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Abstract 

Background:  Considering the inevitability for humans to be frequently exposed to nanoparticles (NPs), understand-
ing the biosafety of NPs is important for rational usage. As an important part of the innate immune system, mac-
rophages are widely distributed in vital tissues and are also a dominant cell type that engulfs particles. Mitochondria 
are one of the most sensitive organelles when macrophages are exposed to NPs. However, previous studies have 
mainly reported the mitochondrial response upon high-dose NP treatment. Herein, with gold nanoparticles (AuNPs) 
as a model, we investigated the mitochondrial alterations induced by NPs at a sublethal concentration.

Results:  At a similar internal exposure dose, different AuNPs showed distinct degrees of effects on mitochondrial 
alterations, including reduced tubular mitochondria, damaged mitochondria, increased reactive oxygen species, 
and decreased adenosine triphosphate. Cluster analysis, two-way ANOVA, and multiple linear regression suggested 
that the surface properties of AuNPs were the dominant determinants of the mitochondrial response. Based on the 
correlation analysis, the mitochondrial response was increased with the change in zeta potential from negative to 
positive. The alterations in mitochondrial respiratory chain proteins indicated that complex V was an indicator of the 
mitochondrial response to low-dose NPs.

Conclusion:  Our current study suggests potential hazards of modified AuNPs on mitochondria even under sublethal 
dose, indicates the possibility of surface modification in biocompatibility improvement, and provides a new way to 
better evaluation of nanomaterials biosafety.
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Introduction
Nanoparticles (NPs) have been developed for multiple 
fields, such as textiles, cosmetics, electronics, biomedi-
cal applications, and environmental science and tech-
nology advances [1, 2]. Given that it is inevitable for 
humans to frequently contact NPs, understanding the 

environmental safety, and biological effects of NPs is 
important for their practical and rational usage [3, 4]. 
After the application of some NPs into the environmental 
compartments, NPs could be engulfed by environmental 
organisms and transferred to human body.

The biological effects of NPs are highly determined 
by their physicochemical properties [5, 6]. Among these 
properties, the diameter of NPs is an important factor 
influencing the interaction between NPs and biological 
systems [7]. Some NPs could be rapidly depredated in 
the ambient environment, which could exert side effects 
on not only environmental organism but also mammals 
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[8]. The diameter of NPs greatly influences how and 
where NPs enter the cell, thus determining the toxic-
ity of NPs [9]. For example, gold nanoparticles (AuNPs) 
with smaller diameter (3 and 6 nm) can enhance the pro-
duction of proinflammatory cytokines and cause more 
cytotoxicity than 40  nm [10]. Another important prop-
erty affecting the nano-bio interface is the surface of 
nanoparticle properties, which influence the interaction 
of NPs with biological system, which could lead to dif-
ferent side effects [3, 5, 11]. It has been reported that the 
content of internalized poly (ethylene glycol) (PEG)-NPs 
was less than that of mercaptoundecanoic acid (MUA)- 
or dodecyl amine-modified poly (isobutylene-alt-maleic 
anhydride) (PMA)-NPs and caused less cytotoxicity [12]. 
Our and other studies demonstrated that the surface of 
rare earth oxide NPs could interact with phosphorus of 
biological systems, which triggered the death of mac-
rophages, the inflammation, and pulmonary injury [13, 
14]. The properties of surface also determine the interac-
tion of NP with soluble biological molecules such as pro-
teins to form different types of protein corona complex, 
which also involves their biological effects [15–17].

Macrophages, as the dominant type of cell in the innate 
immune system, play a critical role in the monitoring 
and clearance of abnormally endogenous or exogenous 
substances in many tissues [18]. This immune cell has a 
vital role in protecting against attacks by invading exog-
enous particles, therefore becoming one of the most 
common cell types where NPs tend to accumulate [19, 
20]. Therefore, upon exposure to NPs, macrophages, as 
the most sensitive cell type, mediate various side effects 
[21–23], including chronic inflammation and fat accumu-
lation [24], pulmonary toxicity [25], and the promotion of 
tumor migration [26]. After being phagocytized by mac-
rophages, NPs mainly accumulate in the lysosome, which 
could mediate the leakage of the lysosomal enzymes to 
trigger a pro-inflammatory immune response [27]. In 
addition to lysosomes, mitochondria are another sensi-
tive organelle upon exposure to NPs, which can mediate 
oxidative stress and even cell death of macrophages [28].

