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Abstract

Background:The terms agglomerates and aggregates are frequently used in the regulatory definition(s) of
nanomaterials (NMs) and hence attract attention in view of their potential influence on health effects. However, the
influence of nanoparticle (NP) agglomeration and aggregation on toxicity is poorly understood although it is
strongly believed that smaller the size of the NPs greater the toxicity. A toxicologically relevant definition of NMs is
therefore not yet available, which affects not only the risk assessment process but also hinders the regulation of
nano-products. In this study, we assessed the influence of NP agglomeration on their toxicity/biological responses
in vitro and in vivo.

Results:We tested two TiO2 NPs with different primary sizes (17 and 117 nm) and prepared ad-hoc suspensions
composed of small or large agglomerates with similar dispersion medium composition. For in vitro testing, human
bronchial epithelial (HBE), colon epithelial (Caco2) and monocytic (THP-1) cell lines were exposed to these
suspensions for 24 h and endpoints such as cytotoxicity, total glutathione, epithelial barrier integrity, inflammatory
mediators and DNA damage were measured. Large agglomerates of 17 nm TiO2 induced stronger responses than
small agglomerates for glutathione depletion, IL-8 and IL-1� increase, and DNA damage in THP-1, while no effect of
agglomeration was observed with 117 nm TiO2.
In vivo, C57BL/6JRj mice were exposed via oropharyngeal aspiration or oral gavage to TiO2 suspensions and, after 3
days, biological parameters including cytotoxicity, inflammatory cell recruitment, DNA damage and biopersistence
were measured. Mainly, we observed that large agglomerates of 117 nm TiO2 induced higher pulmonary responses
in aspirated mice and blood DNA damage in gavaged mice compared to small agglomerates.

Conclusion:Agglomeration of TiO2 NPs influences their toxicity/biological responses and, large agglomerates do
not appear less active than small agglomerates. This study provides a deeper insight on the toxicological relevance
of NP agglomerates and contributes to the establishment of a toxicologically relevant definition for NMs.
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Background
Manufactured nanomaterials (NMs) exist as unbound
(single) particles, agglomerates, aggregates or as a mix-
ture thereof [1–4]. This is clearly recognised in the def-
inition of NMs recommended by the European Union
(EU) stating “manufactured material containing parti-
cles, in an unbound state or as an aggregate or as an
agglomerateand where, for 50 % or more of the particles
in the number size distribution, one or more external di-
mensions is in the size range 1 nm-100 nm” [5]. This
definition was proposed for legislative and regulatory
purposes with no direct regard to hazard. Although ag-
glomerates and aggregates (AA) are often erroneously
considered similar and interchangeably used, they are,
however, two different secondary structures of particu-
late materials. In agglomerates, the particles bind to-
gether by weak forces, which are reversible, while, in
aggregates, particles fuse irreversibly together [6]. The
terms AA attracted in recent years attention among the
NM producers, consumers, regulatory authorities and
policy makers in view of their potential influence on hu-
man health effects [5, 7, 8]. However, no sound scientific
data justify that AA may or may not be relevant from a
toxicological perspective. This knowledge gap is not only
affecting the risk assessment process but also hindering
the development of guidelines to regulate NMs in com-
mercial products.

Agglomeration in particular, is a ubiquitous phenomenon
and its dynamic behaviour poses a great challenge in asses-
sing health impacts [9, 10]. Unlike aggregates, agglomerates
are very sensitive to changes in the environment such as
pH, ionic strength, presence of proteins and motion of the
carrier medium, and can de-agglomerate/agglomerate fur-
ther depending on the environment [10, 11]. While this in-
duces complex behaviour of NMs in exposure scenarios
and in tissue uptake and bio-distribution, influence on tox-
icity/biological responses remain poorly understood [9, 10].

Titanium dioxide (TiO2) is one of the most abundantly
produced NMs and is used in food, paints and in per-
sonal care products [12, 13]. Humans are increasingly
exposed to TiO2 via inhalation, dermal or oral exposure.
Based on animal studies, the International Agency for
Research on Cancer (IARC) classified TiO2 as a group
2B carcinogen (possibly carcinogenic to humans) [14].
Very recently, the French agency for food, environmen-
tal and occupational health and safety (ANSES) banned
the use of TiO2 as a food additive (E171) due to its gen-
otoxic potential [15]. While several studies showed that
TiO2 NPs can induce adverse effects including DNA
damage and chromosomal damage, findings are contra-
dictory [16, 17]. TiO2 NPs are well known for their ag-
glomeration and, so far, extensive efforts have been
dedicated at minimizing agglomeration using different
dispersion protocols to assess their toxicity despite a lack

of evidence that agglomeration influences their toxicity/
biological responses.

