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Abstract

Background: Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the
broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental
material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F
(MW #1–7 and CNF #1–2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported
diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical
dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F
(0–24 μg/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand
breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and
toxicity outcomes.
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Results: Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical
dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact,
analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization
parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested.
Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with
larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes.
Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater
severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the
majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity.
Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not
cluster with the toxicity outcomes.

Conclusion: Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity
outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of
toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters.

Introduction
The evaluation of the potential toxicity of carbon nano-
tubes and nanofibers (CNT/F) began in the early 2000’s
[1–4]. The general outcomes of toxicity studies to date in-
dicated that pulmonary exposure to CNT/F was capable
of inducing inflammation, fibrosis, cancer, immunosup-
pression, and adverse cardiovascular and neurological out-
comes in vivo [5–15]. Studies of key importance also
confirmed that certain CNT/F were able to translocate
from the lung to lung-associated lymph nodes as well as
systemic tissues [5, 16–19]. These results raised justifiable
concerns regarding potential human health effects, espe-
cially in the occupational workforce, and prompted the
need to design and conduct epidemiological studies.
While the latency needed for clinical symptoms has not
ended based upon other fiber toxicity models, as the aver-
age worker handling CNT/F has had just short of a decade
of cumulative exposure, evidence suggests exposure-
related effects primarily consisting of measures of inflam-
mation, oxidative stress, and immunosuppression [20–28].
The outcomes were generally mild with no consistent pat-
tern of effect among studies. Evidence of CNT/F in the
sputum was observed and a considerable number of
workers, approximately 70%, were subjected to dermal ex-
posure [21, 29]. The National Institute for Occupational
Safety and Health (NIOSH) established a recommended
exposure limit (REL) of 1 μg/m3 as an 8-h time-weighted
average of respirable elemental carbon, a surrogate for
CNT/F, following background correction for ambient
elemental carbon [30]. Dahm et al. (2018) found that U.S.
companies can, in fact, maintain the 1 μg/m3 REL, as 93%
of respirable measures were below the REL from 214 col-
lected samples at 12 different facilities [29], although his-
torically, and globally, this has not always been the case
[31]. More recently, potential adverse effects of the inhal-
able fraction, including airway fibrosis and bronchiolitis

obliterans [32, 33], have been recognized. The inhalable
fraction was often significantly greater than the respirable
fraction by 4 times and 29% of the inhalable samples in
U.S. facilities were greater than 1 μg/m3 [29]. Recently, the
International Agency for Research on Cancer (IARC) clas-
sified one multi-walled carbon nanotube (MWCNT), the
Mitsui-7 or MWCNT-7, as possibly carcinogenic to
humans (Group 2B) [34]. There was insufficient evidence
to classify all other CNT/F. The 2020–2024 Report of the
Advisory Group to Recommended Priorities for the IARC
Monographs indicates MWCNT as a high priority to be
ready for evaluation within five years [35]. In summary, 1)
in vivo studies indicated a significant hazard potential of
CNT/F, 2) evidence exists of human exposure and health
effect, 3) exposure can be controlled at recommended
levels, 4) reevaluation for carcinogenicity is imminent, and
5) recommendations to fill toxicity knowledge gaps by
examination of a broader class of CNT/F was warranted.
Our group recently conducted a cross-sectional study

to evaluate exposure and potential associated health ef-
fects in workers handling CNT/F [20–22, 29]. From
these studies, which evaluated 12 different facilities, and
the years of ongoing exposure assessment of more than
20 facilities [36, 37], it was clear that a wide variety of
CNT/F were being produced or utilized by primary and
secondary manufacturers. The production of CNT/F
continues to increase, and new high-volume applications
are being evaluated, especially in the construction sector.
The global CNT market is expected to grow from ap-
proximately USD 4.5 billion to USD 10 billion by 2023
and USD 15 billion by 2026 with a compound annual
growth rate of 16%. The primary question arising from a
commercialization, industrial hygiene, and research per-
spective was whether all as-produced CNT/F materials
confer similar toxicity. In controlled studies, differing
physicochemical characteristics of CNT, such as length,
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diameter, functionalization, or surface coating in turn al-
tered the in vivo pulmonary toxicity profile [32, 38–49].
To date, very few studies simultaneously compared a
broad class of as-manufactured CNT and linked the re-
lationship between physicochemical characteristics and
toxicity endpoints.
In this current series of studies, with guidance from

extensive facility exposure assessment [29, 36, 37], we
selected six MWCNT and two carbon nanofibers (CNF),
collectively termed CNT/F, either manufactured or han-
dled by U.S. companies, to evaluate four primary param-
eters of toxicity using in vitro and in vivo studies.
Specific CNT/F types were selected to be broadly repre-
sentative of those to which U.S. workers may be com-
monly exposed. The parameters included genotoxicity,
inflammation, pathology, and extrapulmonary transloca-
tion. CNT/F selection was initially based on provided
company diameter. Nominal tube diameter was the sim-
plest way to delineate samples for testing and previous
studies indicate a changing toxicity profile with increas-
ing diameter (or rigidity) [16, 39, 45, 50]. The selected
materials ranged from 6 to 150 nm in diameter accord-
ing to company specifications. Determining the materials
to test according to diameter, other key physicochemical
characteristics also were expected to vary, such as length
(5–200 μm), thus providing a proper representation of
the CNT/F material class. A seventh MWCNT, Mitsui-
7/MWCNT-7, was added as a benchmark material given
the IARC carcinogenicity classification and the large
amount of historical toxicity data available for the four
parameters of interest. Of the materials selected, four
MWCNT had reported company diameters smaller than
the benchmark material, and two MWCNT and two
CNF had diameters larger than the benchmark material.
In the few comparative studies that examined multiple
different materials, the larger diameter materials were
not evaluated [39, 41, 45].
For this section of the evaluation of CNT/F toxicities,

all materials were extensively characterized, and geno-
toxicity, one of the four primary parameters of toxicity,
was evaluated in vitro. Analyses included physical di-
mension, residual metal catalysts, dustiness, density,
charge, acellular reactivity, surface area, endotoxin and
PAH impurities, thermogravimetric analysis, and hydro-
dynamic diameter in suspension. Prevalence and forms
of bundled agglomerates were also characterized as ex-
posure assessment indicated that agglomerates, not sin-
glets or individual fibers, represent the majority of
particles in personal breathing zone samples in work-
places [36]. Human bronchial epithelial cells were
treated with CNT/F to determine cell viability, inflam-
mation, oxidative stress, micronuclei formation, and
DNA double-strand breakage. Computational modeling
was applied to physicochemical characteristics alone,

and in conjunction with toxicity outcomes. The model-
ing created clustering by material, as well as response, to
evaluate the relationship between physicochemical char-
acteristic(s) and various toxicity endpoints.

Results/discussion
Seven MWCNT and two CNF (CNT/F), were arranged
according to their diameter as reported by the produc-
tion facility and are referred to as MW #1–7 and CNF
#1–2 (Figs. 1 and 2). The arrangement was designed as
the information was readily available from the company
and selecting a wide diameter range was necessary to en-
sure representation of this large class of materials. Fur-
thermore, one material, MW #5, also known as Mitsui-
7/MWCNT-7, has been commonly studied and was used
as a benchmark material for comparison. All CNT/F
were extensively characterized as detailed in Tables 1-3
and Figs. 1-5.
The typical representation of bundled agglomerates

containing tubes/fibers with smaller diameters materials
and transitioning to more elongated bundles with tubes/
fibers of increasing diameter was readily observed
(Fig. 1). Also observed was the range in dimensions that
could be present in each sample. For example, MW #2
was a unique material containing two main populations,
one with singlets or agglomerates of discrete tubes and
the other having highly entangled, cross-linked MWCN
T with an average diameter of 7 μm and length of 48 μm
as measured by electron microscopy. In contrast, MW
#7 had a highly mixed population of diameters that
ranged from very thin to very thick with diameters ran-
ging from 9 to 425 nm (Table 1). All CNT/F were exten-
sively characterized and detailed in Tables 1-3 and Figs.
1-5. Of the studies that have simultaneously examined a
broad class of CNT/F, a greater proportion of those ma-
terials were of diameters at or below MWCNT-7
(mean = 67 nm) [39, 41, 45]. We aimed to extend those
studies by encompassing MWCNT with larger diameter
tubes and, additionally, by including CNF.

Nominal tube physical dimensions
The classic fiber paradigm links fiber dimensions and
biopersistence with toxicity outcomes. Fibers have been
defined by an aspect ratio, or the ratio of particle length
to diameter (or width), greater than 3:1 with a length
greater than 5 μm and a diameter less than 3 μm [5, 51].
Historically, length, more so than diameter, has been the
key consideration in understanding the toxicities in-
duced by high aspect ratio materials. In comparative
studies, longer fiber lengths were often associated with
greater toxicities of naturally occurring or synthetic fi-
bers [52–62]. Often, materials greater than 5 μm in
length were associated with the development of meso-
thelioma, greater pulmonary biopersistence and particle
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retention, and greater inflammatory and fibrotic re-
sponses. While longer fibers generally confer greater
toxicity, short fibers, those less than 5 μm in length, are
not without toxicity [63].
The comparison of high aspect ratio CNT/F to asbes-

tos was a natural progression [5, 64–66]. Several com-
parative studies assessing the effects of length and
development of mesothelioma indicated that CNT/F
may have similar capabilities to induce adverse effects.

General consensus among the literature indicates that
longer CNT/F particles were more likely to activate
downstream inflammatory cascades, induce fibrogenesis,
interrupt macrophage clearance, and were generally
more bioactive than short or tightly bundled CNT/F [38,
39, 43, 45, 64, 67–74]. Specific studies on CNT/F diam-
eter, with consistent length, have not been as extensively
investigated as a determinant from toxicity outcomes of
CNT/F exposure. These studies, sometimes as a

Fig. 1 Schematic of material diameter and TEM images of CNT/F. Materials selection was based upon company reported diameter ranging from
6 to 150 nm in diameter to ensure a full range of materials were included in this study and the material arrangement is depicted in the upper
left corner. These materials were identified as MW #1–7 and CNF #1–2. A well-studied benchmark material, MWCNT-7/Mitsui-7, was included in
this study as MW #5. Materials were dispersed in isopropanol and placed onto a TEM grid to measure physical dimensions. Representative images
of each material were selected with scale bars representing 1 μm, 300 nm, and 50 nm from left to right

Fig. 2 Representative scanning electron microscopy images of CNT/F in DM to measure two-dimensional agglomerate sizes. LA = large agglomerates
and SA = small agglomerates
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comparison of MWCNT to SWCNT, found that increas-
ing diameter can be associated with less toxicity than
thinner fibers in terms of inflammation, histopathology
changes, alveolar fibrosis, disrupting membrane integrity,
and genotoxicity, while other studies link greater diam-
eter to enhanced macrophage interactions, as well as
greater apoptosis and inflammation [14, 16, 17, 45, 48,
49, 75–77].

