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Controlled human exposure to diesel 
exhaust: a method for understanding health 
effects of traffic-related air pollution
Erin Long1, Carley Schwartz2 and Christopher Carlsten2*  

Abstract 

Diesel exhaust (DE) is a major component of air pollution in urban centers. Controlled human exposure (CHE) experi-
ments are commonly used to investigate the acute effects of DE inhalation specifically and also as a paradigm for 
investigating responses to traffic-related air pollution (TRAP) more generally. Given the critical role this model plays 
in our understanding of TRAP’s health effects mechanistically and in support of associated policy and regulation, we 
review the methodology of CHE to DE (CHE–DE) in detail to distill critical elements so that the results of these studies 
can be understood in context. From 104 eligible publications, we identified 79 CHE–DE studies and extracted infor-
mation on DE generation, exposure session characteristics, pollutant and particulate composition of exposures, and 
participant demographics. Virtually all studies had a crossover design, and most studies involved a single DE exposure 
per participant. Exposure sessions were typically 1 or 2 h in duration, with participants alternating between exercise 
and rest. Most CHE–DE targeted a PM concentration of 300 μg/m3. There was a wide range in commonly measured 
co-pollutants including nitrogen oxides, carbon monoxide, and total organic compounds. Reporting of detailed 
parameters of aerosol composition, including particle diameter, was inconsistent between studies, and older studies 
from a given lab were often cited in lieu of repeating measurements for new experiments. There was a male predomi-
nance in participants, and over half of studies involved healthy participants only. Other populations studied include 
those with asthma, atopy, or metabolic syndrome. Standardization in reporting exposure conditions, potentially 
using current versions of engines with modern emissions control technology, will allow for more valid comparisons 
between studies of CHE–DE, while recognizing that diesel engines in much of the world remain old and heterogene-
ous. Inclusion of female participants as well as populations more susceptible to TRAP will broaden the applicability of 
results from CHE–DE studies.
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Background
Exposure to air pollution is an important global health 
issue, and has recently been estimated to cause approxi-
mately 7 million deaths worldwide [1]. Traffic related 
air pollution (TRAP) is the largest contributor to air 

pollution in most urban centers and is responsible for 
20–30% of global pollutant emissions [2]. TRAP expo-
sure has been associated with various health outcomes 
including those associated with airways disease [3–6], 
cardiovascular disorders [7, 8] and a range of distur-
bances within other organs systems. Controlled human 
exposures (CHE) are a study design that is commonly 
used to investigate the acute effects of air pollution. The 
goal of CHE studies is to safely expose participants to a 
known amount of pollutant in a controlled environment 
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to assess specific reversible health-related endpoints 
resulting from human exposure, without inducing 
overt clinical events. Air pollution exposures frequently 
employed in CHEs include diesel exhaust (DE) [9], con-
centrated ambient particles (CAP) [10], and wood smoke 
[11]. These types of studies are used, in conjunction with 
epidemiological, in  vitro, and animal model studies, to 
provide biological plausibility and mechanistic insight 
and thus contribute to a more complete picture of pollu-
tion-related health outcomes. These studies are also used 
to test interventions that are thought to be of potential 
benefit, as evidence of effectiveness from such controlled 
studies may substantially increase confidence in the value 
of such interventions.

Advantages of CHE studies include the ability to con-
trol exposure duration, concentration, and other expo-
sure-related factors. These types of CHE studies also 
typically benefit from a crossover experimental design 
that effectively eliminates risk of confounding by personal 
variables that pose inferential threats in other, most com-
monly observational, study designs. Another strength of 
CHE studies is the ability to select certain populations for 
investigation, allowing for more flexibility in the hypoth-
eses that can be tested. Finally, CHE studies provide the 
capacity to assess a large range and number of clinically 
and biologically relevant endpoints efficiently within 
a single study [9]. The contribution of CHE studies has 
provided invaluable insight to our current understanding 
on the health impacts of air pollution, and, in turn has 
significantly buttressed regulatory imperatives in the face 
of challenges in the legal setting and otherwise.

