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Abstract
Background The widespread use of new engineered nanomaterials (ENMs) in industries such as cosmetics, 
electronics, and diagnostic nanodevices, has been revolutionizing our society. However, emerging studies suggest 
that ENMs present potentially toxic effects on the human lung. In this regard, we developed a machine learning (ML) 
nano-quantitative-structure-toxicity relationship (QSTR) model to predict the potential human lung nano-cytotoxicity 
induced by exposure to ENMs based on metal oxide nanoparticles.

Results Tree-based learning algorithms (e.g., decision tree (DT), random forest (RF), and extra-trees (ET)) were 
able to predict ENMs’ cytotoxic risk in an efficient, robust, and interpretable way. The best-ranked ET nano-QSTR 
model showed excellent statistical performance with R2 and Q2-based metrics of 0.95, 0.80, and 0.79 for training, 
internal validation, and external validation subsets, respectively. Several nano-descriptors linked to the core-type 
and surface coating reactivity properties were identified as the most relevant characteristics to predict human lung 
nano-cytotoxicity.

Conclusions The proposed model suggests that a decrease in the ENMs diameter could significantly increase 
their potential ability to access lung subcellular compartments (e.g., mitochondria and nuclei), promoting strong 
nano-cytotoxicity and epithelial barrier dysfunction. Additionally, the presence of polyethylene glycol (PEG) as a 
surface coating could prevent the potential release of cytotoxic metal ions, promoting lung cytoprotection. Overall, 
the current work could pave the way for efficient decision-making, prediction, and mitigation of the potential 
occupational and environmental ENMs risks.
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Background
Engineered nanomaterials (ENMs) based on metal oxide 
nanoparticles offer a wide range of promising applica-
tions, including cosmetics, electronics, sunscreens, tex-
tiles, biomedical products, and diagnostic nanodevices, 
among others [1–5]. Although inorganic ENMs offer 
multiple technological advantages and reveal exciting 
physicochemical properties, understanding their inter-
action with a biological environment is still challenging. 
Growing evidence demonstrates that some inorganic 
ENMs (e.g., CuO, ZnO, Fe2O3, CeO2, Ag, Au, and TiO2) 
could be potentially more toxic than their organic coun-
terparts, such as carbon-based ENMs [2]. It is well-
recognized that, from the occupational and molecular 
epidemiology point of view, engineered inorganic ENMs 
present a higher potential to induce several human lung 
epithelial perturbations mainly based on the intracellular 
increase of reactive oxygen species (ROS) [6, 7], which 
usually play an important role in the high prevalence of 
human lung nano-cytotoxicity of ENMs at the molecular, 
cellular, and subcellular levels (e.g., mitochondria, lyso-
somes, and nuclei) [7, 8].

Over the last few decades, various sampling strategies 
have been used to determine the ENMs occupational 
exposure. However, there is still no international con-
sensus on measurement strategies, metrics, or exposure 
limits, as toxicity studies of ENMs have generally been 
conducted in non-human in vitro cell-based models. 
The assessment of individual human exposure to ENMs 
remains a critical issue despite recent innovative develop-
ments in personal measurement nanodevices [9]. In this 
regard, most of the research institutes that synthesize and 
manufacture ENMs, manage detailed action plans to mit-
igate the personal nano-exposure of workers, mainly by 
the respiratory tract [9–13]. Herein, the current nanorisk 
assessment paradigm was developed by the U.S. National 
Academy of Sciences and the Federal Government by 
considering four critical steps: (i) hazard identification, 
(ii) dose-response assessment, (iii) exposure assessment, 
and (iv) nano-risk characterization [14, 15]. Despite 
the numerous in vitro and in vivo studies to tackle the 
relationship between the physicochemical properties 
of ENMs and their nanotoxicological responses, the 
obtained evidence is often contradictory or nonconclu-
sive [9].

Recently, there has been unprecedented global inter-
est in improving human nanosafety relevance, which is 
possible through in silico models [16]. This interest has 
been significantly supported by increased top-down 
investment from central sources such as the EPA-Tox21 
Consortium [17], the National Institute of Health [18], 
the International Organization for Standardization 
(ISO) [19], the European Commission through the Hori-
zon 2020 Initiative, and the Organisation for Economic 

Co-operation and Development [20]. The efforts include 
the development of several computational models 
for nanotoxicology predictions [16]. Overall, in silico 
approaches are greatly beneficial to address the current 
concerns on ENMs nanotoxicity, as they introduce pre-
dictive animal-free technologies based on state-of-the-
art machine learning (ML) methods. Newly published 
in Nano Today journal, Burden et al. [21] strongly sug-
gest that by using sophisticated ML-based methodolo-
gies, which rigorously follow the 3Rs ethical principles 
adapted to nanosafety, it is possible to extrapolate in vitro 
exposure effects to explain human exposure [22, 23].