Nominal tube diameter
As previously noted, company-provided diameter was
the initial segregator for deciding which CNT/F to evalu-
ate for toxicity to ensure broad representation of particle
sizes. Preliminary evaluations by electron microscopy of
the samples also suggested that length was likely to vary
with diameter, thereby creating a good representation of
the CNT/F class of materials produced and used in U.S.
facilities.
To confirm the nominal tube diameters (6–150 nm)

reported by the company (Table 1), the CNT/F materials
were dispersed in isopropanol and analyzed using scan-
ning transmission electron microscopy (STEM). Two
hundred individual tubes for each material were mea-
sured and the following parameters were determined:
geometric mean, arithmetic mean, range, and median of
diameters (Table 1). The samples were further character-
ized by binning into specific diameter ranges (Fig. 3).
From STEM, MW #1–4 had geometric means ranging
from 12 to 20 nm (arithmetic means of 13–26 nm)
(Table 1). These values were similar to the range of
company reported diameters of 6–30 nm. There was a
range of 6–275 nm in diameters but very few tubes of

MW #1–4 had nominal tube diameters above 50 nm.
The geometric mean diameter of the benchmark mater-
ial, MW #5, was found to be 63 ± 1 nm (arithmetic mean
of 67 ± 2 nm) with a range of 21–168 nm, slightly larger
than previous reports of a mean of 49 nm [6] but in
agreement with other studies [41, 78–80]. MW #6–7
were larger in diameter than MW #1–4 but, on average,
smaller than MW #5 (Table 1). Interestingly, while the
mean suggests materials smaller in diameter than MW
#5, the range and distribution of particles was greatest in
the larger size bins (> 150 nm) for MW #6–7 compared
to all other MWCNT (Fig. 3). CNF #1 and 2 had diam-
eter geometric means that were similar to each other at
102 ± 1 nm (arithmetic mean 110 ± 3 nm) and 103 ± 1
nm (arithmetic mean 110 ± 3 nm), respectively (Table 1).
It was clear that the central tendency to only include

the mean of the distribution of particle dimensions, es-
pecially when evaluating MW #6 and #7, did not have
enough resolution to fully characterize and distinguish
one material from another, a critical factor to under-
stand and model toxicity outcomes based on material
properties. The heterogeneity in diameter size distribu-
tions of the CNT/F was assessed from the histograms in
Fig. 3. The 50% accumulation or cut-off point was deter-
mined by curve fitting using the sigmoidal function and
is represented by the dashed line with the nominal size
value represented by the upper x-axis. The point of 50%
accumulation was rapidly achieved for MW #1–4 within
the first two bins indicating most particles were less than
25 nm in diameter. Beginning with MW #5, a right shift
can be seen, reflecting an increase in diameter. While
MW #5 had a significantly larger population of tubes

Table 1 Physical dimensions of CNT/F dispersed in isopropanol

MW #1 MW #2 MW #3 MW #4 MW #5 MW #6 MW #7 CNF #1 CNF #2

Diameter (nm)

Company Reported Diameter (nm) 6–9 10 10–15 5–30 N/A 70–80 150 100 150

Geometric Mean (nm ± GSD) 13 ± 1 14 ± 2 20 ± 2 19 ± 1 63 ± 1 28 ± 2 37 ± 2 102 ± 1 103 ± 1

Arithmetic Mean (nm ± SE) 13 ± 0 16 ± 1 26 ± 2 20 ± 1 67 ± 2 38 ± 3 54 ± 4 110 ± 3 110 ± 3

Median 12 14 19 18 63 25 28 98 100

Diameter Range 6–29 6–216 8–275 8–133 21–168 8–218 9–425 40–397 46–263

Normal Distribution Lognormal Lognormal

Length (μm)

Company Reported Length (μm) 5 N/A 0.1–10 100 N/A N/A N/A 50–200 50–200

Geometric Mean (μm±GSD) 0.67 ± 1.81 1.34 ± 2.21 1.10 ± 2.00 1.41 ± 1.97 4.39 ± 2.07 2.05 ± 2.53 2.88 ± 4.26 3.64 ± 2.36 2.16 ± 2.31

Arithmetic Mean (μm± SE) 0.80 ± 0.03 1.79 ± 0.10 1.28 ± 0.07 1.84 ± 0.13 5.62 ± 0.29 3.42 ± 0.37 7.64 ± 0.78 5.23 ± 0.36 3.20 ± 0.28

Median 0.6607 1.5437 1.0148 1.2896 4.547 2.1503 2.3781 3.7273 2.0003

Length Range 0.1–3.6 0.2–50.9 0.1–8.5 0.3–20.6 1.2–25.8 0.3–37.3 0.1–49.1 0.3–37.6 0.4–42.7

Normal Distribution Lognormal Lognormal Lognormal Lognormal Lognormal Lognormal

Aspect Ratio

Aspect Ratio (GeoMean ± GSD) 53 ± 2 96 ± 2 50 ± 2 76 ± 2 69 ± 2 73 ± 2 78 ± 3 36 ± 2 21 ± 2
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around 64 nm in diameter, the distribution had a smaller
range of particle widths; virtually all particles were con-
tained in three bins, compared to MW #6 and 7. While
not large in absolute number, subpopulations of larger
diameter tubes were found in MW #6 and 7 that were
not observed for other MWCNT. CNF #1 and 2 had a
similar profile and distribution. Compared to the
MWCNT, the shift in 50% accumulation towards larger
size bins was more distinguished for the CNF and pro-
vided a clear distinction from MW #1–4.

Nominal tube length
Lengths were not reported by all companies, and those
reported had a range of 0.1–200 μm (Table 1). As with
diameter, the nominal tube length was determined on
tubes/fibers in parallel with diameter to create paired
STEM measurements. Two hundred individual tubes or
fibers for each material were measured. The summary of
length measurements was presented as arithmetic mean,

geometric mean, range, median, and binning by specific
diameter ranges (Table 1, Fig. 4). MW #1–4 had geo-
metric mean lengths ranging from 0.67–1.41 μm (arith-
metic means of 0.80–1.84 μm) (Table 1). MW #1 was
the shortest by average length followed by MW #3, with
virtually all length values being segregated in the initial
bin (0–2 μm) (Fig. 4). MW #5 measured much longer
than MW #1–4 at 4.39 ± 2.07 μm (arithmetic mean of
5.62 ± 0.29 μm) with a range of 1.2–25.8 μm. The mea-
sured length is consistent with previous reports of
MW#5/MWCNT-7 [6]. On average, MW #6–7 were
shorter than MW #5 but longer than MW #1–4 (Table
1). The distribution of longer nominal tubes for MW
#5–7 was greater than MW #1–4. CNF #1 measured
3.64 ± 2.36 μm (arithmetic mean of 5.23 ± 0.36 μm) in
length and CNF #2 was 2.16 ± 2.31 μm (arithmetic mean
of 3.20 ± 0.28 μm). The length differences between CNF
#1 and 2 was notable as CNF #2 was 40% shorter on
average with virtually identical diameters. The arithmetic

Fig. 3 Distributions of CNT/F diameter. Particles were binned according to size along the lower x-axis with frequency on the left y-axis. Additionally,
percentage of accumulation is graphed on the right y-axis with the absolute diameter along the upper x-axis. The overlay line was 3 parameter
sigmoidal curve of best fit with the point of 50% accumulation indicated with dotted lines. Sizes are for particles in isopropanol suspension
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means of MW #5, #7 and CNF #1 crossed the threshold
set by Schinwald et al. (2012) (5 μm) for causing acute
pleural inflammation [60].
Nominal tube lengths were binned and depicted in

histograms found in Fig. 4 with the cut-off points at 50%
accumulation indicated in each case. For MW #1–4, al-
most all (96%) nominal tube lengths were concentrated
in the first two size bins. The cumulative distribution of
particles and the 50% length accumulation cut-off were
shifted to the right for MW #5–7 and CNF #1–2. Over-
all, bulk samples containing tubes of greater nominal
length were more common in MW #5–7, and CNF #1–
2, with notably greater length particle populations in
MW #5, 7, and CNF #1.

Aspect ratio
Aspect ratio was a critical measurement considered in
the original fiber paradigm. In the 1970s and 1980s,
Stanton published his early work linking high aspect ra-
tio materials, particularly glass fibers and asbestos with

increased toxicities including lung cancer incidences and
mortality [61, 62]. A re-analysis of the research com-
pleted in 1980 by Bertrand and Pezerat used multiple re-
gression analysis to conclude that the carcinogenicity of
fibers was a continuous spectrum that must include both
length and diameter, as a greater aspect ratio can be in-
dicative of greater carcinogenicity [52]. While aspect ra-
tio is an inherent description of length to diameter, the
values for each material, including the distribution, were
considered for toxicity outcomes.
Individual tube aspect ratio was quantified from STEM

measurements as the diameter and length measurements
were paired. These measurements were as follows (Geo-
metric Mean ± Geometric standard deviation, GM ±
GSD): 53 ± 2, 96 ± 2, 50 ± 2, 76 ± 2, 69 ± 2, 73 ± 2, 78 ± 2,
36 ± 2 and 21 ± 2 for MW #1–7 and CNF #1–2, respect-
ively. MW #4–7 had a slightly higher aspect ratio com-
pared to MW #1 and #3. CNF #1 had a lower aspect
ratio compared to all MW due to the notably larger
diameter, which was even less for CNF #2 given a similar

Fig. 4 Distributions of CNT/F length. Particles were binned according to size along the lower x-axis with frequency on the left y-axis. Additionally,
percentage of accumulation is graphed on the right y-axis with absolute length along the upper x-axis. The overlay line is 3 parameter sigmoidal
curve of best fit with the point of 50% accumulation indicated with dotted lines. Sizing was for particles in isopropanol suspension
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diameter, but shorter length compared to CNF #1. As
with length and diameter, aspect ratios were binned and
histograms with corresponding accumulation curves
were generated and can be found in Fig. 5. All materials
had a wide distribution of aspect ratios. There was a
trend for the peak aspect ratio to be from 50 to 100 for
all materials except CNF #2. The CNF had a greater left-
ward distribution with CNF #2 having a significant
population of fibers with an aspect ratio of approxi-
mately 20. Due to the differences in length, CNF #1 and
2 had notably different distributions of aspect ratios.