Mitochondria, the energy factories of cells, can pro-
vide energy for macrophages through the mitochon-
drial respiratory chain and oxidative phosphorylation 
processes [29]. Mitochondrial signaling and metabo-
lism are also involved in the activation and function of 
macrophages [30]. Moreover, the mitochondrion is an 
important mediator of cell homeostasis by regulating 
the stress response and metabolism [31]. Mitochondrial 
biogenesis is responsible for ROS generation and oxi-
dative stress caused by NPs [32, 33]. Intracellular NPs 
can contribute to mitochondrial structural damage, 
respiratory chain dysfunction, and metabolic disorders 

and finally lead to an imbalance in cell energy [12, 32]. 
However, previous research on the effect of NPs on 
mitochondria has primarily served to explain the pos-
sible mechanism of cell death and cytotoxicity caused 
by high-dose NPs, whereas only a few studies have 
investigated the mitochondrial response to sublethal 
doses of NPs [13, 34]. Considering that the widespread 
application of NPs inevitably increases unwanted low-
dose environmental exposure [35], studies on the envi-
ronmental toxicity and health effects should be based 
on actual environmental exposure concentrations. At 
the low dosages that humans are usually exposed to, 
although NPs would not cause obvious cell death, these 
agents also showed the potential to interfere with cel-
lular function [36]. For example, silver nanoparticles 
(AgNPs) did not cause obvious cell death at sublethal 
concentrations from 2 to 8  μg/mL but impaired the 
function of the mitochondrial respiratory chain and 
ATP production [34]. However, the effects on mito-
chondria in macrophages upon exposure to low dos-
ages remain unclear.

Among numerous types of NPs, AuNPs show great 
promise and have been widely applied in medical and 
research fields, such as drug delivery, gene delivery, 
photothermal therapy, antibacterial therapy, and bio-
imaging [37]. Due to their unique optical, electronic, 
sensing, and biochemical characteristics, AuNPs were 
usually chosen to study the interaction with biological 
systems and crucial influencing factors [38]. It has been 
reported that AuNPs have an effect on mitochondrial 
structure and function. For example, mitochondria 
affected by 20 nm AuNPs at a concentration of 30 μg/
mL were swollen in human placental pericytes [39]. 
Another research reported that 30  nm AuNPs cause 
alterations in mitochondrial mass and dysfunction in 
AuNPs-treated C. albicans cells [40]. Therefore, with 
different coatings and diameters, AuNPs were a suitable 
model to study the effect of AuNPs at sublethal concen-
trations on the mitochondrial response.

In this study, based on sublethal dosages in real expo-
sure scenarios and with further consideration of the 
internal dose, the mitochondrial morphology, mito-
chondrial structure, ROS generation, ATP content, 
and expression of mitochondrial respiratory chain 
complexes in macrophages upon AuNP exposure with 
different coatings and diameters were investigated. 
Cluster analysis, two-way ANOVA, and multiple linear 
regression were performed to determine and compare 
the correlation of different properties and mitochon-
drial responses. Through the comparison, the sensitive 
indicator of the mitochondrial response to the suble-
thal dosage of AuNPs was discussed.
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Results and discussion
Sublethal dosage for AuNPs exposure to macrophages
The properties of AuNPs with different diameters (5 nm 
or 50  nm) and coatings (BPEI, PVP, lipoic acid, tan-
nic acid, citrate, and mPEG) were first determined. 
Additional file  1: Fig. S1A shows that all AuNPs were 
approximately spherical and had uniform diameters. 
The hydrodynamic diameters of AuNPs detected by DLS 
were slightly higher than the diameters obtained from 
TEM (Additional file 1: Fig. S1B), which may be caused 
by ligand adsorption and electrical double layers on the 
surface of the AuNPs. Most of the coated AuNPs were 
negative in both water and DMEM, wherein there was 
slightly more negative potential in water (Additional 
file 1: Fig. S1C). The surface charge of BPEI-AuNPs was 
almost positive in the two types of media, and only 5 nm 
BPEI-AuNPs were negatively charged in DMEM. This 
phenomenon was regarded as the formation of protein 
coronas on particles, which leads to a change in zeta 
potential [41].

To determine the noncytotoxic concentration, the cell 
viability of macrophages treated with a series of concen-
trations of AuNPs was assessed. As shown in Fig. 1A, B 
and Additional file 1: Fig. S2, none of the AuNPs showed 
an apparent alteration in cell viability when the con-
centration was at or lower than 5 µg/mL. At 20 µg/mL, 
except for mPEG-AuNPs, the cell morphologies were 
disturbed by AuNPs. At 5  µg/mL, there was no appar-
ent morphological change upon treatment with AuNPs 
(Fig. 1C, D). Data from Annexin-V/PI dual staining fur-
ther confirmed that AuNPs at 5  µg/mL did not cause 
dramatic cytotoxicity (Additional file 1: Fig. S3). The non-
cytotoxic concentration selected in the study was also 
included in the range of expected environmental concen-
trations (1.6 to 16.6 µg/mL) in vitro, which was based on 
the calculation model of the National Institute for Occu-
pational Safety and Health [42]. Therefore, 5 µg/mL was 
considered the sublethal dose for RAW264.7 cells in the 
current study.