DE from motor vehicles is a considerable contributor to 
TRAP given the extensive use of diesel engines in trucks, 
trains, boats buses, vans, and in some parts of the world, 
passenger cars. The main constituents of DE are nitrogen 
oxides  (NOx), particulate matter (PM), carbon monoxide 
(CO), and a range of hydrocarbons (HC) all of which have 
be shown to threaten human health [12]. Emissions from 
diesel engines are the greatest contributor to  NOx derived 
from transportation and are also a significant source of 
PM [12]. As such, DE is a frequently used paradigm for 
TRAP exposure, particularly those acute, in studies of 
CHE to DE (CHE–DE). A complete and detailed char-
acterization of the diesel exhaust particles (DEP) pre-
sent in a CHE is essential to understanding the related 
health impacts. As such, CHE–DE typically report con-
centration of PM (which, though modest, for many stud-
ies appears enough to demonstrate acute effects of DE 
exposure [13–16]) and various fractions therein, particle 
size distribution, particle number, elemental and organic 
carbon (EC and OC respectively). Other exposure char-
acteristics commonly reported include nitrogen monox-
ide (NO), nitrogen dioxide  (NO2),  NOx, CO, total volatile 

organic compounds (TVOC), temperature, and humid-
ity. Engine load, fuel sulfur content, and newer engine 
technologies have been shown to affect DE composition 
with respect to both PM and gaseous emissions [17]. 
Variations in engine load have been shown to mediate 
differential effects on immune, cardiac, and pulmonary 
function in mice [18]. As such, other factors that affect 
the composition of diesel engine emissions likely influ-
ence health effects as well, underlining the importance of 
accuracy in reporting exposure characteristics in connec-
tion to measured health outcomes.

The purpose of this review is to provide a detailed 
documentation of experimental design, exposure condi-
tions, and participant demographics for CHE–DE stud-
ies to date, for the purpose of understanding the results 
of those studies and caveats therein, along with implica-
tions for translation of associated results, and for then 
optimizing future experimental design. Earlier reviews 
of CHE–DE publications have discussed the findings 
derived from this body of literature with respect to the 
main health impacts of DE [9], or focused on a particular 
subset of CHE–DE experiments [19, 20]. This publication 
is the first to comprehensively review the methodologies 
of all CHE–DE studies published to date.

Methods
Literature search
A search of PubMed and Web of Science databases was 
conducted to identify English language CHE studies 
involving DE. All queries included the keyword “die-
sel exhaust” in combination with “exposure”, “controlled 
human exposure”, or “human exposure” (eg. “diesel 
exhaust” AND “exposure”). To be eligible, the publica-
tion had to expose participants to a controlled quantity 
of diesel exhaust via inhalation. Articles up until Decem-
ber 2020 were included. Letters, abstracts, and academic 
theses were excluded as they were subject to less rigorous 
peer review and/or provided less fulsome data for scru-
tiny. A search of the citations for each publication as well 
as the Clinicaltrials.gov registration page for publications 
that reported a clinical trial number was also conducted 
for eligible studies. This resulted in a total of 79 CHE–
DE studies, with results reported across 104 eligible pub-
lications that were identified and reviewed. Publications 
reporting results from the same CHE–DE study were 
clustered within our data distillation.

Data extraction
From these studies the following study details were 
extracted: method of diesel exhaust generation, key 
design elements including exposure arms, specific char-
acteristics of DE and control exposures, and participant 
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demographics. The specific parameters extracted are 
listed in Table 1.

Note that various studies reviewed had missing data 
for one or more of the components described above. If 
the study referenced an exposure system used previ-
ously under similar study design parameters, data from 
the most recent publication was extracted for this review. 
Missing data for some studies was obtained through cor-
respondence with the study teams.

The results with respect to health outcomes of these 
104 publications are reviewed in a separate companion 
paper [21].

Results
Method of diesel exhaust generation
A summary of all reported methods of diesel exhaust 
generation from reviewed studies are found in the sup-
plemental material (see Additional file  1). A total of 18 
DE generation methods were used across the 79 studies. 
Of these methods, 2 complied with Environmental Pro-
tection Agency (EPA) Tier 3, 1 with EPA Tier 1, 1 with 
European Union (EU) Stage 2, and 14 were uncatego-
rized by emission standards. Yanmar, Volvo, Cummins 
were the most common brands of generators. Most fuel 
used was low or ultra-low sulfur diesel. Many studies 
used idling engines (31) though some opted to use stable 
or cycling loads to simulate conditions of real use. Two 
studies exposed participants to both DE produced under 
idling conditions and to DE produced under urban driv-
ing conditions [22, 23].

