
system
A recent study on effects of exposure to titanium dioxide
particles suggested the cardiovascular or autonomic
nervous system as being among the possible non-specific
targets of particles [163]. Preliminary investigations in
China suggested high exposure of TiO2 to the workers in
this specific factory. The study investigated the respiratory
and cardiovascular status of the workers who were ex-
pected to be exposed heavily to TiO2 particles to find any
possible adverse effects from TiO2 particles. The number
of particles with diameter less than 300 nm was estimated
using two different mobile instruments – condensation
and optical particle counters (CPC and OPC, respectively).
Although there may be problems theoretically to use the
difference in the number between CPC and OPC as
shown, it is believed that this can be used as an indicator
reflecting the number of small particles. The primary par-
ticles were traced to measure their diameter. The diameter
of the majority of primary particles was more than 100
nm, but certainly part of the primary particles are less
than 100 nm in diameter. The analytical SEM analysis
showed that the particles were titanium dioxide. Distribu-
tions of titania and oxygen completely merged on the
image of particles. Mass based concentrations ranged
from 18.6 to 30.8 mg/m3. Compared to the first investiga-
tion, which showed the concentration of titanium dioxide
to be more than 100 mg/m3, the concentration of titanium
dioxide in the last investigation was reduced, by improve-
ment of the facilities in the factory. Multiple regression
analysis showed that heart rate was positively associated
with the number of small sized particles with diameter less
than 300 nm. Inversely, RR50, the frequency of serial heart
beats fluctuating more than 50 msec, was negatively asso-
ciated with the number of particles less than 300 nm. As
the RR50 is a parameter of parasympathetic function, it is
considered that exposure to small particles of titanium di-
oxide suppresses parasympathetic function. The associ-
ation between the parameters of heart rate variability and
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the number of small particles of titanium dioxide was also
analysed at different delay times. The number of nano-
scaled particles showed significant positive association
with the total number of normal to normal heart beat rate
(N-N) and negative association with the mean N-N inter-
val, RR50+, and percentage of RR50 +/- 1 min delay.
Multiple regression analysis on the pooled data of the four
workers shows that particle number less than 300 nm in
diameter were associated positively with the heart rate
and negatively with the percentage of RR50, which is a
parameter of parasympathetic function. The present study
generated the hypothesis that exposure to particles affects
autonomic function in workers handling TiO2 particles.
Other studies on heart rate variability show similar results
in terms of suppression of parasympathetic functions with
different kinds of particles, suggesting non-specific effects
of particles.
The overall conclusion is that the idea of mixed dust

pneumoconiosis suggests the existence of non-specific
effects of particles, which might be involved with
pneumoconiosis. Possible adverse consequences, includ-
ing cancer, autoimmune disease or cardiovascular dis-
ease, from non-specific effects of particles should be
further investigated. As one of non-specific effects of
particles, acute effects on the autonomic nervous system
should be further investigated, through epidemiological
or experimental studies.

Particles and the Developing Body
Understanding the developmental toxicity of NPs is vital
because exposure to fine particulate matter during gesta-
tion increases the risk of low birth weight in the child
[164], which is associated with health and disease later
in life [165, 166]. Recent clinical cohort studies suggest
that prenatal and neonatal exposure to fine and ultrafine
particulate air pollution is associated with an increased
risk of developmental brain disorders, such as autism
spectrum disorder and schizophrenia, in offspring [167–
169]. It is important to understand the mechanism of
action underlying the effect of NPs on the developing
body in order to reduce the toxic risk of these atmos-
pheric ultrafine particles and to promote the safer use of
engineered NPs for future generations.
We start to have some understanding of the mecha-

nisms underlying the potential hazards of fine and ultra-
fine particles to brain and behaviour. The effects of
particle exposure can be studied using brain perivascular
histopathology [170]. In particular, the expression levels
of proteins associated with astrogliosis, e.g. glial fibrillary
acidic protein, may be useful as a sensitive and quantita-
tive marker of maternal exposure to low doses of NP for
prediction of their developmental toxicity [171]. There
seems to be potential protective effects of antioxidants
on the brain perivascular abnormality (astrogliosis) of

offspring mice whose mothers were exposed to carbon
black NPs. One of the anti-oxidants, N-acetyl cysteine,
partially suppressed the astrogliosis in the brain of off-
spring induced by maternal exposure to carbon black
[172]. There are also developmental effects of perinatal
exposure to experimental secondary organic particles as
prepared by oxidation of diesel exhaust particles with
ozone. Neonatal mice exposed to secondary organic parti-
cles demonstrated a decrease in social behaviour with
down-regulation of estrogen receptor-β and oxytocin
receptor in the hypothalamus [173]. Ming-Wei Chao et al.
reported an increase in reactive oxygen species and several
cytokines in the amniotic fluid, and changes in microRNA
expression profile in the cerebral cortex and hippocampus
of foetal brains in rats following exposure to PM2.5 [174].
Recently, the potential use of zebrafish (Danio rerio),