In this study, we aimed to determine the influence of
agglomeration state of TiO2 NPs on toxicity/biological
effects. Toxicological studies generally suggest that the
smaller the size of the primary NPs the greater the tox-
icity/biological responses [18–21]. Therefore, we hy-
pothesized that smaller agglomerates of NPs induce
stronger toxicity/biological responses compared to
their largely agglomerated counterparts. To test this
hypothesis, we selected two TiO2 NPs of identical phase,
coating and chemical composition but with different pri-
mary particle size and compared their toxicity in differ-
ent agglomeration states using in vitroand in vivo
models.

Results
Dispersions and size characterization of TiO2 NP
agglomerate suspensions
Our strategy to prepare ad-hoc stable suspensions of
TiO2 NPs with different agglomeration states, in the
same dispersion medium, was based on the method de-
veloped by Guiot and Spalla [22] (illustrated in Add-
itional file 1: Figure S2). Figure1 shows representative
Transmission Electron Microsopy (TEM) micrographs
of the freshly prepared TiO2 stock suspensions. The 17
nm sized TiO2 at pH 2 was relatively well dispersed and
predominantly existed as small aggregates(indicated as
17 nm-SA) compared to the suspension prepared at pH
7.5, in which particles tend to agglomerate strongly(17
nm-LA) . In contrast, 117 nm TiO2 were found to be less
agglomerated when dispersed at pH 7.5(117 nm-SA)
and existed as large agglomerates when dispersed at pH
2 solution (117 nm-LA). After dispersion in the respect-
ive pH conditions, TiO2 suspensions were sonicated at
constant energy (7056 J) and stabilized immediately
using bovine serum albumin (BSA, 0.25%). The suspen-
sions dispersed at pH 2 were readjusted to pH 7–7.5 be-
fore size characterization and cell/animal exposure.

Sizes of TiO2 suspensions are presented in Table1.
TEM analyses showed that the median Equivalent Circle
Diameter (ECD) of 17 nm-SA and 117 nm-SA were 18
and 122 nm, respectively. The TiO2 NPs were, thus, in
their most dispersed state in these suspensions. Median
ECD of the large agglomerates, 17 nm-LA and 117 nm-
LA, were 127 and 352 nm respectively, clearly indicating
that NPs were more agglomerated in these suspensions.
Mean ECD were substantially different: 100 nm for 17
nm-SA; 200 nm for 117 nm-SA; 250 nm for 17 nm-LA;
and 500 nm for 117 nm-LA, confirming the overesti-
mation of sizes when means are used. TEM was also ap-
plied to measure mean Feret minimum (Feret min) and
the measured sizes were slightly different compared to
median ECD (Table1). The mean hydrodynamic diameter
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Fig. 1 Representative TEM micrographs of freshly prepared TiO2 stock suspensions of small (SA) and large agglomerates (LA). 17 nm-SA (a), 17
nm-LA (b), 117 nm-SA (c) and 117 nm-LA (d)

Murugadosset al. Particle and Fibre Toxicology          (2020) 17:10 Page 3 of 14
(Z-average) measured by dynamic light scattering (DL
showed larger sizes for 17 nm TiO2 (SA 600 nm; LA 900
nm) than 117 nm stock suspensions (SA 280 nm; LA 58
nm). Hydrodynamic sizes measured using particle tracki
analysis (PTA) were smaller than Z-average in sizes for
nm TiO2 suspensions (SA 134 and LA 207 nm) and 11
nm TiO2 suspensions (SA 259 and LA 221 nm).

The stability of these suspensions in exposure me
was measured by DLS (Table2). After dilution to
100� g/mL, Z-averages were measured directly a
after 24 h. In DMEM/F12 (typically used for HBE ce
cultures) and RPMI 1640 (used for THP-1) only a slig
Table 1 Size characterization of freshly prepared TiO2 stock suspen

Stock
suspensions

TEM

Median
ECD (nm)

Mean
ECD (nm)

Mean
Feret min (n

17 nm-SA 18 100 33 ± 2

17 nm-LA 127 200 120 ± 19

117 nm-SA 122 250 148 ± 10

117 nm-LA 352 500 309 ± 64

Median and mean equivalent circle diameter (ECD) and mean feret minimum (f
hydrodynamic size) by dynamic light scattering (DLS) and mean hydrodynamic
SDstandard deviation
)change was observed after 24 h of incubation.
DMEM/HG (used for Caco2), at least a two-fold in
crease of Z-average after 24 h incubation was not
The polydispersity index (PDI) was less than ~ 0.35
stock suspensions and in cell culture medium at 0 a
24 h, indicating an acceptable distribution of sizes a
good stability of these suspensions.