Study design
A summary of reported CHE study design characteristics 
is shown in Table  2. With the exception of 4 studies (1 
with single arm [108], 1 with single sequence [57], and 2 
with parallel group design [54, 61]), all reviewed studies 
had a randomized crossover design, in which each par-
ticipant underwent each exposure arm (acting as his/her 

own control). The vast majority of studies (75) included 
at least one filtered air (FA) or ambient air exposure as 
control. 46 studies included a single DE exposure arm, 
25 had two DE exposure arms, and the remaining 8 stud-
ies had between 3 and 5 DE exposure arms. 3 studies had 
two different cohorts that underwent either one DE arm 
or two DE arms [66–68] and 2 studies had two or more 
different cohorts that underwent, per study protocol, 
either one DE arm or no DE arms [54, 61]. In this review, 
these different cohorts were considered separately and 
are represented as separate arms in all figures (e.g. if for 
the same study one cohort underwent one DE arm and 
the other cohort two DE arms, then three DE arms were 
considered for analysis in this review). Exposure sessions 
were usually 60 or 120 min in length, with washout peri-
ods of between 1 and 4  weeks between each exposure 
session for a given participant. 24 studies involved co-
exposures to both DE and additional agents such as aller-
gen, ozone  (O3), antioxidant, and noise (Table 2).

During exposure sessions, participants were either at 
rest or performing exercise on stationary bikes in order 
to simulate activity levels common to real-world settings 
and/or increase deposition of inhaled DE. The majority 
of studies had participants alternate between exercise 
and rest (only 23 studies had participants rest through-
out). Studies that included a cycling component typically 
standardized exercise intensity by setting a ventilation 
target, ranging from 15 to 25  L/min/m2 body surface 
area. 11 studies did not report activity of participants 
during exposure sessions.

Temperature and humidity were maintained at lev-
els generally considered comfortable, between 18 and 
26 °C and 35% to 60% RH respectively (Additional file 1). 
No temperature data was reported in 24 studies, and 
no humidity data was reported for 30 studies. As men-
tioned previously, 11 studies referenced a DE generation 
system (previously detailed) but did not explicitly cite a 
source for temperature or humidity data—in such cases, 

Table 1 Study elements and specific parameters extracted from each study

CO carbon monoxide, DE diesel exhaust, EC elemental carbon, FA filtered air, HC hydrocarbons, NO nitrogen monoxide, NO2 nitrogen dioxide, NOx nitrogen oxides, 
OC organic carbon, PM particulate matter, TVOC total volatile organic compounds, VOC volatile organic compounds

Study element Parameters extracted

Diesel exhaust generation Engine, engine emission standards tier, fuel, load

Key study design elements Study type, duration of exposure, number and type of exposures, activity during exposure, washout period, concurrent 
exposures, temperature, humidity

DE exposure composition PM concentration, NO,  NO2,  NOx, CO, TVOC, formaldehyde, VOCs, HC compounds, EC and OC content, particle size, particle 
count

FA exposure composition PM concentration, NO,  NO2,  NOx, CO, TVOC, formaldehyde, VOCs, HC compounds, EC and OC content, particle size, particle 
count

Participant characteristics Inclusion criteria, exclusion criteria, sex, age, sample size

Other Clinicaltrials.gov identifier
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temperature and humidity data was assumed also to 
reflect that noted within the previously article detailing 
DE generation.

Summary of particulate matter characteristics 
across studies
Important components of PM include PM mass concen-
tration, average particle count, and particle size. PM mass 
concentration is expressed in various size classifications 
such as coarse particles (PM with aerodynamic diameter 
under 10  μm but larger than 2.5  μm) and fine particles 
(PM with aerodynamic diameter under 2.5 μm  (PM2.5)), 
etc. [122]. Often for CHE PM mass concentration is used 
to set the standard at which the DE exposure level is 
targeted.