Drosophila, and chicken embryos has been investigated as
alternative methods for high-throughput screening of the
developmental toxicity of NPs [175]. The zebrafish model,
in which hatching rate, developmental malformation of or-
gans, genotoxicity, immunotoxicity, abnormal behaviour,
and neurotoxicity can be measured, is useful in the field of
toxicology and biomedical research to evaluate the repro-
ductive and developmental toxicity of NPs [176]. The ad-
vantages of the zebrafish model are their small size, high
reproducibility, quick development, and transparency of the
embryo [177]. The transparency of the embryo enables ob-
servation of all the cells from early larval stages and facili-
tates real-time imaging of NP distribution in vivo during
the embryonic development [178]. In addition, their genetic
information is accumulating rapidly by genome sequencing
[179]. This model has also allowed comparative analysis of
the developmental toxicity of NPs with different properties,
such as size [180, 181], chemical composition [182, 183],
and surface modification [184]. On the other hand, the
chicken embryo model has an advantage that the direct ef-
fect of NPs on the embryonic development can be evalu-
ated by removing the indirect effect mediated by maternal
factors easily, as reported for the results of developmental
toxicity of TiO2-NP [185] and carbon NPs [186–188]. In
addition, the use of Drosophila, which has a short life span
and 77% of the human disease genes [189], has just started
in terms of developing cost-effective high-throughput
screening methods for assessment of the developmental
toxicity of NPs [190]. These animal models may provide
rapid hazard assessment techniques to facilitate regulation
and ensure safer NPs reach the market thereby protection
future generations.
Previously, the translocation of NPs from maternal to

foetal circulation, with ultimate deposition in the off-
spring’s body, was first reported in an experimental model
where TiO2 NPs were subcutaneously injected into preg-
nant mice [191]. Experiments with an ex vivo placental
perfusion model showed an inverse correlation between
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the translocation of nano- and submicro-particles (in this
case, polystyrene beads) and particle size [192]. Recently,
the dose- [193] and size-dependency [194] of NP trans-
location from the mother to foetus was also reported in in
vivo studies. Overall, NP translocation through the pla-
centa is likely dependent on particle surface modification
[195, 196], chemical composition [197], and the timing of
the exposure during pregnancy [196]. Because the
mass-based translocation ratio is not high, the detection
of these particles is dependent on the analytical techniques
used. It is important to understand not only the direct ef-
fect of NPs on the foetus, but also the indirect effects me-
diated by circulating cytokines or other secondary
messengers generated from oxidative stress and pulmon-
ary inflammation in the maternal lungs [198–202] [174],
placental dysfunction [199], or genotoxicity [203, 204].
The reproductive [191, 205–210] [211], immune [200,

212, 213], and central nervous systems have been inves-
tigated as potential targets of maternal NP exposure. In
particular, the effect of this exposure on the offspring
brain is getting better understood. While evaluation of
developmental neurotoxicity via histopathology [170,
214, 215], and determination of DNA methylation level
[216], monoamine level [217–220], and expression pro-
file of mRNA [221, 222], X-chromosome inactivation
factor [223] and microRNA [174] is valuable, evaluating
the neurobehavioral changes in children after prenatal
NP exposure is also important in understanding the de-
velopmental neurotoxicity of NPs. Previous studies have
shown that exposure to NP-rich diesel exhaust or con-
centrated ambient particles (CAPs) during prenatal and/
or neonatal period altered spontaneous locomotor activ-
ity level [217, 224, 225], decreased novel object recogni-
tion [226] and motor coordination [218], and increased
autism-like repetitive and impulsive behaviours [167,
224]. Moreover, maternal inhalation studies showed that
exposure to nanoparticulate TiO2 during the foetal
period decreased visits to, and duration of, stay in the
central zone during evaluation with the open field test in
mice [198] and impairments of working or short-term
memory and initial motivation in rats [227]. A decrease
in spontaneous locomotor activity in a novel environ-
ment was also reported in mice whose mothers were ex-
posed to carbon black NPs [201]. The sex difference in
response to nanoparticle exposure during the fetal/peri-
natal period is likely important [167, 198, 201, 225, 228];
however, further investigation is needed to clarify the
mechanism of the difference.
Histopathology suggests that brain perivascular cells, in-

cluding perivascular macrophages and their surrounding
astrocytes, have an important role in clearing waste from
the brain parenchyma [229, 230]. They can serve as an ex-
tremely sensitive marker of maternal exposure to low
doses of NPs for prediction of their developmental toxicity

[170]. The histopathological changes were confirmed with
decreased number of parvalbumin-positive interneurons
following a maternal inhalation study [231]. Sensitive and
quantitative endpoints evaluating the developmental im-
pacts of maternal NP exposure are necessary to facilitate
the risk assessment and hazard identification of NPs [232].
Future work will hopefully clarify the mechanism of devel-
opmental toxicity of NPs, and aid in the development of
preventive strategies against intended and unintended NP
exposure.