Following this idea, predictive in silico approaches 
could efficiently address Nano-Quantitative Structure-
Activity/Property/Toxicity Relationships (nano-QSAR/
QSPR/QSTR) of ENMs based on metal oxide nanopar-
ticles to prevent potential human lung nano-cytotoxicity. 
Although the classical term to address this type of prob-
lem is QSAR, which gives a broad framework capable of 
integrating the most up-to-date models, in this work, the 
fundamental concept is nano-QSTR. Such a term derives 
from addressing ENMs from a toxicological point of view 
[24–26]. Given the complexity of the ENMs, the nano-
QSTR model application is restricted by the use of physi-
cochemical properties as nano-descriptors. Nevertheless, 
with the advancement of Artificial intelligence (AI) and 
Data Science in the last years, establishing relationships 
between the physicochemical properties (e.g., electro-
negativity, ionization potential, van der Waals radius, 
among others) of a complex system such as ENMs and 
their nanotoxicity is reasonable [27–29].

In light of the basic concept underlying the implemen-
tation of nano-QSTR predictive models, it assumes that 
a given set of similar structures (e.g., ENMs) have an 
equivalent toxicological behaviour. Thus, a subtle struc-
tural change in the ENMs composition, such as different 
crystallographic cores, the presence or absence of dop-
ing agents, or surface coatings, among others, should 
lead to a slight divergence in the toxicological paradigm. 
In contrast, the advances in AI and ML continue to pro-
vide large opportunities to move forward in the mecha-
nistic understanding of nanotoxicology responses [30]. 
In this regard, there are several examples of transparent 
and understandable techniques, including multiple linear 
regression (MLR), partial least squares (PLS) regression, 
decision tree (DT), and random forest (RF), among oth-
ers [31]. Besides, such algorithms should be supported 
by strategies that present a visual glance of the diversity 
and homogeneity of the data distributions and, together 
with the linear and non-linear correlation among the 
ENMs nano-descriptors, allow the exclusion of redun-
dant information.

Therefore, this work aims to develop a novel and robust 
ML nano-QSTR model to predict the potential human 
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lung nano-cytotoxicity induced by ENMs based on metal 
oxide nanoparticles. Moreover, the present work is an 
effort to pave the way for using in silico tools to efficiently 
predict ENMs potential occupational risks and make reg-
ulatory decisions in nanotoxicology and environmental 
health.

Materials and methods
Dataset
The data of 16 ENMs for human lung carcinoma cell 
line A549 have been taken from the literature [32] and 
recently the same data set was used by us using a quasi-
SMILES approach [33]. The dataset contains 377 obser-
vations (N = 377) on cell viability (%), and covers several 
relevant assay conditions, such as the different composi-
tion of the core, doping, surface coating, diameter (nm), 
and concentrations (µg/ml) of the ENMs. An overview 
of the physicochemical composition of the ENMs is pre-
sented in Table 1; Fig. 1. Complete data of this subsection 
is available in the Supplementary Information (see Addi-
tional File 1, Table S1).

Nano-descriptors calculation
A crucial step in developing ML nano-QSTR models 
is calculating the adequate nano-descriptors. Nano-
descriptors are numerical forms of nanoparticle prop-
erties (e.g., electronic, physicochemical, structural, and 
topological) that could be used to represent ENMs and 
might be quantitatively associated with cytotoxicity. 
Moreover, nano-descriptors contain relevant informa-
tion on metal, non-metal, and semimetals obtained from 
the periodic table and other literature sources [34]. A 
set of 31 nano-descriptors (e.g., Van der Waals radius of 
the active metal, the number of metallic elements, and 
the number of electrons of the active metal) was calcu-
lated using the Elemental-Descriptor (software version 
1.0, Gdansk, Poland). Complete data of this subsection 

is available in the Supplementary Information (see Addi-
tional file 1, Table S2 and Table S3).

Dataset pre-processing
In the context of ML nano-QSTR models, applying data 
pre-processing techniques represents a step that effi-
ciently helps improve data quality by extracting relevant 
features from the raw data. Overall, the data pre-process-
ing includes several procedures, such as cleaning, orga-
nizing, and structuring the data into an understandable 
and readable input format for building ML nano-QSTR 
models to predict a given biological response (i.e., cyto-
toxicity-induce by ENMs).