Many studies have indicated that the internal con-
tent of NPs is one of the pivotal factors influencing the 
interaction of NPs with organelles after exposure [5, 
13]. ICP-MS was thus performed to evaluate the intra-
cellular content of AuNPs. According to the calibration 
standard (Additional file 1: Fig. S4), at the same external 
exposure dose of 5  µg/mL, the intracellular 5  nm and 
50  nm BPEI-, PVP-, lipoic acid-, tannic acid-, citrate-, 

and mPEG-AuNPs were 0.463, 0.339, 0.366, 0.493, 0.451, 
0.179, 0.501, 0.435, 0.509, 0.570, 0.603 and 0.110 pg/cell, 
respectively. The 5 nm and 50 nm mPEG-AuNP contents 
were lower than half of those of the other five AuNPs, 
with averages of 0.179 and 0.110  pg/cell, respectively. 
A series of studies have demonstrated that the cellular 
uptake of PEG-coated AuNPs was less than that of other 
coated AuNPs; for example, SK-BR-3 breast cancer cells 
preferred to take up AuNPs in the following order: poly 
(allylamine hydrochloride), anti-HER2 antibody and PEG 
[43]. PEG is often used to reduce the uptake of NPs by 
macrophages.

However, except for mPEG-AuNPs, the other five 
types of AuNPs had little disparity (Fig. 1E). The similar 
intracellular content indicated that BPEI-, PVP-, lipoic 
acid-, tannic acid-, and citrate-coatings showed negli-
gible effects on the cellular uptake of AuNPs. This fact 
might be attributed to the powerful phagocytic ability of 
macrophages toward NPs, which makes little difference 
in the effect of nanoparticles with different sizes on the 
endocytosis of macrophages [44]. However, other non-
phagocytic cells, such as ovarian cancer cells, showed a 
different situation that the larger particles were internal-
ized at a much higher amount compared to the smaller 
counterparts [45]. In addition, the low exposure concen-
tration (5  μg/mL) may be another reason for the little 
difference in intracellular nanoparticle content. There-
fore, to compare the effect of different AuNP properties 
on macrophage mitochondria under sublethal doses and 
exclude the influence of internal content (Fig. 1E), BPEI-, 
PVP-, lipoic acid-, tannic acid-, and citrate-AuNP were 
used for further research.

Effects of AuNPs on the mitochondrial morphology 
and structure at sublethal dosages
To evaluate the influence of AuNPs with different diam-
eters and coatings, the mitochondrial morphology and 
structure of RAW264.7 cells were evaluated after expo-
sure for 24  h. As shown in Additional file  1: Fig. S5, 
AuNPs altered the mitochondrial morphology to differ-
ent degrees. Compared with the control, AuNPs expo-
sure reduced the mitochondrial fluorescence intensity 
and the number of tubular mitochondria, both of which 
showed an analogous downward trend (Fig.  2A, B). Of 
note, BPEI-AuNP always caused the maximum effects. 
The representative TEM images further demonstrated 
alterations in mitochondrial morphology and structure 

(See figure on next page.)
Fig. 1  Determination of the sublethal dose and intracellular content of AuNP exposure on macrophages. Cell viability (n = 3) stimulated by a series 
of concentrations (0, 1, 2, 5, 10, and 20 μg/mL) of A 5 nm and B 50 nm AuNPs with different coatings for 24 h. Morphology of cells exposed to C 
5 nm and D 50 nm AuNPs (5 and 20 μg/mL) with different coatings for 24 h. The scale bar is 30 μm. E The intracellular content of AuNPs (mean ± SD, 
n = 3) with different diameters and coatings analyzed by ICP-MS
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Fig. 1  (See legend on previous page.)
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(Fig.  2C). For both 5  nm and 50  nm NPs, BPEI-AuNP, 
PVP-AuNP, lipoic acid-AuNP, and tannic acid-AuNP 
displayed higher swelling, vacuolization, and cristae frac-
ture, as indicated by the green arrows. Taken together, 
these results showed that AuNPs with different diam-
eters and coatings at sublethal doses can cause damage 
to mitochondrial morphology and structure. Among all 
of the AuNPs, BPEI-AuNPs caused a maximal effect on 
mitochondria.

Previous studies have indicated the different toxic 
effects of AuNPs on mitochondria. Karataş et  al. [46] 
found that AuNPs can form aggregates in the cytosol 
away from the mitochondria and did not cause substan-
tial damage to mitochondria. However, in another study, 
AuNPs could be gradually trafficked to the mitochondria, 
where they reside in an aggregated state, making mito-
chondria somewhat swollen and round and causing mito-
chondrial crista to partially disappear and vacuolize [47]. 
Our study serves as a proof-of-concept that both 5 nm- 
and 50 nm-coated AuNPs agglomerated in the lysosomes 
of the cytoplasm but not mitochondria. However, the 
intracellular AuNPs also caused swelling, vacuolization, 
and round-shaped mitochondria.