In conclusion, TEM indicated a clear difference be
tween SA and LA for both TiO2 NPs and stock suspen
sions were found to be stable over 24 h using DL
indicating that these ad-hoc suspensions were approp
ate to test our hypothesis.
sions (2.56 mg/mL)

DLS PTA

m) ± SD
Z-average (nm) Mean hydrodynamic size (nm)

600 134

900 207

280 259

580 221

eret min) measured by transmission electron microscopy (TEM), Z-average (mean
size by particle tracking analysis (PTA)
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Table 2 Size characterization of TiO2 in stock and exposure
media (HBE,Caco2 and THP-1) using DLS

Stock DMEM/F12
(HBE)

DMEM/HG
(Caco2)

RPMI 1640
(THP-1)

Z-avg PDI Z-avg PDI Z-avg PDI Z-avg PD

17 nm-SA 0 h 600 0.34 670 0.27 630 0.31 1140 0

24 h 600 0.35 850 0.24 1580 0.28 1035 0.

17 nm-LA 0 h 900 0.42 900 0.27 870 0.30 1350 0

24 h 800 0.40 980 0.20 1546 0.24 1330 0.

117 nm-SA 0 h 280 0.18 690 0.19 547 0.18 1010 0

24 h 290 0.19 750 0.20 1145 0.40 900 0.

117 nm-LA 0 h 580 0.36 630 0.26 630 0.26 880 0

24 h 590 0.37 650 0.21 1300 0.57 960 0.

Stock suspensions (2.56 mg/mL) were diluted to 100� g/mL in different cell
culture medium and, hydrodynamic sizes (Z-avg) and poly dispersity index
(PDI) were measured directly and after 24 h
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Influence of TiO2 agglomeration on in vitro dosimetry
Before examining biological responses to these differen
agglomerated suspensions, we considered the possible
fluence of differential sedimentation of the suspensio
Fig. 2 Estimated TiO2 dose reaching the bottom of the wells after 24 h
Dosimetry simulation was performed with a distorted grid (DG) mod
exposure media DMEM/F12 (a and b) and RPMI 1640 (c and d). The slope
suspensions. The percentage of dose delivered to the cells did not d
similar (6 mm)
y
n-

in vitro, which might confound the cell responses. In vitr
dosimetry simulation was performed only using DMEM
F12 (used for HBE) and RPMI 1640 (used for THP-1) b
cause DMEM/HG (used for Caco2) promoted further ag
glomeration over 24 h incubation. The main paramete
used to perform dosimetry simulation are listed in Add
itional file 1: Table S1. Figure2 shows the estimated TiO2
dose reaching the bottom of the wells as a function
nominal (applied) dose. Regardless of the type of expos
medium and TiO2 primary size/agglomeration state, near
56–58% of the applied doses was delivered to the bott
of the wells after 24 h. Thus, the delivered doses betwe
SA and their LA suspensions of both TiO2 did not differ
substantially. The results are, therefore, presented a
function of nominal doses (expressed in� g/mL).

Comparison of biological responses
Since inhalation and ingestion are the primary routes
exposure to these NPs during production and use,
studied the in vitro effects in human bronchial (HBE
and colon (Caco2) epithelial cell lines, respectively.
addition, we used a human monocytic cell line (THP-1

I

.18

22

.30

25

.18

18

.30

23
as a function of increasing nominal doses applied in exposure media.
el for 17 (a and c) and 117 nm (b and d) using parameters obtained from

values are indicated near the respective lines.R2 > 0.99 for all the
iffer for 96 and 24 well plates, as the height of the liquid column was



ac-
n-
nd
for

s,
es
s)
ol

-
ch

n-
sed

or
A
e-

ion
on-

in
n-

n
ng

17

d-

he

L

7
A

ce

ir

de
ll

-
lls,
-

A
ict

ve

Table 3 Summary of the in vitro (A) and in vivo (B) responses
to TiO2 exposure

(A)