In the present study, we carried out the following 
pre-processing steps: (i) filter the ENMs with a diam-
eter of less than 200 nm, reducing the number of avail-
able ENMs to 11 from the original amount of 16 ENMs, 
and the number of observations to N = 333 from the ini-
tial amount of N = 377; (ii) encode the categorical nano-
descriptors (core, doping, and surface coating) into 
numerical readable inputs by using a One-Hot Encod-
ing procedure [35]; (iii) application of a standardization 
procedure based on the Z-score normalization method, 
where the values are centered on the mean with a unit 
standard deviation. The standardization procedure is 
represented by Eq. (1), where µ is the mean of the ENMs 
nano-descriptor values and σ its standard deviation:

 
X ′ =

X − µ

σ
 (1)

Lastly, the iv) pre-processing step was to approximate 
the shape of the distribution of each numerical nano-
descriptor to a Gaussian distribution by applying the 
Yeo-Johnson transformation [36]. Complete data of this 
subsection is available in the Supplementary Information 
(see Additional file 2, Figure S1, Figure S2 and Figure S3).

Table 1  A short version of the original dataset covering relevant assay conditions, such as the different physicochemical nature of the 
core, doping, surface coating, diameter (nm), and concentrations (µg/ml) of the ENMs along with the cell viability (%) data
ENMs ID Core Doping Surface Coating Diameter (nm) Concentration (µg/

mL)
Cell Vi-
ability 
(%)

1 ZnO ND NSC 68.90 0.01 100.00

2 ZnO ND NSC 68.90 1.56 104.79

3 ZnO ND NSC 68.90 3.13 109.64

4 ZnO ND NSC 68.90 6.25 112.06

5 ZnO ND NSC 68.90 12.50 120.16

6 ZnO ND NSC 68.90 25.00 47.35

7 ZnO Na (1.5%) NSC 5.50 0.01 100.00

8 ZnO Na (1.5%) NSC 5.50 6.25 94.61

9 ZnO Na (1.5%) NSC 5.50 12.50 93.56

10 ZnO Na (1.5%) NSC 5.50 25.00 93.57
ND: No doping; NSC: No surface coating
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Dataset splitting
The first step was to withhold a random sample of N = 33 
from a total of N = 333 to simulate an unseen dataset. 
Another way to think about this step is that 33 obser-
vations were unavailable to train and evaluate the ML 
nano-QSTR models. Afterward, the 300 observations in 
the dataset were randomly divided into a training sub-
set of N = 210 (70%) and a test subset of N = 90 (30%), 
respectively [37]. The training subset was used to train 
the ML nano-QSTR models, whereas the test subset was 
employed to evaluate its predictive performance. Com-
plete data of this subsection is available in the Supple-
mentary Information (see Additional file 1, Table S4 and 
Table S5).

ML nano-QSTR model development
Considering the trade-off between ML nano-QSTR 
model performance and its interpretability, the ENMs 
nano-descriptors were combined by simple arithmetical 
operations and converted into new statistically signifi-
cant nano-descriptors. For instance, two ENMs nano-
descriptors were multiplied to be more preponderant in 
explaining the data variance than the same two ENMs 
nano-descriptors separately. The next step was to reduce 
the dimensionality of the data, reduce the computational 
cost, and minimize the redundancy between the ENMs 

nano-descriptors. Three key operations were performed, 
namely (i) remove the ENMs nano-descriptors with a low 
variance; (ii) remove highly inter-correlated ENMs nano-
descriptors; (iii) implement a combination of various 
permutation importance techniques to achieve the final 
subset of ENMs nano-descriptors [38], such as Shap-
ley additive explanations (SHAP), which explains the 
contribution of each ENMs nano-descriptor to the ML 
nano-QSTR model [39]. Afterward, several tree-based 
algorithms were used to make the ML pipeline more 
transparent and interpretable, such as decision tree (DT), 
random forest (RF), and extra-trees regressor (ET) [31]. 
Complete data of this subsection is available in the Sup-
plementary Information (see Additional file 1, Table S6).

ML nano-QSTR model validation
In the present study, we followed the principles of the 
Organization for Economic Co-operation and Devel-
opment (OECD) concerning model validation, which 
establishes that a reliable model should present appro-
priate goodness-of-fit measures, robustness, and pre-
dictivity performance [40]. In this regard, there are two 
methods to evaluate the goodness of a model: (i) inter-
nal and (ii) external validation. The (i) internal validation 
evaluates the fitting of the model on existing data (train-
ing set); the (ii) external validation evaluates future data, 

Fig. 1 General representation of the structure and chemical composition of the engineered nanomaterials (ENMs). evaluated in this work. (a) Depiction 
of the whole composition of an ENM with the corresponding counterparts without doping and surface coating shown below; (b) Representation of 
the different ENMs core compositions; (c) and (d) Ball-and-stick model representation of the different doping and coating types evaluated for the ENMs, 
respectively
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i.e., how reliable the model can predict new data (test set 
and unseen set). Here, the (i) internal validation of the 
regression-based models was determined based on sev-
eral statistical metrics such as determination coefficient 
(R2), determination coefficient based-metrics (Q2

LOO), 
root-mean-square error (RMSE), mean absolute error 
(MAE), and coefficient of concordance (CCC). Moreover, 
the robustness of the model was represented by a 5-fold 
cross-validation process [41]. The (ii) external validation 
of the models was determined using similar statistical 
parameters, such as R2

ext, Q2
F1, Q2

F2, RMSE, MSE, and 
CCC. All statistical metrics were computed via DTC Lab 
Xternal Validation Plus (software version 1.2, India) [42].