Of the studies reviewed, the majority (37) reported and 
targeted PM mass concentration levels as  PM2.5. 19 stud-
ies reported  PM10 concentration (PM with aerodynamic 
diameter under 10 μm), and the remaining reported  PM1 
(PM with aerodynamic diameter under 1 μm),  PM2 (PM 
with aerodynamic diameter under 2 μm), or PM without 
specifying size. PM concentration was not available for 3 
studies (Additional file 1). The most common target mass 
concentration for the DE exposures reviewed was a  PM2.5 
concentration of 300  μg/m3 (Fig.  1), roughly one order 
of magnitude above the  PM2.5 24-h standards set by the 

US EPA [123] and World Health Organization [124]. For 
DE exposures, the highest  PM2.5 concentration used was 
325 μg/m3 and the lowest  PM2.5 concentration used was 
19  μg/m3 (Fig.  2). 8 studies involved a particle depleted 
DE (PDDE) exposure arm—the PM concentration of 
these arms were mostly under 100  μg/m3 (Additional 
file 1). 1 study exposed participants to resuspended DEP 
[69]. For FA exposures, the highest  PM2.5 concentration 
was 21 μg/m3 and most studies used a  PM2.5 concentra-
tion under 10 μg/m3 (Additional file 1).

46 studies reported average particle count for the DE 
exposure component while only 28 studies reported 
particle counts for FA exposures (Additional file 1). The 
particle count range for reviewed DE exposures were 30 
particles/cm3—5.4 ×  106 particles/cm3 and 14 particles/
cm3—1.7 ×  104 particles/cm3 for FA exposures (Addi-
tional file  1). There were 8 studies that included PDDE 
exposures (Additional file  1) and the particle counts 
for these studies were similar to those of FA exposures. 
Methodology for reported particle count in Blomberg 
et  al. [106] was unclear and therefore not included in 
analysis.
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Particle size was also often reported, with 39 studies 
reporting particle size for DE exposures and 13 for FA 
exposures. A variety of methods and aerosol size meas-
urements were reported, including most commonly mass 
median diameter, count median diameter and geometric 
mean (see Additional file 1). It should be noted that for 
both particle count and particle size measurements that 
different particles size range distributions were use which 
may affect inter-study comparisons.

Detailed particle composition was rarely reported, with 
only 17 publications reporting carbon composition and 4 
reporting particle polyaromatic hydrocarbon (PAH) con-
centration. No publications reviewed reported metallic 
composition of DE, though on occasion the studies ref-
erenced earlier work that did so from the same lab [125].

Gaseous components of exposures
Commonly reported gaseous components of DE expo-
sures included NO,  NO2,  NOx, CO, TVOC, and formal-
dehyde (Additional file  1). There was no data available 
for the gaseous portion of DE exposures for 4 studies. 
Of the gaseous components that were characterized, 
each showed a wide range in concentration (Fig.  3). In 
general, concentrations in DE exposures were greater 

than air quality standards set by the US National Ambi-
ent Air Quality Standard (NAAQS), although those met-
rics are calculated differently. For example, over 75% of 
studies had concentrations of  NO2 greater than the 1-h 
US NAAQS standard of 100 ppb, but the latter is 3-year 
average of 98th percentile of the yearly distribution of 1-h 
daily maximum concentrations within which significantly 
higher levels such as those in CHEs intermittently occur 
[123]. Just under half of studies exceeded the NAAQS 1-h 
average of 35 ppm for CO [123].

Gaseous pollutant composition of FA exposures was 
not available for 40 publications (4 studies did not have 
a FA exposure condition) (Additional file 1). If FA com-
position data was included, often fewer parameters were 
reported compared to the DE condition. Though FA 
exposures are used as a control condition, completeness 
of reporting can assure readers of the validity of any con-
clusions made.

Study participant characteristics
The average sample size reported was 22 participants. 11 
studies involved ≤ 10 participants, 43 studies involved 
11–20 participants, 11 studies involved 21–30 par-
ticipants, with the remaining involving more than 30 
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participants (Additional file  1). The largest sample size 
reported was 97 participants [51]. Participants were 
typically aged between 20 and 40 (Additional file  1), 
with the full range between 18 and 80 [28]. 11 stud-
ies reported participants over 50  years old (Additional 
file 1). Some studies reported only a mean and standard 
variation with respect to age, rather than an age range or 
a complete list of participant ages.

There was a male predominance in participant sex 
(Fig.  4). A fifth of reviewed studies only included male 
participants, and roughly two-thirds of studies included 
less than 50% female participants (Fig.  4). Pregnancy is 
one of the most common reasons females are excluded 
from biomedical experiments, and several of the 
reviewed studies screened for pregnancy prior to par-
ticipation. Some studies also considered hormonal vari-
ations related to the menstrual cycle confounding, and 
either timed exposures to the first half of the menstrual 
cycle [16, 115] or excluded females altogether [68, 86].