Particles in the natural environment and links to human
health
Hazards from Natural particulates and the evolution of the
biosphere
The founding assumption from the perspective of respira-
tory toxicology is that airborne particulates are deleterious
to human health. This notion is supported by decades of
scientific research (see above). However, this does not
mean that all particulates are, by default, toxic to humans
or any other organism. The geochemical cycles on our
planet provide many different natural sources of particu-
late materials, a few of which are hazardous to health. For
example, acute airborne exposure to particulates from
volcanic activity [233], the soot from natural forest fires
[234], or sand from Sahara dust events [235] can cause
respiratory distress and subsequent adverse effects on the
cardiovascular system.
These ultrafine particulates from natural sources were

directly effecting human health over evolutionary time
periods. It is also possible that geological events and/or
extreme weather events had an indirect long-term effect
on human health via an impact on ecosystem services (see
below). These natural particulates are produced in billions
of tons annually, with particles from deserts alone esti-
mated as upwards of 500 million tons per year to several
billion [236], and from the view point of risk, the number
of deaths attributed to respiratory exposure to these
natural particulates is hard to estimate given that pollution
is a mixture of substances and with many confounding
factors in the health indices used [237]; but might be of
the order of ten extra individuals/1000 deaths in the local
population. In comparison, today natural disasters account
for less than 1 death per million inhabitants per year
[238]. From an evolutionary view point, both examples are
a small fraction of the 7.5 billion people on the planet.
Nonetheless, climate change has raised concerns about

the increased frequency of adverse weather events, includ-
ing air pollution. The immediate consequences may be an
increased death rate or other adverse health outcomes on
the exposed population. For example, the annual mortality
attributed to PM2.5 is around 2.1 million deaths, but past
climate change may account for approximately 2,200

Riediker et al. Particle and Fibre Toxicology           (2019) 16:19 Page 16 of 33



annual deaths from PM2.5 [239]. The contribution of
climate change to air quality deaths is a few percent of the
total. One might argue that natural exposure to airborne
particulates, climate change, etc., are simply ongoing
selection pressures on human evolution.
Environmental change may simply select genotypes

from the human population that are more resilient. The
notion that all life on Earth has evolved with the geo-
sphere is well established [240], with key geological
events influencing both the biodiversity of the planet
and also new biochemical adaptations that enable the
organism to survive. Even relatively small events in the
context of geological time have altered the rates of diver-
gence in the human gene pool (e.g., the last ice ages
[241]). There is evidence that exposure to naturally
occurring particles can infer resistance in future genera-
tions. In the laboratory, this phenomenon is demon-
strated with organisms with short generation times. For
example, exposure of multiple generations of the mi-
crobe Pseudomonas aeruginosa to natural minerals of
silica, anatase TiO2 or alumina informs on a resilience to
the minerals arising from adaptation of the genes con-
trolling the extracellular polymeric substances that are
secreted as a protective barrier by the organism [242].
The evolution of resistance to engineered NPs has also
been recently demonstrated in the microbe, E. coli ex-
posed to silver NPs [243]. For microbes in the laboratory
with a generation time of ~ 30 minutes, resistance may
become apparent within one day, or some 40+ genera-
tions. The human genome has also shown resilience to
‘new’ forms of organic particulates. Viral-like particles
are estimated to have been introduced into the primate
genome some 20 million years ago, and humans have
evolved defences against such viral-like particles or ret-
rotransposons, which are now regarded as a sub-type of
the endogenous retrovirus [244], that comprise an esti-
mated 3-5 % of the human genome. Of course, with an
average life-span of some 77 years, any apparent resist-
ance to new particulate exposures now would take the
next 3000 years to manifest as a genetically resistant
strain of humans. The climate record has changed sig-
nificantly since the industrial revolution, and predictions
suggest that warmer conditions in the next fifty years
may increase wind-driven erosion of soils (e.g. [245]),
speeding up the geological process of generating PM10
(PM smaller than 10 μm) and other dust. The dilemma
is that for the first time in human evolution, the rate of
change in particle release from the geosphere may out-
pace our genetic ability to adapt.

Environmental exposure to particulates and human health
effects
The relationship between exposure and effect is rela-
tively well-known for airborne particles. The lung is a

critical target organ with the penetration of the material
into the airway being dependent on particle size. The
greatest concern is with regard to ultrafine particles that
may penetrate into the alveolar space, and epidemiology
studies have demonstrated clear respiratory health effects
with PM10 and PM2.5 particles (PM smaller 2.5 μm). The
resulting lung inflammation and respiratory distress will
also alter cardiovascular function as the body attempts to
maintain constant ventilation-perfusion ratios. Conse-
quently, elevated blood pressure and increased hospital
admissions from heart disorders is a common feature of
air pollution events. There may also be direct cardiotoxi-
city from gases in the polluted air such as carbon
monoxide.
In stark contrast, understanding of how incidental der-

mal or oral exposure to particulates in the environment
affects human health is more difficult to establish. The
keratinised nature of human skin with the triple layer of
epidermis, dermis and hypodermis is regarded as an ef-
fective barrier to substances in the environment, pro-
vided that the skin remains intact. Exposure to airborne
soot particles, or particulates from traffic pollution, are
partly associated with ageing of the skin and altered pig-
mentation [246]. Air pollution has also been implicated
as a cause of skin cancer, where the particulates may act
as a delivery vehicle for carcinogens such as benzo-a-
pyrene (BaP) [247]. The subsequent oxidative stress
from BaP is proposed to initiate inflammation of the
skin; eventually leading to DNA damage.
The gut is a rather different mucous barrier, consisting