Impacts of AuNPs with different diameters and coatings 
on ROS generation and ATP content
The mitochondria have a central role in ATP production 
and ROS generation, and intracellular levels of ATP and 
ROS can reflect mitochondrial function to some extent 
[31, 48]. Therefore, the total ROS, mitochondrial ROS, 
and ATP content upon treatment with AuNPs were eval-
uated. As shown in Additional file 1: Fig. S6, alterations in 
total ROS content were observed in AuNP-treated cells, 
and the degree of increased ROS was highly dependent 
on the diameter and coating. According to the quantita-
tive results shown in Fig. 3A, the content of total ROS was 
significantly elevated (p < 0.01) after exposure to 5  nm 
BPEI-, PVP-, lipoic acid-, and tannic acid-AuNP. Further-
more, mitochondrial ROS was also increased (Additional 
file 1: Fig. S7), especially in cells stimulated with 5 nm and 
50 nm BPEI-, PVP-, lipoic acid-, tannic acid-AuNP, and 
50  nm citrate-AuNP (Fig.  3B, p < 0.01). Similarly, many 
studies have shown that NPs could induce ROS produc-
tion [12, 49]. For example, exposure of pristine graphene 
at sublethal doses (5 µg/mL) for 48 h induced ROS gen-
eration in RAW264.7 cells [49]. Our results indicated that 
a low AuNP concentration could also cause an elevation 

Fig. 2  The alteration of mitochondrial morphology and structure in macrophages stimulated by different coated AuNPs (5 μg/mL) for 24 h. A The 
fluorescence intensity of mitochondria (mean ± SD, n = 3) using the MitoTracker Red assay. B The number of tubular mitochondria (mean ± SD, 
n = 3). *p < 0.05, **p < 0.01, compared with control. C Representative TEM images of macrophages. The scale bar is 500 nm. Red arrows point to the 
location of the internalized AuNPs, and green arrows point to the injured mitochondria
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Fig. 3  Total ROS, mitochondrial ROS, and ATP content after different coated AuNP (5 μg/mL) exposures for 24 h. A The levels of total ROS. B The 
levels of mitochondrial ROS. C The contents of ATP. *p < 0.05, **p < 0.01, compared with control. Data are presented as means ± SD (n = 3)
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of ROS in RAW264.7 cells. Moreover, NPs, including 
Au, Pt, TiO2, SiO2, and Fe2O3, increased the intracellular 
ROS of HUVECs at noncytotoxic concentrations, and the 
degree of change was closely related to the diameter and 
surface properties of the NPs [50]. In addition, AuNPs 
could deplete the intracellular antioxidant pool, stimulate 
ROS production, and cause oxidative stress, finally lead-
ing to cell necrosis and apoptosis [51, 52].

As shown in Fig. 3C, coated AuNP-treated cells showed 
significantly lower ATP content than untreated cells. 
ATP levels were reduced by 2.8, 2.1, 1.9, and 1.5 times 
after exposure to 5 nm BPEI-AuNPs, PVP-AuNPs, lipoic 
acid-AuNPs, and tannic acid-AuNPs for 24  h, respec-
tively, compared with the control group (p < 0.01). The 
exposure of 50 nm BPEI-AuNPs, PVP-AuNPs, and lipoic 
acid-AuNPs also led to reduced ATP content (Fig.  3C, 
p < 0.01). Similar decreases in ATP after AuNP exposure 
have been presented in many previous studies, and the 
decrease was associated with cell cycle arrest [53, 54]. 
In the study of Yen et al. [10], AuNPs ranging from 2 to 
40 nm significantly inhibited the proliferation of J774A.1 
macrophages, which further demonstrates that AuNPs 
may affect ATP production by macrophages through cell 
cycle arrest. Moreover, changes in anabolic states were 
also associated with the activation of proinflammatory 
macrophages, such as enhanced glycolytic metabolism 
and inhibited mitochondrial oxidative phosphorylation 
in inflammatory macrophages [55]. The reduction in ATP 
caused by AuNPs suggests the inflammatory response of 
macrophages. Furthermore, the inhibition of ATP levels 
by AuNPs could be ascribed to the occurrence of apopto-
sis or necrosis, which is combined with changes in ROS 
levels [32]. Although there was no significant change in 
cell activity under the noncytotoxic dose, the changes in 
ROS and ATP at the subcellular level still indicated the 
perturbed normal physiology status of the cell, further 
suggesting the potential harm of sublethal dose AuNPs 
with different diameters and coatings.

Correlation between mitochondrial alteration and AuNP 
properties
To determine the correlation of different properties 
and mitochondrial response and further elucidate the 
contribution of different properties to mitochondrial 
response at noncytotoxic dose AuNP exposure, cluster 
analysis, two-way ANOVA, and multiple linear regres-
sion were next performed. As shown in the heatmap of 
cluster analysis (Fig.  4A), the mitochondrial response 
was divided into two degrees. The alterations induced 
by 5  nm and 50  nm citrate-AuNP and 50  nm tannic 
acid-AuNP were classified into one degree, while those 
in the 5  nm and 50  nm BPEI-AuNP, PVP-AuNP, lipoic 
acid-AuNP, and 5  nm tannic acid-AuNP groups were 

classified into another degree. Surface properties led to 
the classification of two degrees, whereas the contribu-
tion of diameter was small. Further comparative analysis 
(shown in Additional file  2) illustrated that there were 
also differences between any two coatings with the same 
particle diameter for most of the mitochondrial indexes 
(p < 0.05). However, no obvious differences in most indi-
cators were found between two diameters with the same 
coating. These results indicated that the surface proper-
ties exerted a higher impact on mitochondria in mac-
rophages than the diameter, and final multiple linear 
regression (Additional file 1: Table S1) further proved this 
conclusion.