Common participant exclusion criteria for CHE were 
medical comorbidities, regular medication use (including 
vitamin supplements or antioxidants), current smoking, 
and significant occupational exposure to air pollution 
(Additional file  1). Only a single study included current 
smokers [109]. Similarly, while most studies listed signifi-
cant occupational exposure to air pollution in their exclu-
sion criteria, one publication included a cohort of bus 
drivers that were often exposed to DE [104].

58% of studies included healthy participants only 
(Fig.  4). Healthy participants were typically defined 
as those without cardiovascular disease, respiratory 
disease, or other chronic medical conditions. Some 

publications conducted physical exams, electrocardiogra-
phy, or spirometry to screen participants. 24% of studies 
included asthmatic and/or atopic individuals, character-
ized by either positive skin prick testing, positive metha-
choline challenge, physician diagnosed asthma, or other 
diagnosis such as allergic rhinitis (Fig.  4). Most studies 
defined positive methacholine challenge defined as a pro-
vocative concentration of methacholine resulting in 20% 
decrease in  FEV1  (PC20) less than or equal to 8 mg/mL, 
though some used cut offs of less than 8 mg/mL or less 
than 16  mg/mL. The majority of studies that included 
asthmatic or atopic participants performed spirometry 
and methacholine challenge testing as screening meas-
ures, likely due to the high prevalence of asthma misdiag-
nosis [127–129].

9% of studies included participants with metabolic syn-
drome, most often defined according to the American 
Heart Association and National Heart, Lung, and Blood 
Institute criteria [126]. This population is of special inter-
est as individuals are at higher risk of cardiovascular 
disease [130] and DE exposure is known to promote vas-
cular dysfunction and thrombosis [75, 81, 96, 119]. Meta-
bolic syndrome is also associated with chronic oxidative 
stress [131], one of the likely mechanisms for DE-medi-
ated effects [112].

Only a small number of studies included participants 
with other significant chronic medical conditions, such 
as COPD [22, 28], coronary heart disease [47, 85, 93], and 
heart failure [110, 111]. These populations were thought 
potentially more susceptible to adverse events from DE 
exposure, such that their inclusion in CHE experiments 
has been limited.

no females
1 - 49% females
50 - 70% females

healthy only
asthmatic/atopic
metabolic syndrome
other morbidities

BA

*no gender data for 4 studies
n = 75 studies n = 79 studies

Fig. 4 Participant sex* and underlying phenotype. A Studies by percentage of female participants. B Studies by participant type. Studies that 
included healthy, non-asthmatic, non-atopic participants only were categorized under healthy. Studies involving healthy participants that were 
not screened for atopy were categorized under healthy. Studies that included at least some participants with positive skin prick testing, positive 
methacholine challenge (typically  PC20 ≤ 8 mg/mL), diagnosed asthma, exercise-induced bronchoconstriction, or other atopic diseases (even if 
healthy participants, with none of these conditions, were also included) were categorized under “asthmatic/atopic”. Metabolic syndrome for most 
studies was classified according to criteria outlined in [126]. See Additional file 1 for full dataset. *Most studies categorized participants by biological 
sex though some reported participant gender (self-identification as female or male). As the potential difference between sex and gender was not 
carefully elaborated in these studies, the term “sex” is used herein (recognizing that in some cases sex and gender may not correspond but that we 
do not have the data resolution to address this further)
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Discussion
Diesel characterization and study design 
recommendations
As the literature of CHE–DE studies expands, a stand-
ard of DE characterization and data reporting should be 
considered. This standardization will facilitate not only 
a level of quality assurance in detailed reporting but also 
allow for ease of inter-publication comparison of results. 
We now outline some recommendations that should lead 
to a more complete exposure profile and we also high-
light how these parameters could influence reported 
health outcomes.