of mucous epithelium, sub-mucosa, the underlying mus-
cularis (longitudinal and circular muscle) and the serosa.
Oral exposure of the general public to substances via the
food is largely managed via guidelines for soil quality, as
well as limits for the allowable contaminant residues in
crops, livestock, fish and shellfish. There are of course,
quality standards for food products arriving on our
supermarket shelves. There are some international
agreements on food safety standards, listed in the
CODEX Alimentarius ([248]. These regulations are
aimed at specific types of food products. For example, to
regulate the allowable Salmonella concentration in raw
meat, mycotoxins in cereals, or the amounts of individ-
ual chemicals that may be used as a food additive. There
is also national level legislation, and for example in the
U.K., the Foods Standards Agency has responsibility for
food safety. The legislation on food safety is often
intended to relate to a process or a health outcome. In
the Food Safety Act (1990) in the U.K. [249] the offences
are with regard to injury to health, introducing products
into the supply chain that are not fit for consumption,
or misrepresentation of the food product. Thus there are
no specific provisions for individual chemicals or partic-
ulates per se; but an adverse health effect caused by a
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particulate in food (or any other material) would be cov-
ered by the legislation. NPs and micron-scale particu-
lates are not listed in standards relating to food
contaminants or food additives at this time. In essence,
none of the current food regulations consider particu-
lates. Nonetheless, there are limits for toxic substances
such as mercury in fish and shellfish. For metals at least,
one concern is whether or not the existing standards
might also protect the public from the nano form. This
is problematic for several reasons. Firstly, the gut is able
to differentiate crystal structures of the same chemical
substance (e.g., TiO2 materials [250]). Thus any standard
would need to consider shape and size. Secondly, the
regulations and standards are intended to give a margin
of safety below the no effect concentration on human
health. The gastrointestinal tract is the route of expos-
ure, and yet, even for this body system the effects of NPs
on gut functions (motility, secretion, absorption and
digestion) are largely unknown.
One possible exception with respect to protection from

oral exposure to incidental particles is within the standards
for drinking water. For example, in the U.K. the Drinking
Water Inspectorate enforces water quality at the tap for
turbidity (< 4 NTUs) and colour (limit of 200 mg/L Pt/Co).
It is conceivable that a particulate material in the water
may be limited by these measurements of water quality.
However, the turbidity and colour is determined mainly
with respect to clarity and appearance of the water, rather
than any chemical hazard to the consumer. Of course,
some substances in drinking water are likely to be colloidal
such as iron derived from the piped supply or the natural
organic matter in the water, but there is very little informa-
tion on particulate hazards to human health through
drinking water supply. Legacy contaminants such as asbes-
tos fibres have been found in drinking water supplies, with
some 40 cities have concentrations exceeding 1x107 fibres/
litre ([251]. However, revealing cause and effect is challen-
ging. Gastrointestinal tract cancer rates maybe higher in
cities that also have elevated asbestos in the supply, but
how much of this can be attributed to asbestos compared
to other risk factors such as occupation, diet, smoking and
alcohol consumption etc., is unclear [252].
Engineered NPs have become a specific concern with re-

spect to the human food chain [253, 254], and also drinking
water supply with the potential applications of nanotech-
nology in disinfectants and filtration systems [255]. One of
the technical challenges ahead is the development of rou-
tine detection methods for NPs in environmental samples
[256], and although some methods have been recently
developed such as single particle induction couple mass
spectrometry sp-ICP-MS, there remains reliance on com-
putational models to predict environmental concentrations
of NPs, e.g., [257]. The concentrations of NPs predicted in
surface waters in the EU are typically at μg/L levels [258],

and the main food chain risks appear to be via the applica-
tion of NP-contaminated sewage sludge to agricultural soils.
However, in comparison to substances like mercury, the
technical knowledge on the fate and behaviour of NPs
through aquatic or terrestrial food chain to humans is lim-
ited. The many knowledge gaps on environmental fate con-
tribute to uncertainty such that a reliable human health risk
assessment with respect to incidental exposure via the en-
vironment is not possible for most NPs. Notably, agreement
has yet to be reached on bioaccumulation tests for NPs
[259]. Bioconcentration- and biomagnification-like factors
for NPs are currently lacking with respect to the transfer
through trophic levels to humans.