In vitro responses to TiO2 exposure

Biological endpoint HBE Caco2 THP-1

17
nm

117
nm

17
nm

117
nm

17
nm

117
nm

Cell metabolic
activity

No No No No No No

Cell viability No No No No No No

DNA damage Yes Yes Yes Yes Yes Yes

GSH Yes Yes Yes No Yes No

TEER Yes Yes No Yes n/a n/a

IL-8 No No No No Yes No

IL-6 Yes No No No No No

TNF-� No No No No Yes No

IL-1� No Yes No No Yes No

(B)

In vivo responses to TiO2 exposure

Biological endpoint Aspiration Gavage

17
nm

117
nm

17
nm

117
nm

BAL cell number No No n/a n/a

BALF LDH No Yes n/a n/a

BALF proteins No No n/a n/a

BAL macrophages No No n/a n/a

BAL neutrophils No No n/a n/a

BAL lymphocytes Yes Yes n/a n/a

Blood lymphocytes No No No No

Blood monocytes No No No No

Blood granulocytes No No No No

Lung Ti Yes Yes n/a n/a

Blood Ti No No No No

BAL DNA damage No No n/a n/a

Blood DNA damage n/a n/a Yes Yes

GSH lung No No n/a n/a

GSH liver n/a n/a No No

“Yes” indicatesp < 0.05 (One-way ANOVA) and a significant difference
compared to control;“No” indicatesp > 0.05; n/a-not available
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as a representative of innate immune cells that are
tively involved in phagocytosis of these particles. To i
vestigate the acute toxicity in vivo, oropharyngeal a
gavage administrations were used as representative
inhalation and ingestion, respectively.

In order to investigate the validity of our hypothesi
we first determined the endpoints for which respons
to TiO2 exposure (for both SA and LA suspension
were statistically different compared to untreated contr
using one-way ANOVA. Table3A and B summarise
these results in vitro and in vivo, respectively. If no im-
pact of TiO2 treatment on a given endpoint in both ag
glomeration states (SA and LA) was revealed, su
endpoint was not used to test the hypothesis of the i
fluence of agglomerations. In a second step, we analy
only those endpoints where TiO2 induced a significant
effect at least in one of the agglomeration states (SA
LA). We compared the effects induced by SA and L
using two-way ANOVA. If differences were observed b
tween suspensions, a post hoc test (Bonferroni’s multiple
comparison test) was used to determine the suspens
that induces the strongest effect at the same mass c
centration/dose (see Table4A and B).

The results indicated in green (SA = LA) are shown
Additional file 1: Figures S3 to S8. Significant results i
dicated in red or blue in Table4, are presented in Fig.3
for the in vitro experiments (total glutathione, IL-8, IL-
1� and DNA damage in THP-1 exposed to 17 nm TiO2)
and in Fig.4 for the in vivo experiments (lymphocytes i
the broncho-alveolar lavage and Ti persistence in lu
tissue for aspirated mice with 117 nm TiO2, Fig.4a and
b; blood DNA damage in gavaged mice for 17 and 1
nm TiO2, Fig.4c and d).

In HBE and Caco2 cells, the biological effects, inclu
ing DNA damage, of SA and LA for both TiO2 samples
did not vary (see Additional file1: Figures S3-S7). In
contrast, in THP-1, LA of 17 nm TiO2 induced stronger
GSH depletion, secretion of IL-8 and IL-1� and more
DNA strand breaks compared to SA (Fig.3). Such differ-
ences between SA and LA were not observed for t
117 nm TiO2 NPs in THP-1 cells. In vivo, LA of 117 nm
TiO2 induced a significantly stronger increase of BA
lymphocytes than SA (Fig.4a). Further, Ti detected in
the lung after 3 d was significantly higher for LA of 11
nm TiO2 (Fig.4b). Such differences between SA and L
were not noticed in mice exposed with 17 nm TiO2 (see
Additional file 1: Figure S8A and S8B). In gavaged mi
SA of 17 nm TiO2 and LA of 117 nm TiO2 induced sig-
nificantly higher blood DNA damage compared to the
counterparts (Fig.4c and d).