Two-dimensional sizing of agglomerates
Previous studies have considered the role of CNT ag-
glomeration as a determinant of toxicity outcome, par-
ticularly within the context of genotoxicity, macrophage
recognition, the activation of downstream inflammatory
cascades, and pulmonary fibrosis [5, 18, 33, 81–83].
Rod-like and less tangled particles, including singlets,

were more likely to influence inflammation histopath-
ology outcomes by inducing more pulmonary fibrosis,
and impact extrapulmonary translocation [17, 33, 81].
Furthermore, agglomeration patterns and size are rele-
vant factors in human occupational exposures and
respirability [29, 37].
Using SEM images, size measurements of particle ag-

glomerates were completed following dispersion in our
physiologic dosing medium, commonly referred to as dis-
persion medium (DM). We have previously described how
the sample preparation mimics collected personal breath-
ing zone samples of workers [32]. Representative SEM im-
ages can be found in Fig. 2. Based on the dimensions,
particles in this study were categorized into two distinct
groups, spherical or bundled agglomerates. Spherical ag-
glomerates were defined as tangles of tubes/fibers that had
an aspect ratio of less than 3:1; this convention was
adapted from earlier workplace exposure assessment stud-
ies [29]. The second category of agglomerates was referred

Fig. 5 Distributions of CNT/F aspect ratio. Particles were binned according to size along the lower x-axis with frequency on the left y-axis.
Additionally, percentage of accumulation is graphed on the right y-axis with absolute aspect ratio along the upper x-axis. The overlay line is 3
parameter sigmoidal curve of best fit with the point of 50% accumulation indicated with dotted lines. Sizing was for particles in
isopropanol suspension
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to as “bundles.” These bundled agglomerates were tangles
of particle with an aspect ratio greater than 3:1. These
bundles varied in the number of tubes/fibers, with some
having only a couple. In sizing these structures, the major
and minor axes of the bundles were reported as length
and diameter, respectively.
MW #1 and #3 were similar with spherical agglom-

erates composing the bulk (87 and 83%, respectively).
A second subpopulation of bundled agglomerates was
present, but not dominant. Spherical agglomerates of
MW #1 averaged 0.96 ± 2.01 μm (arithmetic mean of
1.28 ± 0.16 μm) in diameter and MW #3 has spherical
agglomerates averaging 0.66 ± 1.84 μm (arithmetic
mean of 0.81 ± 0.10 μm) in diameter. Bundled agglom-
erates of MW #1 and #3, which represented less than
20% of the total sample exceeding a 3:1 dimension,
had lengths under 2 μm and diameters under 0.4 μm
on average.
MW #2 was a unique material that formed quite large

agglomerates that were not spherical, but rather inter-
connected ‘rivers’ of highly entangled cross-linked
MWCNT (Fig. 2). These agglomerates were “bundled”

agglomerates with a high aspect ratio and two subpopu-
lations were distinguished (Table 2). The large bundled
agglomerates averaged 49.55 ± 3.58 μm in length and
had an average diameter just under 10 μm. The second
subpopulation was found as more loosely bundled,
smaller structures, likely agglomerates of singlet tubes as
compared to the entangled cross-linked MWCNT. This
subpopulation had arithmetic averages of 3.80 ± 0.38 μm
in length and 30 nm in diameter. The two populations
also highlight that the singlet nominal tube diameter and
length of MW #2 was not entirely representative of the
material as it did not account for the large bundled
agglomerates.
Beginning with MW #4, there was a rather dramatic

transition from spherical agglomerates to bundled ag-
glomerates (Table 2). In fact, less than 0–4% of any of
MW #4–7 or CNF #1–2 were categorized as spherical ag-
glomerates using our criteria. As the materials increase in
diameter, the materials become almost exclusively small
bundles and singlets that assume a more classic fiber-like
appearance (Fig. 2). The bundled agglomerates, more rep-
resentative of a fiber-like appearance, were representative

Table 2 Hydrodynamic diameter, zeta potential, and two-dimensional sizing of CNT/F agglomerates dispersed in physiologic dosing
media

MW #1 MW #2

Small
Agglomerates

MW #2

Large
Agglomerates

MW #3 MW #4 MW #5 MW #6 MW #7 CNF #1 CNF #2

Spherical Agglomerates

% Spherical Agglomerated 87 0 0 83 1 4 0 0 0 0

Spherical Agglomerate
Mean Diameter

μm± SE

1.28 ±
0.16

N/A N/A 0.81 ±
0.10

N/A N/A N/A N/A N/A N/A

Spherical Agglomerate
Diameter Geometric Mean

μm (GSD)

0.96
(2.01)

N/A N/A 0.66
(1.84)

N/A N/A N/A N/A N/A N/A

Bundled Agglomerates

% Bundle Agglomerates/
Singlets

13 N/A N/A 17 99 96 100 100 100 100

Bundle Agglomerate Mean
Length

μm± SE

1.90 ±
0.37

3.80 ± 0.38 49.55 ± 3.58 1.11 ±
0.25

3.77 ±
0.35

6.27 ±
0.44

9.47 ±
1.26

11.32 ±
1.08

9.30 ±
1.07

2.96 ±
0.36

Bundle Agglomerate Geometric
Mean Length

μm (GSD)

1.66
(1.71)

3.09 (1.82) 47.94 (1.31) 0.72
(2.98)

2.92
(2.05)

5.17
(1.94)

5.90
(2.57)

7.91
(2.49)

6.18
(2.49)

2.11
(2.25)

Bundle Agglomerate Mean
Diameter

μm± SE

0.38 ±
0.12

0.03 ± 0.00 9.50 ± 2.24 0.03 ±
0.00

0.10 ±
0.01

0.13 ±
0.01

0.08 ±
0.01

0.10 ±
0.01

0.21 ±
0.01

0.12 ±
0.01

Bundle Agglomerate Diameter
Geometric Mean

μm (GSD)

0.18
(4.20)

0.03 (1.60) 6.99 (2.24) 0.03
(1.56)

0.08
(1.89)

0.11
(1.07)

0.07
(2.09)

0.09
(1.64)

0.19
(1.42)

0.11
(1.63)

Hydrodynamic
Diameter (nm)

660 ±
19

771 ± 33 608 ± 30 478 ±
24

504 ±
15

714 ±
24

652 ± 26 615 ±
19

664 ±
18

Zeta Potential (pH 7.3) −10.4 ±
0.4

−12.1 ± 0.6 −11.1 ±
0.06

−12.0 ±
0.4

−13.5 ±
0.8

−11.8 ±
0.6

−13.2 ±
0.5

−11.1 ±
0.8

−11.3 ±
0.5
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of the physical dimensions. Specifically, the length of the
bundled agglomerates for MW #4 and CNF #2 were on
average 50–75% shorter compared to MW # 5–7 and
CNF #1.

Hydrodynamic diameter and zeta potential
The hydrodynamic diameter, which qualitatively reflects
the agglomerated state of the CNT in aqueous solution,
was evaluated using dynamic light scattering (DLS). The
hydrodynamic diameter ranged between 478 and 771 nm
(Table 2). MW #4 was found to have the smallest hydro-
dynamic diameter, followed by MW #5. Similar values
were found for MW #1, 3, 7, and CNF #1 and 2, and
MW #2 and MW #6 had the largest hydrodynamic
diameters.
Zeta potential, the electrokinetic potential at the inter-

face of the particle surface and aqueous solution, was
evaluated by measuring the electrophoretic mobility of
the particles in solution by phase analysis light scatter-
ing. Zeta potential of a nanomaterial is indicative of its
stability in a solution. Minimal differences in zeta poten-
tial were observed between these materials (Table 2).

Surface area
Surface area has been a central measurement for ultra-
fine particle characterization [84]. Studies have focused
on how surface area was a primary determinant of

toxicity, especially with metal oxides [85–88]. While sur-
face area is inversely related to nominal tube diameter
and decreases with agglomeration, the quantification of
the surface area of CNT/F can pose some limitations
due to their physical structure [89–91]. For example, the
interior space of variable concentric layers paired with
porosity, grooves, and other surface topography can lead
to variation in measurements of surface area. A few
studies have linked increased surface area of CNT/F to
more pronounced toxicity outcomes, including genotoxi-
city and inflammation [45, 81, 92]. In this study, all
CNT/F were analyzed using the same methodology,
allowing for adequate comparisons between materials
(Table 3). The surface areas follow the expected relation-
ship that smaller diameter corresponded to greater sur-
face area on a mass-to-mass basis. MW #1–3 had the
greatest surface area. MW #4 was intermediate indicat-
ing a transition point in physical dimensions. MW #5–7
and CNF #1 and 2 have the smallest surface area, almost
an order of magnitude less than MW #1–3.

Dustiness
Particle dustiness is a quantification of the tendency of a
dry powder to aerosolize, an important aspect for under-
standing the potential for human occupational exposure.
Two independent measurements, total and respirable
dustiness, were simultaneously determined as previously

Table 3 Results of additional particle characterization of CNT/F

MW #1 MW #2 MW #3 MW #4 MW #5 MW #6 MW #7 CNF #1 CNF #2

Surface Area
(m2/g ± SD)

237.7 ± 1.0 211.9 ± 1.8 218.6 ± 1.2 99.4 ± 1.1 25.2 ± 0.4 25.4 ± 0.4 24.7 ± 0.4 29.4 ± 0.2 18.0 ± 0.2

Dustiness

Dustiness Total (%) 3.8 2.9 0.3 0.5 14.0 0.2 0.2 4.9 ND

Dustiness Respirable (%) 0.84 1.10 0.20 0.20 2.40 0.08 0.09 1.40 ND

Density

Bulk Density (g/cm3) 0.087 0.007 0.082 0.169 0.007 0.075 0.061 0.020 0.032

Tapped Density (g/cm3) 0.119 0.008 0.095 0.222 0.010 0.095 0.073 0.028 0.045

Endotoxin BLD BLD BLD BLD BLD BLD BLD BLD BLD

PAH BLD BLD BLD BLD BLD BLD BLD BLD BLD

Metal Catalyst

% Fe 0.317 1.725 1.603 3.423 0.270 5.006 6.169 1.168 1.142

% Al 0.310 0.028 2.116 0.019 N/A 0.035 N/A 0.006 0.013

TGA

TGA -Avg onset
oxidation, °C

550 ± 2 603 ± 2 575 ± 0 560 ± 2 735 ± 2 581 ± 0 592 ± 0 593 ± 0 694 ± 0

TGA - Mean Residual Ash,
%

1.74 ± 0.01 3.98 ± 0.26 8.21 ± 0.26 4.75 ± 0.07 1.11 ± 0.28 7.88 ± 0.15 8.95 ± 0.29 1.79 ± 0.12 2.21 ± 0.16

Anti-oxidative Capacity

% 64.53 ±
23.91

75.41 ±
25.66

76.34 ±
27.37

88.17 ±
28.40

91.49 ±
21.37

84.78 ±
25.74

77.27 ±
19.96

100.12 ±
22.69

99.80 ±
24.19

BLD below the level of detection
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described [93] and well suited to characterizing these
CNT/F materials. Total dustiness was the percent of the
total dust (sample using a closed face cassette) that can
be aerosolized from the test sample, while the respirable
fraction (sampled with a cyclone) was the percent of the
aerosolized dust that can penetrate to the deep airways,
or the alveolar region. Total dustiness may be approxi-
mated to the inhalable dustiness fraction, particularly
with these CNT/F materials [94] MW #1, #2, #5, and
CNF #1 had total dustiness that ranged from 3 to 14%
and a respirable dustiness that ranged from 0.8–2.4%.
CNF #2 was not measured but was expected to be very
close to the values of CNF #1 and MW #5 published
previously [93]. The total dustiness of MW #3, #4, #6,
and #7 ranged from 0.2–0.5%, approximately an order of
magnitude less that the other materials. The respirable
dustiness ranged from 0.08–0.20%. The results indicate
greater dustiness for some CNT/F compared to others
but not a consistent pattern with relationship to physical
dimensions or surface area.