Particulates, ecosystem services and indirect effects on
health
Human health is also affected by the quality of our ecosys-
tems and the biodiversity therein. Food supply, water secur-
ity and habitable living space are significant pressures that
may ultimately limit the human population. The notion of
protecting ecosystems so that they provide essential ser-
vices; such as the ability to grow food, clean groundwater
and recreational amenity is now well-established [260, 261].
The health benefits of growing crops on uncontaminated
soil, or abstracting drinking water from a pristine lake are
apparent. However, the amenity value of green spaces and/
or the coastal zone to human health are also important in
terms of exercise/cardiovascular health, mental health and
general wellbeing [262]. From the view point of particle
exposures, the short-term outcome of air pollution may be
the temporary loss of these outdoor amenities, as well as
some limited contamination of the soil, crops and surface
waters. The chronic impact of particulate exposures to eco-
systems and the subsequent indirect human health impact
as a result of adverse effects on ecosystem services is less
clear. Diffuse atmospheric inputs of dust from soil erosion
might be argued to adversely affect crop production and
food supply, but the deposition of dust is also part of the
ongoing geological process of making new soil. The issue is
whether a spatial or temporal change in this cycle, or a
change in the turnover of geological processes, impacts on
human health via the ecosystems involved. There is some
evidence that air pollution impacts the ecosystem services
provided by forests [263]. However, contribution of the par-
ticulate component in the air pollution to such ecological
impacts, and subsequent quantifiable changes in human
health are not yet determined.

Lessons from the past for future toxicological studies on
big, small and variously shaped particles
Mining and Asbestos: the first two challenges in particle
toxicology
Mining has been not only the oldest but also the largest
single industry where most dust-related occupational
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diseases were described. Human populations in these
dusty environments have therefore provided the first line
of evidence on the existence of a correlation between ex-
posure to dust and the diseases observed. Countries
where such mining activities have existed were the first
to report on these diseases by centres dedicated to
conduct such research. For example, in South Africa,
mining for a number of commodities including gold, as-
bestos and coal have existed since 1886 when gold was
first discovered and was fully commercialized in 1911.
This has necessitated instituting the first Miners Phthisis
Act for pre-employment and health examinations and
opening of the Miners’ Phthisis Bureau in 1916 for
pre-employment, periodical and compensation examina-
tions of miners for pneumoconiosis [264]. The existence
of considerable deposits of crocidolite, amosite and
chrysotile asbestos in South Africa and their
commercialization has prompted the study of asbestosis
as early as 1926 where its pathology was studied [265,
266]. Coal deposits of anthracite and bituminous type in
the country also made it possible to report on pneumo-
coniosis in this mining industry [267]. In response to the
necessity to conduct research in dust-induced occupa-
tional lung diseases in these different mining industries,
the Pneumoconiosis Research Unit was established,
presently known as the National Institute for Occupa-
tional Health (NIOH), by the mining industry and by the
Department of Mines in 1955. Coal mining was also an
important industry in UK and the USA and hence
similar activities were taking place in Cardiff, United
Kingdom (UK) and in West Virginia, USA where
pneumoconiosis was an issue in this industry [268, 269].
In the UK, once again, out of necessity for further re-
search, the Edinburgh Institute of Occupational Medi-
cine (IOM) in UK was founded in 1969 as a charitable
research institute by the National Coal Board to research
mining diseases [270] and in the USA, the National
Institute for Occupational Safety and Health (NIOSH)
by the USA congress by passing the Occupational Safety
and Health Act in 1970.
It is of importance to document that these and other

institutes were instrumental in producing sentinel publi-
cations and also hold a number of conferences on
particle-induced diseases. For example, the South Afri-
can Institute hosted the first pneumoconiosis conference
in 1930 where asbestosis was acknowledged as a new oc-
cupational disease [271]. The two next conferences on
pneumoconiosis were again hosted by the South African
Institute in 1959 and also in 1969 where important is-
sues were discussed ranging from dust measurements,
dust composition to the pathology of asbestosis, silicosis
and cancer in humans and in animal experimentations.
It was at the conference in 1959 where Wagner provided
definitive evidence of the etiological association between

asbestos exposure and mesothelioma cases in the mining
industry in South Africa [272, 273]. The production of
mesotheliomas in animals (Wistar rats, mice, and guinea
pigs), was also confirmed with experimentation by
injecting various forms of asbestos (crocidolite , amosite,
and chrysotile, and carbon black) into the pleural cav-
ities where mesotheliomas could be produced mainly
from crocidolite asbestos [274, 275]. In the UK, the asso-
ciation between coal dust exposure and risk of pneumo-
coniosis was confirmed by scientists at IOM in the UK
with a landmark paper published in 1970 [276].
Although during this early period the investigations were

more centred on the pathology of pneumoconiosis, some
attempts were also made to study the parameters involved
in the toxicity and pathogenicity of mine dust. As early as
in 1913, it was shown that the size of the particles that
could have access to the lung proper had a maximum
diameter of 10 μm [277]. Questions were then posed as to
which size of mine dust needed to be measured as it was
realized that dust hazard in the mining industry was not
the average dustiness of the whole mine but what kind of
dust and what size of dust have caused pneumoconiosis
[278]. With animal experiments, it was also shown that
smaller particles were the most dangerous in the produc-
tion of silicosis [279, 280]. The effect of the crystalline na-
ture of silica particles was also tested in relation to the
severity of pathogenic reactions and it was found that tridy-
mite was most pathogenic followed by cristobalite, quartz,
and fused silica [281]. At the second International meeting
on pneumoconiosis held in 1969, special attention was paid,
in addition to size, to composition and shape of asbestos fi-
bres [282]. Subsequently, the importance of the three to
one aspect ratio in the pathogenesis of inorganic fibres be-
came known as the Stanton hypothesis [283, 284].
With the realization that the physicochemical proper-