According to the result of different coated AuNP char-
acteristics (Additional file 1: Fig. S1C), different coatings 
lead to an obvious change in zeta potential. Meanwhile, 
based on the result that the surface properties exerted a 
higher impact on mitochondria and the importance of 
zeta potential in surface properties, we further analyzed 
the correlation between zeta potential and mitochondrial 
response. The data from correlation analysis revealed that 
the mitochondrial response is related to the zeta potential 
(Additional file 1: Table S2). With increasing zeta poten-
tial, the mitochondrial fluorescence intensity, the number 
of tubular mitochondria, and the ATP level decreased. 
In comparison, total ROS and mitochondrial ROS were 
increased (Fig.  4B). These data suggested that the dif-
ferences in mitochondrial responses caused by different 
coatings may largely be related to the coating-related zeta 
potential alteration, and the higher zeta potential had a 
stronger effect on the mitochondria, indicating that the 
mitochondrial response induced by the sublethal dose of 
AuNP exposure might be surface charge-dependent.

Previous studies have concluded that the interactions 
of NPs with biological systems are responsible for the 
execution of NP functions and eventual toxicity [5, 56]. 
Though diameter and coating both could affect the inter-
action, diameter mainly influenced the cellular uptake 
pathways through a variety of diameter-dependent 
interactions with the lipid bilayer, while coating-related 
surface properties affected the membrane interactions 
through many kinds of approaches. Different from those 
unstable NPs [57], AuNPs are the most stable NPs in the 
ambient environment and even within cells for a long 
time, which is a proper model to investigate the effects 
of surface on its toxicity. Among the coating-related sur-
face properties, the zeta potential of nanoparticles is one 
of the key factors. Many studies have shown that cells 
are more effective at uptaking positively charged AuNPs 
than negatively charged and neutral AuNPs [5, 58]. The 
reason for this phenomenon is that the cell membrane 
is mostly negatively charged so that AuNPs with greater 
zeta potential can be tightly combined and internalized 
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to a greater extent than AuNPs with less zeta poten-
tial due to electrostatic interactions [59]. Moreover, the 
membrane penetration ability of positively charged NPs 
was greater than that of neutral and negatively charged 
NPs, leading to a larger toxic response [43, 60]. As per 

the literature, the cellular uptake and subcellular locali-
zation of NPs greatly depended on their surface charge 
of polymeric coating. When NPs were internalized in the 
lysosomes, the acidic environment of lysosomes activated 
oxidase in NPs to induce toxicity, while lower toxicity was 

Fig. 4  Correlation analysis of the mitochondrial response and AuNP properties. A Cluster analysis heatmap of the contribution from diameter and 
coating to the mitochondrial response. B Linear regression analysis between mitochondrial response and coating-related zeta potential changes. 
Fold change: the fold change of the mitochondrial response in DMEM or water
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found in the cytoplasm of cells [61]. However, our results 
showed that there was little difference in the intracellu-
lar contents of AuNPs with different coatings except for 
mPEG-AuNPs.

The response of mitochondrial respiratory chain 
complexes and macrophage function induced by typical 
AuNPs
Considering the obvious changes in ATP and ROS dis-
turbed by AuNPs, two different coated AuNPs (i.e., BPEI-
AuNPs and tannic acid-AuNPs) were selected to further 
study the alteration of the respiratory electron transport 
chain, a key site for ATP and ROS generation. As shown 
in Fig. 5A, B, there was no observable alteration in com-
plex II (SDHB) or complex IV (COX II) in macrophages 
stimulated by BPEI-AuNPs and tannic acid-AuNPs at 
both 5  nm and 50  nm. The expression of complex III 
(UQCRC2) was downregulated in the 5  nm AuNP-
exposed groups but not in the 50 nm AuNP groups when 
compared with the control group. However, there was 

a conspicuous decrease in complex V (ATP5A) in mac-
rophages treated with both 5 nm and 50 nm AuNPs. The 
activities of complex III and complex V were further 
determined. Interestingly, 5  nm and 50  nm BPEI- and 
tannic acid-AuNPs had no effect on the activity of com-
plex III in both RAW264.7 and J774A.1 macrophages 
(Additional file  1: Fig. S8A, C). However, a decreased 
activity of mitochondrial complex V in the 5 nm AuNP-
exposed groups was observed in both RAW264.7 and 
J774A.1 macrophages (Additional file  1: Fig. S8B, D), 
which was consistent with the results of western blots 
(Fig. 5A, B). The above data suggested that complex V of 
the mitochondrial respiratory chain was more sensitive 
to the exposure of AuNPs and can be listed as a meaning-
ful biomarker for the high-throughput screening of NP-
induced mitochondrial dysfunction at sublethal doses.