Density
As CNT/F mostly occur as agglomerates, the aero-
dynamic behavior is determined by the effective density
of the agglomerates [5]. Most CNT/F exposures are per-
formed on a mass basis and the NIOSH REL is based on
mass concentration of elemental carbon. Given that
density is directly proportional to mass, theoretically, the
lower the effective density, the more CNT/F particle
would be needed for equivalent dosing by mass. Recent
computational modeling of engineered nanomaterials in-
cluded density in the analyses [95–97] with some indica-
tion it was a primary driver of toxicity [96].
Measurements of bulk and tapped skeletal density were
performed for all CNT/F (Table 3). MW #1, #3, and #4
were comparatively denser than MW #2 and MW #5 by
an order of magnitude. The remaining materials, MW
#6, MW #7, CNF #1, and CNF #2 were intermediate
from the above-mentioned materials. As concluded with
dustiness, there was no apparent consistent pattern that
linked skeletal density to other physical dimensions, sur-
face area, or dustiness.

Chemical and metal impurities
Chemical and metal impurities from the catalysts and
production process were usually present at some level in
CNT/F end products. Some common metal impurities
found in the CNT/F include iron, nickel, chromium, co-
balt, copper, zinc, molybdenum and aluminum. Some of
these metals such as iron [98], nickel [99], molybdenum
[100], chromium and cobalt [50] were found to influence
the toxicological profile of CNT. Thirty-one metals and
chemical impurities were screened using inductively
coupled plasma atomic emission spectroscopy (ICP-

AES). Most of the thirty-one metals evaluated were
below their respective analytical limits of detection
(LODs). The metals that were present in one or more
CNT/F include iron (0.27–6.2%) and aluminum (0–
2.2%) (Table 3). Trace amounts of cobalt, molybdenum,
zinc, nickel, manganese, lead and cadmium were in
range of (0–0.17%), (0–0.05%), (0–0.1%), (0–0.004%),
(0–0.006%), (0–0.002%) and (0–0.0005%) respectively.
Most of the CNT/F currently used in U.S. facilities had
minimum trace amounts of metal residues. Iron was a
consistent catalyst ranging from 0.27 to 6.17% (Table 3).
MW #6 and #7 had the highest levels of residual iron
catalyst. Another metal of note was aluminum which
was present in MW #3 at 2.1% with residual amounts of
0.31% or less in other CNT/F (Table 3). All other metals
were at levels of 0.17% or less.

Thermal stability, degradation and purity
Thermal stability, degradation, and purity of CNT/F was
assessed using thermogravimetric analysis (TGA). This
technique analyzes change in the weight of a specimen
in relation to increasing temperature. The oxidation on-
set temperature, the temperature at which the oxidation
of CNT/F starts, is considered a measure of thermal sta-
bility and degradation varied across the CNT/F. The on-
set temperature for the CNT/F ranged from 550 to
735 °C (Table 3). The residual ash, or the content left
after complete oxidation, was evaluated to determine the
purity of the CNT/F. The percentage of residual ash for
MW #1–7 and CNF 1–2 was 1.74 ± 0.01% (means ±
SD), 3.98 ± 0.26%, 8.21 ± 0.26%, 4.75 ± 0.07%, 1.11 ±
0.28%, 7.88 ± 0.15%, 8.95 ± 0.29%, 1.79 ± 0.12%, and
2.21 ± 0.16% respectively (Table 3). These values are pri-
marily indicative of metal content and were generally
consistent with relative levels of residual metal catalysts
determined using ICP-AES. MW #3, #6, and #7 had the
greatest residual ash and results are consistent with the
higher amount of metal catalyst measured.

Polycyclic aromatic hydrocarbons and endotoxin
Airborne background contaminants and byproducts like
polycyclic aromatic hydrocarbons (PAHs) and endo-
toxin, a component of the bacterial cell wall, can be a
major influence on the toxicity profile of various engi-
neered nanomaterial and environmental particulates
[101–103]. Previous exposure and emission monitoring
at a CNF production facilities indicated the presence of
PAHs with an average concentration up to 336 μg/m3

[104]. To rule out the influence of PAHs and endotoxin,
gas chromatography–mass spectrometry with selected
ion monitoring (GC–MS SIM) and limulus amebocyte
lysate assay were performed, respectively. The levels of
PAHs and endotoxin in the CNT/F were below their
LODs. The lack of endotoxin was supported by no
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significant induction of tumor necrosis factor-α produc-
tion (described below) from epithelial cells at the highest
CNT/F dose tested.

Acellular reactivity
Multiple physicochemical characteristics of the CNT/F
including residual metal catalysts, surface defects, func-
tionalization, and redox active organic matter, such as
quinones, will alter the reactivity of the nanomaterial in
biological matrices. This can lead to an imbalance in
redox homeostasis that can trigger oxidative stress and
toxicity. The ferric reducing ability of serum (FRAS)
assay was used as an acellular screen to determine the
antioxidant capacity, or the ability of CNT/F to react in
biological matrices and deplete antioxidants. This assay
serves as a screen for oxidative stress and potential tox-
icity [105]. Compared to untreated serum, reaction with
CNT/F reduced the antioxidative capacity of serum by
65–100% (Table 3). CNF #1 and 2 had 100% remaining
antioxidative capacity, indicating that these materials
were the lowest in their ability to independently react
and induce oxidative stress. MW #1 and MW #7, two
very distinct CNT materials in terms of physical dimen-
sions, consumed among the most serum antioxidants as
indicated by the low remaining % antioxidative capacity.
The remaining CNT ranged from 75 to 91%.

Grouping CNT/F by principal component analysis of
physicochemical characteristics
As a first step, feature selection using the Boruta algo-
rithm was performed on three sets of physicochemical
property data for the nine different CNT/F materials: 1)
detailed characterization of length (L), diameter/width
(labeled as W for figure clarity for easier distinction

from L), and aspect ratio (AR) from the binned data
from Figs. 3, 4, and 5 (Fig. 6b; L-W-AR binning); 2)
standard physicochemical data using means only from
Tables 1, 2, and 3 (Fig. 6c; Means only); and 3) the com-
bination of L-W-AR and means only data (Fig. 6a; All
characterization). Figure 6 displays the principal compo-
nents analysis (PCA) results for different CNT/F samples
with confirmed variables of importance from the three
separate analyses (Supplemental Fig. S1 A-C). It should
be noted that the PCA plots did not change without fea-
ture selection (Supplemental Fig. S2). The first three
principal components describe ~ 71, 68 and 82% of the
total variability among materials for the ‘all
characterization’, ‘L-W-AR binning’, and ‘means only’
parameters, respectively. Most importantly, the PCA
analysis of L-W-AR and all characterization variables
suggested a segregation of MW #1–4 materials from
MW #5–7 and CNF #1–2 (Fig. 6a-b). Overall, a combin-
ation of larger lengths and widths separated one group
of materials (MW #5–7, CNF #1–2) from the second
group of materials (MW #1–4) (Fig. 6a-b; Supplemental
Fig. S1 A-C). The categorization of MW #5–7 and CNF
#1–2 together in the same group indicates common
physicochemical characteristics of these materials. How-
ever, this was not the case with PCA using traditional
variable data which were based on mean values only
(Fig. 6c). Often, the literature reports only mean values
without including the detailed size distributions for
physical dimensions. Previous studies proposed that pro-
viding distributions of dimensional characteristics would
better segregate different CNT/F for grouping and tox-
icity [50]. The difference in the material segregation be-
tween means only compared to L-W-AR binning and all
characterization suggests that varying the input

Fig. 6 Principal component analysis (PCA) of different CNT/F materials comparing ‘all characterization’ parameters (a), length – diameter – aspect
ratio physical dimension (b; L-W-AR binning) and means only (c) physicochemical characteristics. The first two principal components (PC), PC1
and PC2, define the x- and y-axes of the scatter plots, respectively. The distance between two materials reflects the proximity in physicochemical
properties between them. PC1, PC2 and PC3 together accounted for ~ 71, 68 and 82% of the contribution to the variance in the case of all
characterization, L-W-AR binning and means only, respectively. The scatter plot of the PCA along with vectors depicting the loadings of variables
is shown
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parameters will influence conclusions drawn in terms of
which physicochemical characteristics may drive specific
toxicity outcomes. The variance in the PCA plots pro-
vided two initial suggestions: 1) binning of the physical
dimensions may be critical for accurate representation of
the materials and potential toxicity and 2) binning of the
physical dimensions without significant additional physi-
cochemical characterization may alone be enough to
group CNT/F. The latter point agrees with the lack of a
consistent pattern when comparing surface area, density,
residual metal catalyst, dustiness, etc. for the various
CNT/F.
Another important finding was that the use of L-W-

AR binning alone parameters further separated CNF #1
from CNF #2 and grouped CNF #1 together with MW
#5–7 (Fig. 6b). Furthermore, a close-clustering of CNF
#1 with MW #6 and their overall grouping with MW #5
and #7 along with correlated L-W-AR binning variables
in the PC1 dimension, supports the notion that a greater
range of sizes can be found in CNF #1 compared to
CNF #2. The PC1 dimension correlates MW #6 and
CNF #1 materials with L15, L10, Lmore, W0.1, W0.2
and W0.3 variables. Similarly, a correlation of MW #5
and MW #7 with the variables L6, L8, L10, L25, L30,

W0.15 and Wmore was also observed. Overall, these re-
sults suggest that larger lengths and diameters separate
MW #5–7 and CNF #1 from the rest of the materials in-
vestigated. Importantly, the separation does not indicate
a large fraction of the CNT/F sample has those larger di-
mensions (Fig. 3 and 4) but rather the sample contains
some proportion of tubes with those specific nominal
physical dimensions.