ties of asbestos fibres were of importance in producing
their pathogenic effects, recommendations were made
by the Working Group on Asbestos and Cancer at a spe-
cial meeting in New York in 1964 under the auspices of
the Geographical Pathology Section of the Union for
International Cancer Control (UICC), to prepare stand-
ard samples for different commercial asbestos types for
international inter-comparative research experimenta-
tions [285, 286]. On this recommendation, half a ton of
the five main asbestos: Rhodesian chrysotile (Chrysotile
A), Canadian chrysotile (Chrysotile B), South African
amosite, Finnish anthophyllite, and South African cro-
cidolite, were prepared in South Africa. These samples
became the well-known UICC Standard Reference sam-
ples for animal experiments [287–289].
It was also demonstrated, as early as in 1960 that

the surfaces of silica have peroxidative activity where
this activity was shown to be increased with the pres-
ence of trace amounts of iron and further increased
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with the addition of hydrogen peroxide. It was then
speculated that a substance is released with high per-
oxidative properties and that there appeared to exist a
correlation between the oxidative activity of the dusts
and the known fibrogenic potential of the dust mate-
rials examined [290, 291]. These authors suggested
that the reactions induced by quartz are catalytic ones
with reactions involving free radicals similar to those
suggested previously by Johnson et al [292]. The ob-
servations that quartz powder possesses oxidative and
hydroxylative properties suggested that reduced gluta-
thione might also be affected by quartz [293]. Fur-
thermore, the protection afforded by reduced
glutathione to macrophages incubated in vitro with
tridymite and etched quartz has suggested that the
toxic actions of these dusts might be exerted among
other things, through changes in the sulfhydryl-disul-
fide form [294]. Surfaces of silica were also shown to
have adsorptive properties with the ability to adsorb
dyes, amino acids, proteins, and metal hydroxides
[295]. Such adsorptive properties were also shown for
the surfaces of asbestos fibres to adsorb carcinogens
such as 3,4-benzpyrene [296]. It was later proposed
that this carcinogen from cigarette smoke adsorbed
onto the surfaces of asbestos fibres may enhance the
presentation of this carcinogenic compound to cellu-
lar constituents and thus play some part in the over-
all biological activity of the inhaled fibres [297]. On
the other hand, the possibility of the release of com-
ponents from some mineral fibres could also be
shown in relation to their toxicity [298].
It was subsequently hypothesized that if the surface

layer is in fact an important parameter for silica, its in-
activation may alter particle fibrogenicity. Surface pacify-
ing agents have included metals and organic polymers.
For example, aluminium and aluminium oxides were
already extensively used as therapeutic agents for
silicosis in North America and elsewhere [299] with no
unanimity of opinion about the effectiveness of this
treatment [300]. It was also noted that the toxicity of sil-
ica particles towards phagocytes in tissue culture can be
prevented or reduced by the addition of small amounts
of nitrogenous bases called as “compound 48/80” [301];
when tested in vitro [302] or injected intravenously this
compound gave some measure of protection against
intravenously injected silica in mice [303]. It was postu-
lated that both “compound 48/80” and aluminium may
have acted by changing the surface properties of silica
rendering it less toxic [295]. However, its toxicity to
humans [304] prompted the investigation of other simi-
lar polymers including compound 46-107 [302] and poly
(2-vinyl-pyridine) or poly (4-vinylpyridine) [305]. Later,
the latter authors oxidized these polymers with hydrogen
peroxide in acetic acid to produce the soluble form poly

(2-vinyl-pyridineNoxide) [306], which was proposed to
act via its ability to coat the surface of silica dust [306].
This was later hailed as one of the most promising ad-
vances in the field of pneumoconiosis [307]. Other chemi-
cals tested have also included dimethyl dichlorosilane
which was thought to combine with the surface OH-
groups. Histological examination of the lesions formed
with animal experiments did not however show any
significant difference when compared with a control series
in which uncoated quartz was used [308]. It was agreed
that this may have been due to the hydrolysis of the com-
pound from the surfaces of the silica particles [309].
These early investigations laid foundations for particle

toxicology with further determination to find answers to
the central question: what made a particle or a fibre
toxic and pathogenic? Significant activity in this field has
produced impressive results which were presented and
discussed at a series of particle toxicology meetings. Pre-
sentations made at these meetings were true reflections
of the type of particles investigated and the important
physicochemical properties of particles and fibres which
determined their toxicity and pathogenicity. Most im-
portantly, progress was made over the years in elucidat-
ing the mechanisms involved in this toxicity and
pathogenicity. At the 7th particle toxicology meeting in
1999, the ambient particulate matter (PM10/2.5) was first
discussed, as at the previous meetings up to 1996, the
particles discussed were exclusively silica and asbestos
[310]. True to the predictions by these authors that PM
issues would follow the same route as asbestos in a dec-
ade or so as other issues will come up, and with the pub-
lication of articles recognizing the new discipline of
Nanotoxicology [77, 311], NPs became the subject of
discussion and pointed to the importance of applicability
of the earlier elucidated mechanisms and the established
physicochemical properties from other particles to NPs.
Describing the progress made over the years in particle
toxicology will only serve in preventing to waste valuable
resources by repeating what has already been achieved
and will generate new knowledge based on what has
already been established during the last four decades of
particle toxicology.