Discussion
The focus of this study was to compare the magnitu
of the toxicity/biological responses induced by sma
,

(SA) and large agglomerates (LA) of two TiO2 NPs with
different primary particle sizes. In in vitro testing, differ
ential responses were observed only in THP-1 ce
where LA of 17 nm TiO2 induced stronger biological re
sponses than SA. In in vivo testing, LA of 117 nm TiO2

induced stronger pulmonary effects and blood DN
damage compared to the SA. These results contrad
our initial hypothesis as small TiO2 agglomerates did
not necessarily appear more toxic/biologically acti
than their large counterparts.
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Table 4 Summary of in vitro (A) and in vivo (B) responses to differently agglomerated TiO2 suspensions

SA = LA (indicated in green) whenp > 0.05; LA > SA (red) or SA > LA (blue) whenp < 0.05(Two-way ANOVA). When suspensions are statistically different, a post
hoc - Bonferroni’s multiple comparison test was used to statistically determine whether LA or SA induced a stronger effect at the same mass concentrations/
doses; nc- not compared as both suspensions did not induce any significant activity compared to control. n/a-not available
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To systematically determine the influence of NP a
glomeration on toxicity, the thorny task was to develo
standardized protocols to reproducibly generate agglom
ation. Most importantly, this had to be done with min
imal/negligible variation in the dispersion media, to avo
bias due to medium effects. In the past, some attem
were made to determine the influence of TiO2 NP ag-
glomeration on toxicity using different protocols. Magdo
lenova et al. 2012 [23] prepared two suspensions; a we
dispersed condition of TiO2 NPs in the presence of serum
proteins (20% FBS) and an unstable/agglomerated con
tion without serum proteins and found that the large ag
glomerates induced DNA damage in three different c
lines while the small agglomerates did not. Prasad et
2013 [24] investigated the effect of three different cultur
-

i-

l.

media (with variable amount of BSA and FBS) on agglo
eration and observed that TiO2 induced micronuclei in its
least agglomerated condition. Lankoff et al. 2012 [25] also
used BSA (15%) and FBS (10%) and obtained two sus
sions with differently agglomerated state, but, in contra
to the two above mentioned studies, these authors did n
observe any differences in A549 cell death between
two suspensions. Thus, within the same study, differe
media and protein concentrations were used to produ
suspensions with different states of agglomeration, wh
is an evident source of potential bias [26] and probably, in-
fluenced the toxicological outcome. Therefore, in ou
study, we decided to vary only the pH of the initial dispe
sion medium to modify the agglomeration state of th
TiO2 NPs. After stabilization of these dispersions wi
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Comet assay
In earlier studies, cellular and in some cases nuclear
take of TiO2 has been shown [48–51]. In our study, we
verified cellular internalization in HBE cells (Additional file
1: Figure S9). DNA strand breaks were quantified as
measure of DNA damage. Cell cultures exposed to no
cytotoxic NM concentrations (5, 25, 50 and 100� g/mL)
were used to quantify DNA strand breaks using alkali
comet assay kit (Trevigen, C.No.4250–050-K) according to
manufacturer’s protocol. Cells treated with methyl me
thane sulfonate (MMS, Sigma-Aldrich, Belgium) 100� M
for 1–2 h served as positive control. For in vivo expe
ments, comet assay was performed on blood and BAL ce
collected from animals. Untreated animal blood or BA
cells exposed to H2O2 100� M for 15 min served as posi
tive control. Slides were imaged using microscopy (BX
Olympus, Belgium) in FITC mode and at 10x magnific
tion. Casplab software version casplab_1.2.3beta2 (http://
casplab.com/download) was used to score 50 comets p
well. The mean percentage of tail DNA was calculat
from the median of three independent experiments.

Statistical analysis
For in vitro assays, three independent experiments w
performed in triplicate or duplicate and data was present
as mean ± standard deviation (SD). For in vivo, mean ±
was calculated for 4–5 animals per group. Using GraphPa
prism 7 software (https://www.graphpad.com/), results
were analysed with one-way ANOVA followed by a Dun
nett’s multiple comparison test to determine the signif
cance of differences compared with control. Two-wa
ANOVA followed by Bonferroni’s multiple comparison
test was used to determine significance of differences
tween suspensions (see Table4 for explanation).

Supplementary information
Supplementary information accompanies this paper athttps://doi.org/10.
1186/s12989-020-00341-7.