In vitro toxicity assessment
Cell viability
Human bronchiolar epithelial cells (BEAS-2B; selection
detailed in Methods) were challenged with the nine
CNT/F at 0.024, 0.24, 2.4, and 24 μg/ml for 24 h and cell
viability was assessed by measuring the reduction of cell
proliferation reagent WST-1 (Fig. 7a). Dose selection
and relevance is detailed in the Methods. The lowest
two doses (0.024 and 0.24 μg/ml) caused no significant
change in cell viability. The highest dose (24 μg/ml) sig-
nificantly reduced viability with all the materials tested
except with MW #2. CNF #2 induced ~ 45% reduction
in cell viability. The 2.4 μg/ml dose induced a small but
significant reduction in cell viability for MW #1–3 and
CNF #1. These toxicity results are consistent with

Fig. 7 Toxicity assessment of BEAS-2B cells exposed to CNT/F. a WST-1 cell proliferation assay was used to assess the viability of BEAS-2B cells
following exposure to increasing concentrations (0.024–24 μg/ml) of CNT/F. The dose at which the particle significantly reduced cell viability is
indicated with an asterisk (p < 0.05). b Oxidative stress was measured using the CellROX assay. * p < 0.05 fold change vs. control cells represented
as a reference line. c Protein secretions from cells exposed to 2.4 or 24 μg/ml of various CNT/F for 24 h represented as heat maps of fold change
from controls with no exposure.. Significant changes from control cells were indicated with an asterisk (* p < 0.05). Log fold change was
represented by color with green indicating a decrease in protein concentration and red indicating an increase on a scale of − 0.2 to 1. (*p < 0.05)
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previous results [106–108]. The IC80 for MW #1–7 and
CNF #1–2 ranged from 11 to 43 μg/ml. Subsequent
studies of genotoxicity were done at 0.024 and 2.4 μg/ml
in accordance with OECD TG487 [109] and ICH S2(R1)
[110] guidance for 80% or greater cell viability.

Oxidative stress
Reactive oxygen species (ROS) consisting of hydrogen
peroxide, singlet oxygen, superoxide anion, hydroxyl
radical, and hypochlorous acid are constantly regulated
by the cells, which is essential to maintain homeostasis.
Epidemiology studies of workers exposed to CNT/F dur-
ing their manufacturing or use in downstream applica-
tions found alterations in oxidative stress markers and
antioxidant enzymes [20, 23, 28, 100]. Animal and
in vitro studies using various cell types, including epithe-
lial cells, confirmed induction of oxidative stress with
various CNT/F exposures. The response was amplified
by metal impurities and was found to be dependent on
the physicochemical characteristics that influence the re-
activity, cellular internalization, and biopersistence [67,
111, 112]. In order to assess the oxidative stress potential
of the nine CNT/F, BEAS-2B cells were exposed for 24 h
at concentrations of 0–24 μg/ml and then labeled with
CellROX, a non-fluorescent cell-permeant dye that fluo-
resces upon oxidation by ROS. Fluorescence per cell was
evaluated by flow cytometry. Only the highest dose
(24 μg/ml) induced a significant oxidative stress response
for MW #4–7, and CNF #1–2 (Fig. 7b). There was a
trend for an effect in MW #6–7 and CNF #1–2 at
2.4 μg/ml. The CNT/F with smaller physical dimensions
(MW #1–3) did not induce ROS even at the highest
concentration tested.

Cytokines, chemokines, and growth factors
A selection of 27 cytokines, chemokines, and growth fac-
tors were assessed from cell supernatant following ex-
posure to 2.4 and 24 μg/ml of each of the nine CNT/F
for 24 h (Fig. 7c). Many of the measured proteins were
altered for most of the CNT/F tested. MW #2 exposure
altered the least number of proteins. The reduced re-
sponse was likely due to the large bundled aggregate
fraction (Table 2) not having the same cellular effect as
the other CNT/F. MW #6 and #7 caused the most sig-
nificant changes, especially at the lower dose evaluated,
indicating these materials may be more adept at altering
cellular signaling than other materials in this study. All
materials except MW #2 induced a significant increase
in primary modulators of innate inflammation, IL-6, IL-
8, IL-1β, etc., at the high dose and several at the low
dose (e.g., MW #6–7). Some molecules assessed, includ-
ing IL-10, an anti-inflammatory cytokine, were signifi-
cantly reduced. FGF was increased while other growth
factors measured, VEGF and PDGF-ββ, were generally

decreased. At the higher dose, suppression of certain
cytokines was more evident with MW #5–7 and CNF
#1–2.

Genotoxicity
The potential for CNT/F to cause carcinogenicity is an
area of active research [113, 114]. In vivo and significant
in vitro evidence suggested adverse health consequences
following inhalation to CNT/F. One material, MWCNT-
7/Mistui-7, has been shown to be a complete carcinogen
in rodent models, which led IARC to designate this ma-
terial as possibly carcinogenic to humans (Group 2B)
[34]. All other materials were considered as Group 3 as
there was insufficient evidence to classify otherwise [66].
The 2020–2024 Report of the Advisory Group to Rec-
ommended Priorities for the IARC Monographs indi-
cates MWCNT as a high priority and ready for
evaluation within five years [35]. While human health ef-
fects studies have begun globally, the latency for carcino-
genicity has not been reached [20–28].
To date, most studies concerning the potential car-

cinogenicity of CNT/F have used in vitro approaches to
evaluate genotoxicity. The approach allows for a rapid
screening after which detailed mechanistic and in vivo
studies can be conducted to expand initial evidence of
genotoxicity. The micronucleus assay was used to deter-
mine if CNT/F treatment results in disruption of the mi-
totic spindle or chromosome breakage. This approach
also allows for the simultaneous evaluation of a large
group of materials. Parallel cultures of human epithelial
BEAS-2B cells were exposed to 0.024 and 2.4 μg/ml of
the 9 CNT/F, with MW#5 (Mitsui-7/MWCNT-7) serv-
ing as a documented positive control, for 24 h and the
number of cells with micronuclei were quantified
(Fig. 8a-b). The screening approach, including cell type
and exposure concentration, has been used previously by
our group [10, 106, 108]. Viability in the high dose was
≥80%, and the low dose had ≥97% viability. In DM-
exposed cells, few micronuclei were detected, and back-
ground incidence was similar to previous studies [10,
108]. All CNT/F materials at both the low and high dose
induced significant increases in micronuclei number ex-
cept for the low dose of MW #2 (Fig. 8b). The treat-
ments were not significantly different from one another.
In complement, the phosphorylation of H2AX, a cellu-

lar response to repair double-strand DNA breaks, was
evaluated. Flow cytometry was used to quantify phos-
phorylated H2AX, or γ-H2AX. All high dose-treated
cells induced γ-H2AX except for MW #2 (Fig. 8c). In-
creased levels of γ-H2AX were also measured for MW
#7, CNF #1 and CNF #2 for the low dose treatment. For
CNF, the low and high doses had similar effects. While
measurements of γ-H2AX was considered a low priority
indicator of genotoxicity as it does not directly indicate
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irreversible mutations [114], the response was similar to
the micronuclei outcome.

Hierarchical clustering and PCA of the cellular outcomes
A hierarchical clustering analysis (HCA) was performed
to distinguish or discriminate the BEAS-2B cellular out-
comes induced by CNT/F materials with varying physi-
cochemical characteristics. HCA, unlike model-
dependent analyses such as supervised machine learning
methods, is a model-free statistical approach that makes
no a priori assumptions about the class identification of
data. The resulting dendrogram from the HCA analysis
of physicochemical properties of ‘all characteristics’
combined with outcomes of the four primary in vitro as-
says, cell viability, cellular oxidative stress, micronuclei
formation, and γ-H2AX, is depicted in Fig. 9a. Overall,
the dendrogram initially divided CNT/F exposure re-
sponses into two clusters or groups, one predominantly
containing MW #1–4 together with the control group,
and the other containing MW #5–7 and CNF #1–2 (Fig.
9a). HCA was also done for outcomes in comparison to
the ‘L-W-AR binning’ and ‘means only’ characterization
profiles. The L-W-AR binning profile produced the same
two clusters (Fig. 9b) as developed using all
characterization parameters (Fig. 9a). The means only
HCA shifted MW #4 into the cluster with MW #5–7
and CNF #1–2, suggesting similarities resembling more
MW #6–7 than MW #1–3 (Fig. 9c), indicating the input
selection of characteristics can vary the grouping in rela-
tion to toxicity outcomes. PCA results from ‘all
characterization’ combined with the four primary
in vitro assay outcomes (Supplemental Fig. 3A) grouped
similarly to ‘L-W-AR binning’ (Supplemental Fig. 3B),
producing a separation between the two clusters. The
‘means only’ with in vitro outcomes (Supplemental

Fig. 3C), like the HCA dendrogram (Fig. 9c), was less
clear in distinguishing groups of CNT/F.
HCA analysis was done for ‘all characteristics’ and the

four primary in vitro outcomes along with inflammatory
protein production (Supplemental Fig. 4). The grouping
was unaltered compared to Fig. 9a except for a clearer
separation in the two sub-clusters. This was evident as
MW #6–7 had a significant grouping of induced inflam-
matory proteins compared to MW #5 and CNF #1–2.
What became evident from Fig. 9a-b and Supplemental
Fig. 4 was that binning of the aspect ratio data did not
segregate to any particular outcome and may be un-
necessary for the HCA. To illustrate, Supplemental Fig. 5,
HCA without aspect ratio binning, created the same two
clusters of MW #1–4 and MW #5–7 / CNF #1–2 for ‘all
characterization’ (Supplemental Fig. 5A) and ‘L-W-AR
binning’ (Supplemental Fig. 5B) when considering the
four primary in vitro epithelial toxicity outcomes. Within
each sub-cluster, co-clustering between materials was
also evident as all variations in HCA pulled out the two
CNF from the CNT and MW #6 and #7 clustered to-
gether even without secreted protein changes as in Sup-
plemental Fig. 4. There were a few subtle differences in
pairings between MW #1–4 and control for the L-W-
AR binning HCA compared to all characterization. As
an additional step, HCA analysis was done, without as-
pect ratio, to include the altered protein changes with
the four primary toxicity outcomes and the three varia-
tions in characterization parameters. Interestingly, all
three scenarios (Supplemental Fig. 6A-C) now had the
same two clusters, meaning the ‘means only’ HCA
placed MW #4 with MW #1–3 instead of MW #5–7 and
CNF #1–2. Previously for ‘mean only’ HCA (Fig. 9C),
MW #4 was combined with MW #6–7. It was clear from
Supplemental Fig. 6C that the large group of induced