Some studies have indicated that NP exposure could 
cause changes in the mitochondrial respiratory chain 
[62, 63]. For example, NP exposure at a dose of 100 μg/
mL downregulated the expression of mitochondrial 

Fig. 5  The expression of mitochondrial respiratory complexes and phagocytic ability of RAW 264.7 after exposure to 5 nm and 50 nm BPEI- and 
tannic acid-AuNPs for 24 h. A Representative lanes of mitochondrial respiratory chain complex II–V (n = 3 blots in total) using western blot. B The 
semi-quantitative results of mitochondrial respiratory chain complexes expression (n = 3) by gray scanning. *p < 0.05, **p < 0.01, compared with 
control
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respiratory chain complexes I, IV, and V in human bron-
chial epithelial (HBE) cells [62]. However, research on 
the effects of NP exposure on the respiratory chain has 
mainly focused on high doses. Studies on the effects of 
NP exposure at sublethal doses on mitochondrial res-
piratory chains are lacking. One study indicated that at 
sublethal concentrations, the expression of complexes I, 
IV, and V was downregulated after NP exposure for 24 h 
[64]. Therefore, the results of our study were supplements 
to the data on the effects of NPs on mitochondrial res-
piratory chains at sublethal doses. In a series of mito-
chondrial respiratory chain complexes, complex III is one 
of the pivotal points in ROS generation, and complex V 
is the key enzyme that phosphorylates ADP to ATP. The 
downregulation of complex III and V might result in a 
decrease in ROS and ATP. In our study, the content of 
ATP was decreased after exposure to AuNPs with differ-
ent coatings and diameters (Fig. 3C), which is consistent 
with the downregulation of complex V. Therefore, it was 
presumed that AuNPs downregulated complex V and 
further led to a decrease in ATP generation. Similarly, 
studies have indicated that NP exposure inhibited the 
expression of complex V and impaired ATP production, 
consistent with the results of our study [62, 64]. However, 
ROS generation was increased after exposure to different 
AuNPs (Fig. 3B), which contradicted the downregulation 
of complex III. The reason for this contradiction might 
be the other sources of ROS, such as complex I, NADPH 
oxidases, xanthine oxidase, and nitric oxide synthase 
[65]. AuNPs may increase ROS production by influencing 
other sources of ROS. Alternatively, the increase in ROS 
might be related to the sensitivity of the methods used to 
detect mitochondrial ROS. Taken together, complex V 
might serve as a sensitive biomarker to indicate the effect 
on mitochondria under a low dose of NP exposure.

Subsequently, we examined the effects of AuNPs treat-
ment on the biological functions of macrophages, such as 
the secretion of pro-inflammatory cytokines and phago-
cytic capacity of macrophages. The level of IL-6, a rep-
resentative pro-inflammatory cytokine of macrophages 
[66], was significant increased in macrophages treated 
with 5  nm and 50  nm AuNPs when compared with the 
control group (Additional file 1: Fig. S9). However, there 
was no difference in the ability of phagocytosis between 
5 and 50  nm BEPI-, tannic acid-AuNPs treated groups 
and control group in both RAW264.7 macrophages and 
J774A.1 macrophages (Additional file 1: Fig. S10). Simi-
larly, a prior study by Chen et al. [32] has reported that 
noncytotoxic dose of TiO2NPs treatment had no effects 
on phagocytic capability of RAW264.7 cells, but cyto-
toxic dose produced attenuation on that. Moreover, 
the TiO2NPs caused mitochondrial dysfunction and 

activated inflammatory responses under both the cyto-
toxic and noncytotoxic dose [32]. Overall, these results 
indicated that AuNPs with different coating and size at 
a similar internal exposure dose under sublethal concen-
tration led to the IL-6 mediated inflammation response, 
which might be linked to the changes in mitochondrial 
morphology, structure, and function.

Conclusion
Our current study suggested that AuNP exposure at a 
sublethal dose could contribute to damage to mitochon-
drial morphology, structure, and function, providing a 
deeper understanding of mitochondrial alterations upon 
exposure to AuNPs (Additional file 1: Fig. S11). Our find-
ings evaluated the different coating and particle size of 
nanoparticles on mitochondrial alterations in the real 
environment upon the sublethal dose and the similar 
internal dose exposure. Except for mPEG-AuNPs, all of 
the other AuNPs selected showed similar intracellular 
contents. Therefore, even at similar intracellular con-
tents, the mitochondrial response still showed a surface 
charge-dependent trend. The AuNPs with higher zeta 
potential led to the strongest effect on mitochondria. Our 
results also suggested that some relevant indicators of 
mitochondrial response, including ROS generation, ATP 
production, and the expression of complex V, can be used 
as sensitive indicators for the high-throughput screen-
ing of toxic NPs at low-dose exposure. However, because 
intracellular AuNPs did not directly contact or accumu-
late in mitochondria, the mechanisms responsible for 
the incurred charge-dependent mitochondrial response 
must be further explored. Energy metabolism plays an 
important role in the immune function of macrophages 
[55], and whether the changes in mitochondria caused by 
AuNPs will impact the function of macrophages warrants 
further evaluation.