Additional file 1 : Table S1.Main parameters necessary to calculate
the delivered dose in vitro for different the TiO2 suspensions.Figure S1.
pH vs Zeta potential curves. 17 nm TiO2 (A) and 117 nm TiO2 (B).Figure
S2.Scheme of the protocol for the preparation of SA and LA from TiO2

suspensions. To obtain small (SA) and large agglomerates (LA), 17 a
117 nm TiO2 were dispersed at different pH conditions, sonicated and
stabilized with BSA 0.25%. The suspensions dispersed at pH 2 were
readjusted to pH 7–7.5 using 0.1 M NaOH.Figure S3. Influence of TiO2
agglomeration on cytotoxicity in vitro. WST-1 and LDH assay were us
to measure the cell metabolic activity in HBE (A), Caco2 (C) and THP
and cell viability in HBE (B) Caco2 (D) and THP1 (F) after 24 h expos
small (SA) and large agglomerates (LA) of 17 nm and 117 nm TiO2. Data
are expressed as means ± SD from three independent experiments p
formed in triplicates.p < 0.001 (***) represents significant difference com
pared to control (One-way ANOVA followed by Dunnett’s multiple
comparison test).Figure S4. Influence of TiO2 agglomeration on total
glutathione (GSH) in vitro. GSH depletion was measured as an indica
of oxidative stress in HBE (A,B) and Caco2 (C) cells after 24 h exposu
small (SA) and large agglomerates (LA) of 17 nm (A,C) or 117 nm TiO2 (B).
-

-

,

-

(E)
to

to

Data are expressed as means ± SD from three independent experime
performed in duplicates.p < 0.05 (*),p < 0.01 (**) andp < 0.001 (***) rep-
resent significant difference compared to control (One-way ANOVA
followed by Dunnett’s multiple comparison test).Figure S5. Influence of
TiO2 agglomeration on barrier integrity in epithelial monolayers in vitro
Trans-epithelial electrical resistance (TEER) was measured in HBE (A
and Caco2 (C) after 24 h exposure to small (SA) and large agglomera
(LA) of 17 nm (A) or 117 nm TiO2 (B, C). Data are expressed as means ±
SD from three independent experiments performed in duplicates.p <
0.05 (*),p < 0.01 (**) andp < 0.001 (***) represent significant difference
compared to control (One-way ANOVA followed by Dunnett’s multiple
comparison test).Figure S6. Influence of TiO2 agglomeration on cyto-
kine release in vitro. TNF-� (A), IL-6 (B) and IL-� (C) levels were measured
in the supernatant of the HBE (A,B) and THP-1 (C) after 24 h exposur
small (SA) and large agglomerates (LA) of 17 nm (A, C) or 117 nm TiO2

(B). Data are expressed as means ± SD from three independent expe
ments performed in duplicates.p < 0.05 (*),p < 0.01 (**) andp < 0.001
(***) represent significant difference compared to control (One-way
ANOVA followed by Dunnett’s multiple comparison test).Figure S7. In-
fluence of TiO2 agglomeration on DNA damage in vitro. DNA damage
was measured in HBE (A,C), Caco2 (B,D) and THP-1 (E) after 24 h e
to small (SA) and large agglomerates (LA) of 17 nm (A,B) or 117 nm T2

(C, D,E). Data are expressed as means ± SD from three independent
periments performed in duplicates.P< 0.05 (*),p < 0.01 (**) andp <
0.001 (***) represent significant difference compared to control (One-w
ANOVA followed by Dunnett’s multiple comparison test).Figure S8. In-
fluence of TiO2 agglomeration on in vivo toxicity in mice exposed via
oropharyngeal aspiration. BAL lymphocytes (A), Ti persistence in lung
sues (B) and BALF LDH activity (C) measured after 3 d in mice aspira
with different doses of small (SA) and large agglomerates (LA). Data
expressed as means ± SD from 4 to 5 mice in each group.p < 0.05 (*),
p < 0.01 (**) andp < 0.001 (***) represent significant difference compare
to control (One-way ANOVA followed by Dunnett’s multiple comparison
test).Figure S9. Intracellular uptake of TiO2 agglomerates by HBE cell
cultures and cellular distribution. TEM images of control cells (A) and
posed to 50� g/mL of TiO2 NPs for 24 h: 17 nm-SA (B), 17 nm-LA (C), 1
nm-SA (D) and 117 nm-LA (E). N -Nucleus; C-Cytoplasm. Some TiO2 ag-
glomerates close to the nucleus induced arch like structures (indicate
red arrow).

Abbreviations
AA:Agglomerates and aggregates; ANOVA: Analysis of variance;
BAL: Broncho-alveolar lavage; BALF: BAL fluid; BCA: Bicinchoninic aci
BSA: Bovine serum albumin; CCD: Charge coupled device; CCM: Cell
medium; DG: Distorted grid; DLS: Dynamic light scattering; ECD: Equiv
circle diameter; EDTA: Ethylenediaminetetraacetic acid; ELISA: Enzym
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