Fig. 8 Genotoxicity assessments. a Cells with micronuclei were quantified and presented as percentage of total cells at treatments of 0.024 and
2.4 μg/ml. b Inference into double stranded DNA breaks were quantified via detection of γH2AX. Percentage change from DM is presented on
the y-axis. *p < 0.05 represents significant change from control
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inflammatory proteins for MW #6–7, not seen with
MW #4, altered the clustering. This series of analyses
suggests that when using ‘means only’ for physicochemi-
cal characterization, additional toxicity data may be ne-
cessary to accurately categorize all materials in terms of
epithelial cell toxicity. It also indicated that altered in-
flammatory protein concentrations, at least the panel
used in this study, were not necessary to group CNT/F
in terms of epithelial toxicity if binning of physical di-
mensions was available.
We next considered just the four primary outcomes of

in vitro toxicity and protein production with no

physicochemical characteristics. The HCA analysis also
grouped MW #1–4 separately from MW #5–7 and CNF
#1–2 (Supplemental Fig. 7). The toxicity only grouping
consistently matched HCA analyses using ‘all
characterization’ or more simply the ‘L-W-AR binning’ as
compared to the ‘means only’ characterization from Fig. 9.
The separation of oxidative stress, micronuclei formation,
and γ-H2AX from protein production when considering
outcomes only (Supplemental Fig. 7) further supports the
consistency of grouping when physical dimension binning
was determined and analyzed without inflammatory pro-
tein production (Supplemental Fig. 4 and 6). The

Fig. 9 Clustering of physicochemical characteristics with the epithelial cell toxicity outcomes of cell viability, cellular oxidative stress, γH2AX and
micronuclei formation. Toxicity outcomes compared to (a) all characteristics, (b) L-W-AR binning, and (c) means only were presented
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separation also suggests that epithelial cell viability and in-
flammatory cytokine production, as assessed by the panel
used, were not primary drivers of genotoxicity.
The various analyses allowed for interpretation of

which physicochemical properties drive which epithelial
cell toxicity outcomes. Three of the four in vitro out-
comes evaluated, oxidative stress, micronuclei formation,
and γ-H2AX, grouped with certain physicochemical
properties that were identified in Fig. 9 and Supplemen-
tal Figs. 4, 5, and 6 as distinguishing between the two
CNT/F clusters. Bins of larger lengths and diameters
(W), including L15, L20, L25, L30, W0.1, W0.2, and
Wmore, clustered with the outcomes. Also clustering
with the toxicity outcomes were bundled agglomerate
singlet percentage, length, and diameter from the two-
dimensional sizing (Table 2). Inherently, that would be
expected as the increasing physical dimensions of length
and diameter transition the CNT/F from a spherical ag-
glomerate (e.g., MW #1 and #3) to a more elongated
bundled agglomerate. Depending on the parameters for
HCA, the fourth primary outcome, cell viability, some-
times grouped with the other three toxicity variables of
importance (Fig. 9b; Supplemental Fig. 4), but other
times did not (Fig. 9a; Supplemental Fig. 5 and 7), sug-
gesting that cell viability may not always be a useful
assay for determining differential toxicity among mate-
rials. Overall, MW #1–4 materials clustered separately
from MW #5–7 / CNF #1–2. While all materials in-
duced significant micronuclei formation (Fig. 8b), when
combined with γ-H2AX (Fig. 8c) and cellular oxidative
stress (Fig. 7b), there was a propensity for greater sever-
ity in the cluster of materials that contained a greater
proportion of tubes/fibers with larger physical dimen-
sions, MW #5–7 / CNF #1–2 (Fig. 9). This was further
supported by the fact that control samples always clus-
tered with MW #1–4.
Of note was the close clustering of cellular oxidative

stress with γ-H2AX levels and micronuclei formulation.
This was especially evident with physicochemical vari-
ables of larger lengths and widths and bundled agglom-
erate characteristics. The finding was consistent of
genotoxicity through indirect oxidative stress–related
mechanisms upon exposure to high aspect ratio nano-
materials [115, 116]. Increased oxidative stress, as a re-
sult of lysosomal damage by inefficient phagocytosis of
high aspect ratio nanomaterials, can cause double-
stranded DNA damage and chromosomal aberrations
leading to micronuclei formation. γ-H2AX, an early in-
dicator of DNA-double strand breakage and a process
that precedes the formation of micronuclei, segregated
mostly with larger nominal tube/fiber diameter and
length of CNT/F. Oxidative stress responses clustered
together with bundled agglomerate length support the
notion that oxidative stress due to inefficient cellular

handling of aggregated particles and/or lysosomal dam-
age by particles of larger dimensions could be a contrib-
uting mechanism of genotoxicity, especially for MW #5–
7 and CNF #1–2.
Caution should be taken not to overstate the associa-

tions of the larger CNT/F as SWCNT have been shown
to be potent inducers of chromosomal damage [10, 114,
117]. Also, MW #1 and #3 in this study induced signifi-
cant effects complementing a recent pulmonary expos-
ure study of a MWCNT 7.5 nm in diameter induced
cancer [118]. Kuempel et al. concluded in a review of
CNT genotoxicity studies that there was not a straight-
forward relationship between length and genotoxicity, al-
though most of the evaluated studies had CNT length of
only a few microns or less [113]. Jackson et al. (2015)
and Poulsen et al. (2016) described increased diameter
as a physicochemical characteristic linking genotoxicity
for the 15 and 10 MWCNT tested in those respective
studies [41, 45]. Those studies represented materials
similar to MW # 1–5. The greater range of CNT/F phys-
ical dimensions in this study provided a clearer separ-
ation of materials. Overall, all materials, from MW #1 to
CNF #2, had the potential to induce in vitro genotoxi-
city. When combining cellular oxidative stress and γ-
H2AX with micronuclei formation and a broad sampling
of the class of CNT/F there was a general shift for
greater length and diameter materials to cluster together
with some increased severity.
Many of the other physicochemical characteristics did

not associate with epithelial cell toxicity outcomes. This
does not indicate a lack of importance but more the
scope of the endpoints considered. Subsequent studies
will evaluate the association of the various physicochem-
ical characteristics with macrophage activation, fibrosis
development, and translocation. It was noted that while
cellular oxidative stress consistently clustered with
micronuclei formation and γ-H2AX, there was no clus-
tering with acellular reactivity measured by FRAS or re-
sidual metal catalyst. This indicates the residual metal
catalyst levels ranging from 0.3–6% were not the primary
drivers of cellular oxidative stress compared with larger
physical dimensions. The clustering was confirmed by
residual metal catalyst grouping with residual ash mea-
sured by TGA as expected (Fig. 9; Supplemental Fig. 4).
In conjunction with anti-oxidative capacity (acellular
oxidative stress), aspect ratio, hydrodynamic diameter,
and the smaller length bins (L2 and L4) were unable to
segregate materials and clustered away from all toxicity
outcomes. Additionally, density, specific surface area,
zeta potential, the smaller width bins, and spherical ag-
glomerate measurements were also not predictive. Dusti-
ness, while a critical factor for worker exposure
assessment, was not predictive of epithelial cell toxicity.
Cluster analysis of all the induced cytokines together
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with physicochemical characteristics and toxicity out-
comes measured (Supplemental Fig. 4) placed the pro-
teins into four groups, two of which were exclusive for
proteins. Most proteins did not cluster with the physico-
chemical characteristics and none with the four primary
biological outcomes. While significant changes in in-
flammatory drivers, growth factors, and cell survival and
proliferation signaling molecules occur following CNT/F
treatment in the epithelial cells, the change in these pro-
teins did not correlate to biological outcomes like oxida-
tive stress and genotoxicity.

Summary
Advances in computational analysis are being applied to
the almost two decades of engineered nanomaterial re-
search for grouping and understanding the physico-
chemical drivers of toxicity [95–97, 119, 120], including
studies of carbon nanotubes [45, 50, 77, 121, 122]. The
analyses of the data from this study illustrate that de-
tailed physical dimension characteristics provide a more
consistent grouping of CNT/F as compared to using
only data means. In fact, analysis of binning of nominal
tube physical dimensions alone produced a similar
grouping as to all characterization parameters. Theoret-
ically, working backwards, a predictive algorithm could
be generated that allows classification of CNT/F into
distinct toxicity groups based on 200 paired length and
diameter measurements. While all materials induced
micronuclei formation in human bronchial epithelial
cells, when combined with additional parameters associ-
ated with genotoxicity, there was an increase in the se-
verity if the sample contained some proportion of
materials with larger diameters and longer nominal
lengths. The population of nominal tubes with longer
length and larger diameters within a sample was not al-
ways the majority (e.g., MW #7), meaning a significant
percentage of the tubes with those characteristics was
not needed for increased severity of toxicity. The ana-
lyses indicate that a more detailed physicochemical
characterization of physical dimensions provides better
understanding of the differential toxicity within a class
of materials, implying that evaluating particle character-
istic means alone may not be sufficient to accurately seg-
regate CNT/F for certain aspects of toxicity. Subsequent
studies analyzing outcomes of inflammation, histopath-
ology, and translocation following CNT/F exposure will
further develop clustering by physicochemical character-
istics and specific endpoint toxicity. In this study evalu-
ating epithelial cell toxicity, all materials induced some
level of genotoxicity. However, of the CNT/F evaluated,
materials that contained a proportion of tubes with
greater lengths and diameters were associated with in-
creased severity.
General Conclusions:

� Binning of physical dimensions (length and
diameter/width) offered greater resolution in terms
of grouping CNT/F based on physicochemical
characteristics compared to using means only. This
was further evident when analyzing the
physicochemical characteristics and epithelial cell
toxicity outcomes.

� Binning of physical dimensions alone offered the
same resolution for grouping CNT/F as using all
physicochemical characteristics suggesting the
potential of reduced characterization needed for
grouping CNT/F fibers.

� All CNT/F, with the lone exception of the highly
aggregated low dose of MW #2, induced
genotoxicity. There was no difference between
materials for micronuclei formation.

� When micronuclei formation was combined with
cellular oxidative stress and γ-H2AX levels, CNT/F
with increasing length and diameter grouped with
slightly more toxicity.