The characteristics of DE can greatly affect health out-
comes. Therefore, much care should be taken to provide 
a complete, accurate and detailed profile of exposure 
levels.  PM2.5 is commonly regarded as the PM fraction 
most damaging to human health [122] as these particles 
are significantly deposited within the respiratory tract, 
with smaller particles generally penetrating deeper [132]. 
A study conducted in the US reported that a 10  μg/m3 
increase in  PM2.5 increased cardiovascular mortality risk 
by 8–18% [133].  PM2.5 exposure has been shown to be a 
stronger predictor of increased mortality risk than  PM10 
exposure [134, 135], suggesting that the coarse fraction, 
while not benign, may be relatively less hazardous. Given 
the influence of PM size on health outcomes, standard-
izing the concentration (or range of concentrations) and 
also the PM size fraction used to determine this concen-
tration, and clearly reporting as such would allow for eas-
ier comparisons between studies. Furthermore, reporting 
particle number (ideally, using a standardized definition), 
would be helpful for interpretation and comparison to 
the epidemiologic and toxicologic literature. With respect 
to determining an optimal PM concentration for study, 
we discuss the challenges associated with such a task in a 
separate companion paper currently under review.

Gaseous composition of DE was often not remeasured 
for each study and, instead, data from older studies con-
ducted by the same lab were cited instead. However, the 
composition of DE produced by the same DE generation 
system depends on a multitude of factors that can be dif-
ficult to control over time. The same engine will accu-
mulate wear and tear with use, fuel can vary in spite of 
attempts to keep uniform, and the time from last mainte-
nance (oil change, etc.) can all influence the resultant DE 
generated. For example, three separate studies from the 
Air Pollution Exposure Laboratory in Vancouver, Canada 
[125] reported different concentrations of some aerosol 
components despite using the same engine, type of fuel, 
engine load, dilution system, and target  PM2.5 concentra-
tion [13, 32, 36]. Though pollutant composition can be 
difficult to maintain precisely, standard parameters to be 

reported for each separate experiment can at least aid in 
interpretation of results.

Activity level during exposure should be carefully con-
sidered in design and reported with study results, as it 
can influence outcomes. One study compared plate-
let activation in participants exposed to DE while rest 
or alternating between exercise and rest [66]. Exercise 
increased particulate inhalation, and platelet activa-
tion was significantly increased in the exercise group 
compared to the resting group [66]. Exercise-induced 
increases in ventilation likely enhances inhalation of not 
just particles, but also of gaseous components of air pol-
lution as well. As such, further design for, and detailing 
of, DE exposure at different levels of activity is likely to 
reveal helpful data.

As with all biological investigations, sex- and/or gen-
der-specific differences are important to uncover and 
greater efforts should be made to include female par-
ticipants in CHE experiments. Studies done in mouse 
models have illustrated sex-dependent effects of DE 
exposure. Intranasal inoculation of DE particles induced 
a greater degree of pulmonary neutrophilia and impair-
ment of lung function in female mice compared to male 
mice [136]. In a different study, inhalation of DE was 
associated with increased inflammatory markers in 
mouse brain, an effect that was more marked in males 
[137]. CHE–DE studies have typically not found dif-
ferential health effects based on sex. Furthermore, and 
most importantly, CHE–DE studies to date have not 
generally done careful analysis of this, if at all, and when 
examined may not have done so in a sex-disaggregated 
fashion, as now recommended. Furthermore, the male 
predominance of participants in these studies may have 
disallowed revelation of any potential differences. Inves-
tigation of effect modification by sex and gender, as well 
as sex- and gender-specific (disaggregated) responses, in 
humans exposed to DE is a compelling future direction 
for CHE studies.

Finally, it was often the case that results from one 
study were reported across multiple publications, 
though it was not always clear when this was the case. 
This review attempted to cluster publications using the 
same participants and exposure sessions based on in-
text references as well as clinical trial number, however 
references to other publications utilizing the same or 
overlapping participant-exposures were sometimes not 
expressly stated. To facilitate transparency in this regard, 
future publications should explicitly reference all other 
publications stemming from the same participant-expo-
sure session cluster, the location and time period over 
which the study was conducted, as well as clinical trial 
number.
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Changing diesel engine technology and fuel
The emissions standards of on-road vehicles, diesel 
engines in particular, are ever-evolving.