Material and methods
Materials
The 5 nm and 50 nm AuNPs (1 mg/mL) in distilled water 
were commercially purchased from Nanocomposix 
Company (San Diego, CA, USA), and quality guaran-
tee periods were 1 year when stored at 4 °C in darkness. 
The surfaces of 5  nm and 50  nm AuNPs were coated 
with branched polyethylenimine (BPEI), polyvinyl pyr-
rolidone (PVP), lipoic acid, tannic acid, sodium citrate, 
or polyethylene glycol monomethyl (mPEG). The work-
ing suspension was freshly prepared by diluting the soni-
cated stock solution with distilled water and thoroughly 
mixing before usage. The NPs remained monodispersed 
during the whole study, and no apparent aggregation was 
observed.
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Cell culture
RAW264.7 cells, a mouse monocytic/macrophage-like 
cell line, were obtained from the Institute of Biochemis-
try and Cell Biology (SIBS, CAS, Shanghai, China). The 
cells were cultured at 37 °C in 5% CO2 and 95% humidi-
fied air in DMEM/high glucose medium (HyClone, South 
Logan, UT, USA) with 10% fetal bovine serum (FBS, 
Boster, Pleasanton, CA, USA) and 1% penicillin (100 U/
mL)/streptomycin (Solarbio, Beijing, China).

Cell viability assay
RAW264.7 cells were previously seeded in 96-well plates 
and allowed to adhere overnight. Following stimulation 
with different coatings of 5 nm and 50 nm AuNPs (0, 1, 
2, 5, 10, and 20 μg/mL) for 24 h, the medium was then 
replaced by 100 μL of fresh cell culture medium contain-
ing 10 μL of cell counting kit-8 (CCK-8, Boster, Pleasan-
ton, CA, USA). After further incubation for 2 h at 37 °C, 
the absorbance at 450  nm was assessed using a micro-
plate reader (Thermo Fisher Scientific, Waltham, MA, 
USA). The experiment was conducted in triplicate, and 
the relative viability of cells was determined as follows: 
cell viability (% of control) = (absorbance of treated sam-
ple/absorbance of control sample) × 100.

Cellular morphology observation
For the observation of cellular morphology, RAW264.7 
cells were exposed to 5  nm and 50  nm AuNPs (5 and 
20  μg/mL) for 24  h with different coatings (BPEI, PVP, 
lipoic acid, tannic acid, citrate, and mPEG). The images 
were captured by an Eclipse TS100 inverted research 
microscope (Nikon, Tokyo, Japan).

ICP‑MS analysis
To determine the cellular uptake of AuNPs, cells were 
incubated with different coatings of 5  nm and 50  nm 
AuNPs (5 μg/mL) for 24 h, and the amounts of internal-
ized AuNPs were measured with inductively coupled 
plasma-mass spectrometry (ICP-MS) analysis. After the 
treatment, cells were washed with ice-cold PBS three 
times and collected using 0.25% trypsin. Subsequently, 
cell numbers were counted using a hemocytometer, 
and cells were lysed with RIPA buffer (Solarbio, Beijing, 
China) at 4 °C for 1 h. Following quantitative analysis of 
lysates by a BCA kit (Thermo Fisher Scientific, Waltham, 
MA, USA), the lysates were then added to 100 μL of aqua 
regia (concentrated HNO3 (GR, 65.0%, Millipore, Biller-
ica, MA, USA) and HCl (GR, 30%, Sinopharm Chemical 
Reagent Co., Ltd, Shanghai, China)) with a volume ratio 
of 1:3 for sample digestion at 60  °C until the solutions 
became transparent. The digested solutions were cooled 
to room temperature and diluted with 2% nitric acid 

solution (HNO3) to reach a final volume of 1 mL. Finally, 
the samples were subjected to ICP-MS (Agilent, Tokyo, 
Japan) to determine the AuNP contents. The gold stock 
solution (GSB 04-1715-2004, 1000  μg/mL in 1.5  mol/L 
HCl) was used as a calibration standard.

Evaluation of mitochondrial morphology
RAW264.7 cells at a density of 100,000 cells/well on 
12-well glass slides were stimulated with different coated 
5  nm and 50  nm AuNPs (5  μg/mL) for 24  h. After the 
treatment, the mitochondrial morphology was analyzed 
using MitoTracker Red (Invitrogen, Carlsbad, CA, USA) 
as described in our previous study [67]. To holistically 
reflect the mitochondrial morphology, a quantitative 
analysis of tubular mitochondrial number in 100 cells per 
sample was performed, and the fluorescence intensity 
of MitoTracker Red was analyzed using ImageJ software 
(Version 1.8.0) to represent the alteration of mitochon-
drial number.