� Computational analysis illustrated that increasing
length and diameter contribute to greater epithelial
cell toxicity. Binning of physical dimensions alone
was sufficient to group CNT/F in terms of epithelial
cell toxicity. The nature of the bundled agglomerate
formation, a reflection of the physical dimensions,
also grouped with toxicity outcomes.

� The increasing length and diameter CNT/F do not
need to be the majority constituent of the produced
material. A small percentage of nominal tubes/fibers
with increased length and diameter was sufficient to
alter the toxicity profile.

� There was no consistent pattern of density, specific
surface area, dustiness, residual metal catalyst, and
surface charge associating with physical dimensions
or genotoxicity outcomes.

Methods
Materials
All CNT/F used in this study, with the exception of MW
#5 (MWCNT-7/Mitsui-7/), were as-produced materials
obtained from six different U. S. primary or secondary
manufacturing facilities. Occupational exposure assess-
ments of these facilities were completed to provide
insight into human exposure risks and offer direct
insight into the vast array of materials utilized [29]. MW
#5 (MWCNT-7/Mitsui-7/) was included in this study as
a benchmark material as its toxicity profile is well-
studied and characterized (Fig. 1).

Characterization
Length and diameter
Tube and fiber length and diameter were measured
using high resolution scanning transmission electron
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microscopy as previously described [32]. Briefly, samples
of CNT/F were sonicated in isopropanol for 5 min. A
STEM grid was dipped into the dispersed suspension
and used for imaging and analysis. Measuring tools in-
cluded in the electron microscope’s software were used
to determine paired length and diameter. Length was de-
termined by connected points at the two extremes with-
out following the curvature of the nanotube or
nanofiber. High resolution images were collected with a
Hitachi HD-2300 STEM.

Two-dimensional agglomerate sizing
Samples of CNT/F were prepared in physiologic disper-
sion medium and the dispersed samples were prepared
for field emission scanning electron microscopy (FE-
SEM; Hitachi S-4800, Tokyo, Japan). Measurements
were collected using measuring tools of the microscope’s
provided software (FE-PC SEM Ver. 2.8, Hitachi High
Technologies America). The largest crosswise diameter
of 75 agglomerates were measured for each material.
Materials were subsequently categorized into distinct
groups of agglomeration defined as either spherical ag-
glomerates or bundles of fibers with one dimension
greater than three times the other dimension, referred to
as bundled agglomerates. Bundled agglomerates had
both a diameter and length measurement.

Aspect ratio
Aspect ratio was calculated as the ratio of CNT/F length
to diameter.

Hydrodynamic diameter
The hydrodynamic agglomerated size of the various
CNT/F dispersed in DM was evaluated using DLS. DLS
was performed on a Malvern Zetasizer Nano ZS90
(Worcestershire, UK) equipped with a 633 nm laser at a
90o scattering angle. The DLS measurements were per-
formed by dispersing the CNT/F material in dispersion
media. After two minutes of equilibration inside the
equipment, five measurements, each consisting of at
least five runs were recorded.

Surface area
Using Brunauer Emmet Teller (BET) methodology, the
surface area of each CNT/F was measured as described
previously [89]. Briefly, samples were degassed in ultra-
high purity (UHP) nitrogen for 30 min at 90 °C, and then
for 90 min at 200 °C. The surface areas were determined
by a 5-point BET measurement with UHP nitrogen as
the adsorbate and liquid nitrogen as the cryogen.

Zeta potential
Zeta potentials were measured using a Nano ZS90 in-
strument (Malvern Instruments, UK). Viscosity of the

control medium was previously determined at room
temperature using a VS-10 viscometer (Malvern Instru-
ments) and used as the value for calculation of zeta po-
tential. The pH of all samples was measured using a
calibrated electrode.

Dustiness
Dustiness is a unitless measurement (mass/mass) mea-
sured using the Venturi dustiness device as was previ-
ously described [93]. This measurement represents a
percentage of total (~inhalable) and respirable airborne
mass normalized to the quantity of test powder prior to
dispersion.

Density
Skeletal density of each CNT/F was determined based
on ISO 23145. For tapped density, a 10 ml graduated cy-
linder was tared on a calibrated analytical balance and
the material was added. To measure tapped density, the
container was gently tapped, and the level of the powder
was recorded to the nearest 0.1 ml. The cylinder with
powder was reweighed. Density was calculated as the
mass of powder divided by volume. The measurement
was replicated three times for each sample and the re-
sults are expressed as means ± standard deviation.

Metal analysis
ICP-AES was used to measure metal content. Digestion
was completed using a microwave digestion system
(MARS, CEM). Five mg of each sample and 10 ml of
concentrated nitric acid were added to the digestion ves-
sel and were subsequently digested using the following
program: maximum power 400, 100% power, ramp
20 °C/min, 600 psi, temperature 230 °C, hold time 60
min. Samples were then heated on a hot block to reduce
the volume to 1 ml. The samples were then brought to a
volume of 10 ml using deionized water. Sample digests
were analyzed according to NMAM 7300. Metal analysis
included aluminum, antimony, arsenic, barium, beryl-
lium, cadmium, calcium, chromium, cobalt, copper, iron,
lanthanum, lead, lithium, magnesium, manganese, mo-
lybdenum, nickel, phosphorus, potassium, selenium, sil-
ver, strontium, tellurium, thallium, tin, titanium,
vanadium, yttrium, zinc, and zirconium.

Endotoxin
Endotoxin contamination was measured using the Lim-
ulus amebocyte lysate test according to the manufac-
turer’s protocol. The limit of detection was 0.1 EU/ml.

PAH
PAH levels were quantified by gas chromatography–
mass spectrometry with selected ion monitoring (GC–
MS SIM) using method previously described [104].
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Briefly, dry samples of CNT/F were extracted in 10ml
methylene chloride with shaking for two minutes. The
samples were extracted three times and the extracts
were combined. The Limit of Quantification (LOQ) and
Limit of Detection (LOD) and other details were pro-
vided previously [104].

TGA
Thermogravimetric analysis (TGA) was performed to
determine the residual ash contents and thermal stability
of the materials. Samples were analyzed as previously de-
scribed using a Q50000IR TGA (TA Instruments Inc.,
New Castle, DE) [89].

Acellular oxidative potential
The acellular oxidative potential of CNT/F was deter-
mined using ferric reducing ability of serum (FRAS).
Serum is a complex mixture consisting of various forms
of antioxidants that can quench chemically distinct oxi-
dants. The oxidative potential of the CNT/F was deter-
mined by reacting human blood serum (HBS; Sigma-
Aldrich, St. Louis, MO; Cat # P2918) with CNT/F and
evaluating the decrease in antioxidants in HBS. The re-
duction in antioxidant capacity of the serum was quanti-
fied by ferric to ferrous ion reduction and formation of a
colored ferrous-tripyridyltriazine complex. The decrease
in antioxidative capacity in HBS was compared with
Trolox, a vitamin E analog. This modified total antioxi-
dant capacity approach has been used to evaluate the
oxidative potential of various engineered nanomaterials
[123–125].
Human blood serum was rapidly thawed and exposed

to CNT/F at a concentration of 5 mg/ml in low protein
retention tubes. To properly disperse the nanomaterials,
the samples were sonicated for 5 min. The dispersed
samples were then incubated in the dark at 37 °C for
three hours on an orbital shaker set at 450 RPM. The
CNT/F were removed from serum by centrifuging the
mixture at 14,000 g for three hours. 50 μl of the serum
supernatant was reacted with 1 ml of the FRAS solution
to quantify the level of antioxidant depletion. The FRAS
solution is a volume mixture of 10:1:1 consisting of
0.2021 g of sodium acetic trihydrate and 1.060 ml of gla-
cial acetic acid (Alfa Aesar, Haverhill, MA; Cat # 36289)
in 100 ml of deionized water, 0.0946 g of TPTZ (2,4,6-
tri(2-pyridyl)-s-triazine)(Sigma-Aldrich, Cat # T1253)
and 1.2 ml of 1M HCl in 30 ml of deionized water and
0.1635 g of FeCl3·6H2O (Sigma-Aldrich, Cat # 44944) in
30ml of deionized water respectively. For quantitative
comparison of the level of antioxidant depletion, Trolox
(Sigma-Aldrich, Cat # 238813) standards were prepared
at concentrations of 25–800 μM and reacted with the
FRAS solution. The change in color was quantified by
reading the absorption at 586 nm.

In vitro study design
The goal of this study was to investigate the toxic effects
of CNT/F on pulmonary epithelial cells. Immortalized
human bronchial epithelial cells (BEAS-2B), cells were
exposed to several concentrations of each of the nine
materials. Changes in cell viability, oxidative stress, and
protein production were determined. Additionally, the
genotoxicity of these materials was assessed using
γH2AX detection and micronuclei formation. The
BEAS-2B cell line was selected as a non-tumorigenic cell
line originally derived from human bronchial epithelial
cells immortalized by viral transfection [126]. Since their
original description, monocultures of these cells have
been widely used and accepted by researchers to study
genotoxicity and potential lung carcinogenesis of test
agents. The BEAS-2B cells have several advantages that
have made them suitable cell population for genotoxicity
analysis. The cells have a stable karyotype and a low
background frequency of micronuclei at early passage
[127–129] [117, 32] [107, 108]. These cellular character-
istics of the BEAS-2B are in accordance with the OECD
guidelines as follows: “Because the background fre-
quency of micronuclei will influence the sensitivity of
the assay, it is recommended that cell types with a stable
and defined background frequency of micronucleus for-
mation and a stable karyotype be used.” Previous investi-
gations have demonstrated that the BEAS-2B cells
double every 18 to 20 h when seeded at 70% density
[107, 108] [117, 128].

Correspondence to human exposure
The experiments were performed on μg/ml basis. As the
surface area and volume required changes with the cell
culture consumable used for the assays, in order to be
open and enable future comparative and meta-analysis
of the data generated, we have reported the concentra-
tions in μg/cm2 basis alongside the μg/ml. Cellular tox-
icity and oxidative stress were performed at a range of
approximately 0–15 μg/cm2 (0–24 μg/ml). Micronuclei
formation and γ-H2AX were evaluated at 0.009 and
0.9 μg/cm2, very much at the lower end of the toxicity
range.
Based on Erdely et. al 2013 [130], an inhalable elemen-

tal carbon mass concentration arithmetic mean of
10.6 μg/m3 (geometric mean 4.21 μg/m3) was found
among workers exposed to MWCNT. The concentration
equates to a deposited dose of approximately 4.07 μg /d
in a human. The in vitro exposure of 0.009 μg/cm2,
based on an human alveolar surface area of 102 m2

(1.02 × 106 cm2) [131] corresponds to 9180 μg deposited
in the human. With estimated 4.07 μg/d deposited, this
would be equivalent to exposure of approximately 2250
days. Assuming 5 days/week of work the 2250 days cor-
responds to ~ 9 years of exposure. The in vitro exposure
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of 0.9 μg/cm2 corresponds to 918,000 μg deposited in
the human. With estimated 4.07 μg/d deposited, this
would be equivalent to exposure of 225,000 days. As-
suming 5 days/week of work the 225,000 days corre-
sponds to ~ 900 years of exposure.