The EPA’s most recent set of emission standards for 
light duty vehicles was phased in, beginning with model 
year 2017, and will be fully implemented by the year 
2025 [138]. These updated standards significantly reduce 
the allowed emissions of PM and gaseous components, 
including  NOx, formaldehyde, and CO in vehicle emis-
sions [138]. The EPA has been also phasing in new stand-
ards with respect to fuel consumption and greenhouse 
gas emissions, beginning in 2014 for medium and heavy-
duty vehicles and 2017 for light-duty vehicles [139, 140]. 
Regulations for vehicle emissions are regularly updated in 
Europe as well, where the most recent sets of standards, 
Euro 6 for light-duty vehicles and Euro VI for heavy-duty 
vehicles, came into effect in 2015 and 2013 respectively 
[141]. Therefore, published studies will tend to reflect 
older technology. However, it is important to recognize 
that the ‘typical’ diesel engine in use worldwide today is 
not one of the most recent and technologically advanced 
models. Instead, given the hardy and resilient nature of 
diesel engines, most engines in use globally at any given 
moment remain those of years and decades past, such 
that the studies reviewed herein remain highly relevant 
(and, arguably, more relevant than are the most recent 
models given that they remain in the minority overall).

In recent years, CHE–DE studies have also trended 
towards using low-sulfur diesel fuels, likely reflecting the 
global trend towards reducing sulfur content in fuels. 
In the mid-2000’s, the US began restricting diesel sulfur 
content to under 15  ppm [142] while the EU and Japan 
set an upper limit of 10 ppm [143]. Sulfur increases the 
emission of pollutants such as sulfur dioxide  (SO2), CO, 
 NOx, and PM [143]. Given the evolving nature of emis-
sions control regulations and technology, care should 
be taken to ensure both the fuel and engines used in 
research are updated in tandem with those used in the 
real world although, as noted similarly for engines, much 
of the world lags considerably behind the ‘leading edge’ of 
such advances.

Limitations of controlled human exposures
While CHE experiments lend themselves well to inves-
tigating acute effects of DE inhalation, the relationship 
of effects to those of chronic exposure (conceptually a 
series of such acute effects) is yet uncertain. Long-term 
DE exposure drives chronic disease development and 
progression [144–146] and so CHE studies therefore are 
not ideally suited to shed light on such disease. Although 
pathophysiology of chronic disease may be understood 
as resulting from an accumulation of ‘hits’ of recurrent 

acute exposures, it remains unclear whether it is tran-
sient exposure peaks or rather longer-term exposures 
more modestly above background levels, or perhaps 
more likely a combination of both, that are most influ-
ential in this regard. Furthermore, CHE experiments are 
of necessity somewhat circumscribed and simplified in 
their design, and thus cannot capture the full complex-
ity of real-world exposures. Given varying sources of 
DE, dynamic concurrent exposures, and fluctuating pol-
lutant composition and PM concentration, a plethora 
of variables underlie the actual settings in which people 
breathe [147]. Additionally, numbers and phenotypes of 
participants are limited due to practical considerations, 
so results being extrapolated to larger and broader popu-
lations must be done with caution and circumspection. 
Where possible, careful inclusion of individuals with 
chronic conditions in CHE experiments can yield valu-
able data that will greatly benefit these susceptible popu-
lations. Finally, as discussed above, engine technology 
evolves over time, posing another caveat to interpreta-
tion and application of historical results.

Conclusion
Studies of controlled human exposures (CHE) to die-
sel exhaust, a paradigm of traffic-related air pollution, 
are invaluable within the armamentarium of investiga-
tions that elucidate effects of (and ways to protect from) 
the air we breathe. However, there is considerable vari-
ability in the study design and reporting of exposure 
parameters across CHE experiments. Standardization 
and greater detail in reporting elements such as pollut-
ant composition, PM, and particle diameter will allow 
stronger comparisons to be drawn. There is a male pre-
dominance in CHE studies, and strident efforts should 
be made to include female participants. Most studies 
included healthy and relatively young participants only; 
inclusion of older and more diseased populations has 
proven safe in carefully designed CHE studies to date 
and is recommended into the future, to deepen insight 
regarding the full range of impact of traffic-related air 
pollution on global populations. No CHE–DE studies 
to date have been performed with photochemical aging 
similar to that expected in ambient conditions signifi-
cantly distant from point sources (and thus reflective of 
realistic secondary ambient aerosols) and CHE–DE that 
better recapitulate these conditions are desired, though 
CHE studies to CAP do account for the effects of aging 
to an extent. Finally, more and larger CHE studies of 
interventions to protect from adverse effects should be 
performed, in parallel to vigorous efforts to forestall 
exposures at their root.
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