Observation of mitochondrial structure using TEM
RAW264.7 cells were fixed with 2.5% glutaraldehyde for 
2  h. Following postfixation with 1% osmium tetroxide 
(Sigma, St. Louis, MO, USA) for 1 h at 4 °C, the cells were 
rinsed several times with distilled water and dehydrated 
in a series of ethanol solutions (50, 70, 80, 90, and 100%). 
The dehydrated samples were embedded in epoxy resin, 
sliced, and stained with 2% uranyl acetate (KEYI Technol-
ogy Development Ltd, Beijing, China) and 3% lead citrate 
(KEYI Technology Development Ltd, Beijing, China). 
Afterward, the cell morphology and representative TEM 
images were observed using a JEM 2100EX microscope 
(JEOL, Tokyo, Japan) under the help of the commercial-
available technique service (Beijing ZKBC Technology 
Service Company Ltd, Beijing, China).

ROS production assay
The content of intracellular reactive oxygen species 
(ROS) was detected using a 2′,7′-dichlorodihydrofluores-
cein diacetate (DCFH-DA, Beyotime, Shanghai, China) 
assay. Briefly, the cells were seeded in a 12-well plate at a 
density of 300,000 cells/well. After treatment with differ-
ent AuNPs (5 μg/mL) for 24 h, the cells were incubated 
in 300 μL of 10 μM DCFH-DA at 37 °C for 30 min. After 
washing with PBS three times, cells were captured by a 
fluorescence microscope (IX73, Olympus, Japan). All 
the samples were photographed with the fixed micro-
scopic parameters to ensure reliable results. To quantify 
the intracellular fluorescence, the fluorescent intensities 
and cell area were analyzed using ImageJ software. And 
the fluorescence intensity per unit area under each group 
was calculated.
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Mitochondrial ROS production
Levels of mitochondrial ROS were determined using 
the MitoSOX Red (M36008, Invitrogen, Carlsbad, CA, 
USA) assay. After treatment with 5 nm and 50 nm AuNPs 
(5  μg/mL) for 24  h, the cells were harvested by trypsi-
nization, washed, and treated with 5  μM MitoSOX Red 
solution in Hank’s Balanced Salt Solution (HBSS, Gibco, 
Carlsbad, CA, USA) for 10 min at 37  °C. The cells were 
then resuspended in 500 μL of fresh HBSS and analyzed 
by flow cytometry (Novocyte 1040, ACEA Biosciences, 
San Diego, CA, USA).

Analysis of intracellular ATP content
Cells were harvested following incubation with differ-
ent coated 5 nm and 50 nm AuNPs (5 μg/mL) for 24 h. 
The intracellular ATP content was quantified by a com-
mercial kit according to the manufacturer’s instructions 
(Nanjing Jiancheng Biological Product, Nanjing, China), 
as described in our previous study [68]. The absorbance 
value was measured using a fluorescence microplate 
reader (Thermo Fisher Scientific, Waltham, MA, USA) at 
636 nm. The level of ATP was expressed as μmol/mg pro-
tein (i.e., μmol/mg prot).

Cluster analysis
Cluster analysis was performed using R 4.0.0 (R Foun-
dation for Statistical Computing, Vienna, Austria) and 
RStudio. The variation multiples of each experimental 
group relative to the control group were calculated, and 
the data were scaled using the Z-score standardization 
method. The R pheatmap package and longest distance 
method were used for cluster analysis and cluster heat-
map drawing.

Correlation analysis between mitochondrial response 
and zeta potential
With the zeta potential as the independent variable and 
fold change compared to control as the dependent vari-
able, the linear regression coefficient value was calculated 
using R 4.0.0 (R Foundation for Statistical Computing, 
Vienna, Austria) to clarify the relationship between the 
mitochondrial response and zeta potential in different 
NPs exposure groups. The Ggplot2 package was used to 
plot the figure.

Determination of mitochondrial respiratory chain 
complexes
After stimulation with different coatings of 5  nm and 
50 nm AuNPs (5 μg/mL) for 24 h, mitochondria in har-
vested cells were first obtained with a commercial kit fol-
lowing the manufacturer’s protocol (Nanjing Jiancheng 
Biological Product, Nanjing, China). The mitochondrial 

proteins were then extracted using RIPA buffer lysis 
(Solarbio, Beijing, China). Following centrifugation at 
10,000  rpm and 4  °C for 30  min, the concentrations of 
protein in the lysate were quantified by the BCA method 
(Thermo Scientific, Waltham, MA, USA). Mitochondrial 
extracted proteins were resolved by SDS-PAGE, trans-
ferred onto nitrocellulose membranes, and detected as 
described previously [69]. The total OXPHOS antibody 
cocktail (1:1000, ab110411, Abcam, Cambridge, MA, 
USA) and HRP-conjugated anti-mouse IgG (1:500, Easy-
Bio, Beijing, China) were used as the primary antibody 
and secondary antibody, respectively.

Statistical analysis
Statistical analyses were performed using SPSS 17.0 
(IBM Corporation, Armonk, NY, USA) or GraphPad 8.0 
(GraphPad Software, La Jolla, CA, USA). The results are 
expressed as the mean ± standard error (SE). The double 
factor variance analysis (two-way ANOVA) procedure 
was used to compare the significant differences between 
various groups, and the Tukey method was used to fin-
ish the multiple comparisons. For the p values, *p < 0.05, 
**p < 0.01 were marked as statistically significant and 
highly statistically significant, respectively.
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