CNT/F dispersion in cell culture media
Aqueous stock suspensions of CNT/F were generated by
weighing the dry powder and suspending in well-
characterized dispersion medium [DM; 0.6 mg/ml mouse
serum albumin + 0.01 mg/ml 1,2-dipalmitoyl-sn-glycero-
3-phosphotidyl (DPPC) in phosphate-buffered saline
(PBS) without calcium and magnesium] [132] at 2 mg/
ml concentration. The stock suspension was sonicated
for 5 min at 70% amplitude using a cup horn sonicator
(Sonics VibraCell VCX-750 with Cup-type Sonicator;
Newton, CT) immersed in continuous flowing cold
water. The samples were vortexed intermittently after
every minute for 10 s. The stock solution at 2 mg/ml was
dispersed in cell culture media by diluting to highest test
concentration i.e. 24 μg/ml. The CNT/F containing cell
culture media was then subjected to probe tip sonication
(Branson Sonifer 450, continuous output) for a total of
2 min, with 10 s vertexing after every 30 s. CNT/F con-
taining cell culture media at 0.024, 0.24 or 2.4 μg/ml
were obtained by serial dilution.

Cell culture and cytotoxicity
Human bronchial epithelial cells (BEAS-2B) were obtained
from American type culture collection (ATCC, Manassas,
VA) and cultured in Dulbecco’s modified Eagle medium
(DMEM) supplemented with 10% heat inactivated fetal
bovine serum (R&D Systems Inc., Minneapolis, MN) and
1% penicillin Streptomycin (Invitrogen, Carlsbad, CA).
Cells were cultured to 70% confluency in an incubator
maintained at 37 °C and 5% CO2. Trypsin-EDTA (0.25%)
was used to detach the cells from the culture flasks for
sub-culturing. The cells between passage 4–10 were used
and these cells had a doubling time of 18–20 h. For evalu-
ating the cytotoxicity, parallel cultures of cells were seeded
at 46,900 cells/cm2 overnight in a 96-well plate and dosed
at a concentration of 0.024, .24 or 2.4 or 24 μg/ml to the
CNT/F with MW #5 (Mitsui-7/MWCNT-7) serving as a
positive control. In terms of surface area this corresponds
to 0.015, 0.15, 1.5 and 15 μg/cm2. Parallel cells cultures
were exposed to CNT/F for 24 h and challenged with fresh
media containing 10% volume/volume WST-1 cell prolif-
eration reagent (Sigma-Aldrich, Cat #5015944001). After
2 h of incubation the WST-1 consumption was recorded
by measuring the absorbance at 450 nm subtracted with
absorbance at 660 nm to account for turbidity/back-
ground. Cytotoxicity was evaluated by repeating the ex-
periment on three separate days with each dose tested in
quadruplicates each day.

Oxidative stress
Intracellular ROS formation after 24 h post exposure of
the CNT/F was assessed using CellROX® Green (Invitro-
gen). Cells were seeded at 46,900 cells/cm2 overnight in
a 24-well plate and dosed at a concentration of 0.024,
0.24, 2.4, or 24 μg/ml of one of the nine materials tested.
In terms of surface area this corresponds to 0.012, 0.12,
1.2 and 12 μg/cm2. After 24 h of exposure to CNT/F,
cells were detached using Trypsin-EDTA, and washed
and incubated with 50 μM CellROX for 20min. Cells
were washed and fixed by incubating them with 10% for-
maldehyde in PBS. The change in CellROX fluorescence
was captured using a BD LSR II flow cytometer (BD Bio-
sciences, San Diego, CA). The cells were strained
through a Flowmi™ Cell Strainer (Bel-Art Products, Inc.
Wayne, NJ) to achieve uniform single cell suspensions
and remove any aggregates. The mean fluorescence was
determined using FlowJo (FlowJo LLC, Ashland, OR).
The experiment was performed on four separate days
with each dose tested in triplicates each day. At least 10,
000 cells were analyzed per sample in each group.

Protein quantification
Alteration in the proteins released due to CNT/F expos-
ure was quantified by measuring twenty- seven proteins
in the supernatants after 24 h exposure to 0, 2.4 and
24 μg/ml of the CNT/F. In terms of surface area, this
corresponds to 0, 0.75 and 7.48 μg/cm2. The proteins
were measured using a BIO-RAD Bio plex Pro Human
Cytokine Grp 1 Panel 27 plex (Bio-Rad Laboratories
Inc., CA, Cat # M500KCAFOY). The 27 proteins mea-
sured include cytokine FGF basic, eotaxin, G-CSF, GM-
CSF, IFN-γ, IL-1β, IL-1ra, IL-2, IL-4, IL-5, IL-6, IL-7, IL-
8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17A, IP-10,
MCP-1 (MCAF), MIP-1α, MIP-1β, PDGF-BB, RANTES,
TNF-α and VEGF. These proteins are key cytokines,
chemokines and growth factors that play an important
role in inflammation. The assay sensitivities for these
markers ranged from 0.1 to 33.3 pg/ml.

Double stranded DNA break
Phosphorylation of H2A histone family member X
(H2AX) occurs during repair of DNA breakage and is
considered a sensitive marker for double stranded DNA
breakage. Flow cytometric evaluation of H2AX phos-
phorylation was performed as described earlier [133].
Cells were plated on a 12-well plate overnight and chal-
lenged with 1.5 ml of CNT/F dispersed in cell culture
medium for 24 h. The cells were dosed with 0, 0.024 and
2.4 μg/ml of CNT/F. In terms of surface area, this corre-
sponds to 0, 0.009 and 0.9 μg/cm2. After 24 h post ex-
posure to CNT/F, the cells were lifted by trypsinization
and fixed using 10% formaldehyde in PBS. Cells were
permeabilized with 0.2% (v/v) Triton X-100 (Sigma-
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Aldrich) in PBS for 30 min followed by blocking of non-
specific binding by incubating them with 1% (w/v) of bo-
vine serum albumin (Sigma-Aldrich) for 1 h. The cells
were then incubated overnight with 1:50 dilution of
Phospho-Histone H2A.X (Ser139) Rabbit mAb (Alexa
fluor 488 conjugated) (Cell Signaling, Beverly, MA). The
cells were strained through a Flowmi™ Cell Strainer (Bel-
Art Products, Inc. Wayne, NJ) to achieve uniform single
cell suspensions and remove any aggregates. Fluores-
cence from single cell suspensions was captured using a
BD LSR II flow cytometer (BD Biosciences, San Diego,
CA). The mean fluorescence was determined using
FlowJo (FlowJo LLC, Ashland, OR). The experiment was
performed in triplicates and at least 10,000 cells were
analyzed per sample in each group.

Micronucleus assay
BEAS-2B cells (> 97% viability by trypan blue) were
plated at 70% confluency on a two-well glass chamber
slides (Thermo Scientific Nunc Lab-Tek, Waltham, MA;
Cat# 154461) overnight and challenged with 1.5 ml of
the 9 CNT/F dispersed in cell culture medium for 24 h.
As outlined in previous investigations, fresh media was
added with the test agent to the cultured cells to stimu-
late cell proliferation. The cells were monitored for cell
rounding for 24 h following the addition of media to as-
sure that mitosis had occurred. Cell rounding is an ac-
cepted measure of cell proliferation because most
attached cells in culture round up when the cells
enter mitosis [134]. The cells were harvested for ana-
lysis 24 h after the addition of fresh media and test
agent to avoid growing the cells to confluence. The
potency of the test CNT/F was compared to MW #5
(Mistui-7/MWCNT-7).
Parallel cell cultures were treated with 0, 0.024 and

2.4 μg/ml of the CNT/F, which included MW #5 (Mis-
tui-7/MWCNT-7) as a reference material known to be
genotoxic. In terms of surface area, this corresponds to
0, 0.009 and 0.9 μg/cm2. After 24 h post exposure to
CNT/F, the slides were washed with PBS and fixed with
an ice-cold mixture of 3:1 methanol and acetic acid for
30 min and then stained with DAPI (Vector, Burlingame,
CA) for nuclear content. The cells were imaged using a
laser scanning confocal microscope (LSM 780, CZ Mi-
croscopy, Thornwood, NY) using a 60x objective. The
complete depth of the cell was captured by taking Z-
Sections and the 3D images were converted to 2D using
maximum intensity projection.. Photographs of a mini-
mum of 100 cells per slide were taken and the number
of micronuclei present was recorded, and the experi-
ment was repeated in triplicate for a minimum of 300
cells per treatment group. Two independent observers
that were blinded to the treatment groups recorded the
number of micronuclei.

Statistical analysis
In vitro assays of cytotoxicity and oxidative stress were
analyzed using one-way (particle type) and two-way
(particle type by dose) analyses of variance. Post hoc
comparisons were evaluated with Fishers LSD test. Some
variables were transformed using the natural log prior to
analysis to meet the model assumptions of homogeneous
variance. Significance was achieved at a p < 0.05. All ana-
lyses were carried out using SAS/STAT version 9.4 for
Windows, and JMP statistical software version 12 (SAS,
Cary NC).

Feature selection and principal component analysis
To permit selection of the minimal number of features
among all characterization and L-W-AR properties that
could potentially discriminate between each material in-
vestigated, feature selection was performed with a ran-
dom forest-based approach [135] using the “Boruta”
algorithm [136] in the R statistical environment [137].
The Boruta algorithm adds randomness to the variables
in the dataset by creating shuffled copies of all variables
(“shadow features”). “Boruta” iteratively assesses if each
variable has a higher Z-score than the maximum Z-
score of its shadow features. At each iteration, variables
with Z-scores lower than shadow features are deemed
unimportant and removed subsequently by the algo-
rithm to capture all the important, interesting features
one might have in the dataset with respect to a
dependent variable, in this case each material itself.
Then, using traditional, L-W-AR, and combined vari-
ables retained after applying the “Boruta” algorithm,
principal component analysis (PCA) was performed to
identify significant patterns that explained the majority
of the variations in the physicochemical properties
among the different CNT/F materials investigated. PCA
was performed using the prcomp command of the R
statistical software (R Core Team, 2016).
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