Lessons learned from particle toxicology for future
Nanotoxicology
The early observations in the mining industry in early
1900s up to late 1970s between exposure to particles
and fibres and the diseases they have produced have
prompted investigators to conduct in vivo animal and in
vitro cell culture studies [312–314]. The next three de-
cades work continued in earnest for the identification of
the particle and fibre properties as well as in the
elucidation of mechanisms involved in their toxicity and
pathogenicity.
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The decade between 1980 and 1990 produced an im-
pressive number of investigations on the importance of
the physicochemical properties of particles and fibres in
producing toxicity and pathogenicity. These have included
once again size [315, 316] and also crystalline nature
[317], adsorptive ability of alveolar and serum components
as well benzo(a) pyrene [318–321], and dissolution and
biodegradation of mineral fibres [322, 323]. Moreover, sur-
face reactivity with the generation of free radicals [324–
328], and their ability to induce the peroxidation of cellu-
lar lipids were also studied [329–334]. But most import-
antly, these investigations have included the elucidation of
the role of iron in these processes [335, 336] and also the
importance of surface properties in the toxicity of particles
and fibres with subsequent reduction of this toxicity
through surface modification [321, 337]. The involvement
of inflammation and inflammatory cells with subsequent
production of cell-mediated reactive oxygen species and
inflammatory markers in the toxicity of particles and fi-
bres was also investigated [338–345]. In addition, the in-
volvement of active oxygen species as secondary
messengers for toxicity was investigated [346] and the pre-
vention of such toxicity by scavengers of active oxygen
species was also presented [347]. Finally, oxygen free radi-
cals and oxidative stress and other mechanisms involved
in the carcinogenicity of particles and fibres were system-
atically pursued [348–351] and assessment of the levels of
antioxidant parameters were proposed as biomarkers of
particle-induced diseases [352].
The decade between 1991 – 2000 continued to

emphasize the importance of physicochemical properties of
particles and fibres where the importance of surface area
[353] and dissolution [354] in their toxicity were empha-
sized. Moreover, based on the surface adsorptive property
of particles and fibres, a reduction of toxicity could be
achieved by coating them with large molecular weight or-
ganic materials [355] and that differences in this adsorptive
property correlated with differences in their toxicity [356].
The generation of free radicals and inflammatory cytokines
by phagocytic and other cell types was continued to be in-
vestigated [357–360] and the relationship between this
property and their toxicity and pathogenicity was estab-
lished [361–364] where once again the reduction in toxicity
with the administration of antioxidants was demonstrated
[365]. Particle and fibre-induced free radical production of
peroxidation of lipids and damage to DNA was also shown
[366–369] where the role of iron, once again, in this dam-
age could be demonstrated [370–377]. In addition, the im-
portance of not only total iron present but also the type
and oxidation state could be shown [374, 378–380]. Signal-
ling pathways, gene expression, and cytokine production
have also featured prominently in the effort to elucidate
particle and fibre induced mechanisms of disease including
fibrosis and cancer [381–386] and subsequently the

expression of these parameters was considered to be an ap-
propriate biomarker for measurement following exposure
to particles and fibres [387–389]. Finally, the importance of
biopersistence of mineral fibres in their pathogenicity and
carcinogenicity was emphasised [390].
The decade between 2001 and 2010 was also very pro-

ductive especially in elucidating the importance of surface
properties of particles and fibres and their variability in re-
lation to their biological effects [391–404]. Subsequently,
efforts were presented whereby changes to these surface
properties were introduced to reduce their toxicity and
pathogenicity [405, 406]. Elucidating the mechanisms of
disease through signalling pathways and gene induction
have also produced landmark publications [407–413].
Finally, additional properties for ultrafine particles were
described including their ability to translocate to other
organs from their original route of exposure [414, 415].
Over the last three decades, particle toxicology

could therefore successfully contribute to the identifi-
cation of physicochemical properties of particles and
fibres that may determine their toxicity and pathogen-
icity. These have included size with ability to translo-
cate, crystalline nature, and surface properties
including surface area, ability to adsorb macromole-
cules and ability to release ions through dissolution,
surface activity through their ability to generate acel-
lular as well as cell-mediated free radicals to produce
the peroxidation of lipids and induce cellular oxida-
tive stress. Suggestions were therefore made that
changes to the surfaces of particles and fibres may re-
duce their toxicity and even pathogenicity. During
this period a strong focus was placed on elucidating
the mechanisms involved in particle and fibre toxicity
and pathogenicity including inflammation, fibrosis,
DNA damage and carcinogenesis.
With the advent of nanotechnology during the last

decade, it was possible to show that there was much less
new than was initially thought in Nanotoxicology. It was
possible to use the physicochemical properties which
were already identified for particles and fibres for defin-
ing NP toxicity. This could also be applicable to NPs
with the important premise that NPs are separate en-
tities with different chemical compositions capable of
durable independent existence without disintegration
over time to its chemical constituents. NP safety, health
effects and exposure patterns also differ from their very
chemical constituents. Hence, similar to larger sized par-
ticles and fibres, the assessment of their biodurability
and subsequent long-term health effects should also be
considered in addition to their short-term toxic effects.

Risk management and governance for particles and fibres
Risk governance serves as an organizational framework
through which the critical elements of risk assessment,
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management, and communication are applied to the sci-
entific and technological solutions for local, regional,
and global issues. Through risk governance, the
beneficial and adverse impacts of such solutions are
understood, and using principles of cooperation and
participation, effective policy decisions are made. Over
the last 20 years, as the concept of risk governance has
evolved, its scope has become more comprehensive, the
number of stakeholder communities larger, and its prac-
tical application daunting Fig. 7 [416]. Also for nanoma-
terials (including NPs) risk governance, a series of risk
governance strategies have been developed [417, 418]. In
assessing scientific and technical products, a balance
between innovation – the process that provides a new
product or solution that is technologically possible and
viable in the market place – and sustainability – the
process that considers what is bearable and equitable for
society, the environment, and the economy across the
life cycle of the solution – must be struck. The chal-
lenges of stakeholder involvement in risk governance de-
cision making are complicated by difficulty identifying
and engaging the appropriate stakeholder communities,
the limited coordination between government and
non-government communities, and the inability of gov-
ernments to agree on the principles and elements of risk
governance. Perhaps the biggest challenge is the identifi-
cation of a convening authority (or authorities) with the
multidisciplinary expertise, neutrality, and objectivity
needed to convene communities and governments
within, and across, nations for consensus decisions. As
one analyzes the complexity and challenges represented

by this approach, one might indeed ask if the scope and
organization of risk governance has made it too big to
succeed and if a need has arisen to create a more fo-
cused, adaptive, and practical risk governance approach.
At the core of risk governance lays the continuous as-

sessment, appraisal, evaluation and management of the
risks. This process translates governance goals into con-
crete strategies for dealing with the risks posed by parti-
cles and fibres. Approaches to deal with hazardous dusts
focused in the past on hazards and appropriate controls
measures [419]. This has evolved to approaches that
appraise the risk, which is the product of hazard and
exposure, before defining strategies to manage this risk
(e.g. [420]). To understand the risk of particles and
fibres, it is necessary to collect basic information on the
physico-chemical properties such as chemical compos-
ition, size, and shape, biopersistence, and reactivities;
testing results such as acute and chronic toxicity; and
dosing information such as bio-kinetics, exposure levels,
frequencies and duration of exposure to consumers,
workers and the general population. In a second step,
these data are combined to appraise the risk in terms of
people harmed, disabled or killed, and related metrics
such as disability-adjusted life years or cost to victims,
companies, insurance and society. Next, risk manage-
ment measures are defined that aim to reduce the risk
to acceptable levels. It is good occupational hygiene
practice to further reduce risks that are easy to reduce.
Considerable attention was given recently to nanomater-
ial and in particular NP risks and the knowledge gaps
that science has to fill [5]. In addition to the challenges

Fig. 7 Example of a modern risk governance framework including a wide range of stakeholder communities (adapted by authors from IRGC,
http://www.irgc.org/risk-governance/irgc-risk-governance-framework/, accessed July 17, 2015)
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faced with controlling the risk from larger particles and
fibres, NPs bring along two special challenges: first, ma-
terials often behaves differently at the nanoscale lending
them different physico-chemical properties. Second, NPs
were found to translocate (as discussed above) to differ-
ent target organs compared to micron sized particles.
Both of these challenges imply that data obtained in the
past for larger particles of these materials may no longer
be valid for the nanoform and a series of novel strategies
has been advanced to identify properties that best pre-
dict NPs’ risk potential [421, 422]. Taken together, mod-
ern risk governance and risk management theories
propose assessing risks in a comprehensive framework
that aims at reducing the risk and the uncertainty related
to it. In such a framework, one needs to understand the
likely exposure levels and how they relate to release
from products and production processes, how these con-
centration ranges translate into dose-response distribu-
tion functions and how they can be combined with
dose-response functions and uncertainties of the NPs’
hazards. By focusing on optimizing the risk rather than
addressing exposures and hazards individually, consider-
able gains are expected both in risk reduction as well as
in terms of the time and cost required to reach accept-
able risk levels.

Conclusions
Albeit that in recent year substantial efforts have been
undertaken to understand the hazard and health risk re-
lated to exposure to nanomaterials, much can still be
learned from general particle toxicology. There are
major similarities in terms of the effects that particles in
wide size range can induce, in particular those that are
referred to as being poorly soluble. Marked differences
can be seen in deposition, translocation and clearance,
in particular for inhalation exposures. From the more
sophisticated tools that can now be applied, it has be-
come evident that even poorly soluble particles can dis-
solve and sometime cause new particle formation, often
seen in organs distant to the port of entry. Albeit that
no specific new toxicological effects have been observed
for nano-sized particles, the research of this group of
particles have made people realize that also adverse
effects can be localized in other organs than those that
become initially in contact with particles.
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