Applicability domain
According to the OECD third principle [40], a QSAR 
model to predict a given biological response (i.e., ENMs 
cytotoxicity) should be associated with a defined applica-
bility domain (AD). The AD is a theoretical region of the 
chemical space that contains both model nano-descrip-
tors and modelled responses, in which the model makes 
predictions with a given reliability [43]. Herein, the AD 
was calculated using a standardization approach and 
retrieved via DTC Lab Applicability Domain Calcula-
tor (software version 1.0, India). For calculating the AD, 
Eq. (2) was used:

 Snew(k) = Sk + 1.28 × σSk
 (2)

Where Snew (k) is Snew value for ENMk, S̅k is the mean of 
the standardized nano-descriptors for ENMk (from the 
training, test, or unseen set), and σSk is the standard devi-
ation of standardized nano-descriptors for ENMk (from 
the training, test, or unseen set). Overall if the Snew (k) is 
lower or equal to 3, then the ENMk is not an outlier (if 
in the training set) or is within the AD (if in the test or 
unseen set) [43].

Summary
An overview of the implemented data-driven approach 
is presented in Fig. 2. All algorithms were implemented 
in Python (software version 3.9), using libraries such as 
Pycaret (software version 2.3.8) and scikit learn (software 
version 0.23.2). Altogether, the experiments allowed the 
extraction of valuable insights from the dataset and pro-
vided the baseline to construct the ML nano-QSTR mod-
els. The definition of AD made it possible to understand 
the limitations and boundaries where the predicted val-
ues can be trusted with confidence.

Results
Nano-descriptors distribution and diversity
Based on the data of 16 engineered nanomaterials 
(ENMs), under different experimental conditions, a ML 

nano-QSTR model with cell viability endpoint as the 
dependent variable was established. As previously men-
tioned, the ultimate goal of the developed model was to 
predict the potential human lung nano-cytotoxicity.

As the application of any data-driven algorithm 
requires a comprehensive understanding of the data, one 
of the first concerns was to consider the differences in the 
structure and chemical composition of the ENMs, extract 
valuable insights from the dataset and provide a baseline 
to construct the ML nano-QSTR model. In this regard, 
Fig.  3 presents an overview of the dataset characteris-
tics, such as the endpoint frequency distribution, and the 
diversity of core, doping, and surface coating nanomate-
rials composition.

It is not uncommon to find a skewed frequency dis-
tribution for ENMs nano-descriptors from nanotoxico-
logical experimental data, i.e., some types of structural 
attributes appear much more frequently [44]. In this 
regard, the evaluated endpoint (cell viability) follows a 
normal distribution, predominantly ranging from 75 to 
125%, with a mean value of 96% and a standard devia-
tion of 23% (Fig. 3(a)). Regarding the composition of the 
ENMs, based on their frequency distribution, the core 
and the surface coating features present a qualitative 
and quantitative diversity, with the most prevalent core 
types being Zn, Ag, SiO2, and surface coating composi-
tions being the ENMs without surface coating, and the 
ENMs coated with PMAA, and sodium citrate (Fig. 3(b) 
and Fig.  3(d)). The frequency distribution of the differ-
ent doping types is predominantly represented by the 
absence of doping in the ENMs and may seem skew 
toward that direction (Fig.  3(c1)). However, it is impor-
tant to note that for ENMs with and without doping, the 
frequency distribution of both types is much more bal-
anced (Fig. 3(c2)). To complement this analysis, Fig. 3(e) 
to Fig. 3(g) present the trend of the cell viability variation 
with representative examples of each nano-descriptor. 
Despite the existence of specific ENMs compositions 
that significantly vary the cell viability, the tendency of 
variation agrees with the mean and standard deviation 
previously mentioned. A similar frequency distribution 
analysis was performed on the set of 31 ENMs nano-
descriptors, such as the number of metallic elements, the 
Van der Waals radius of the active metal, and the number 
of electrons of the active metal, among other examples 
(see Additional file 2, Figure S4). Overall, each nano-
descriptor depicts a high degree of diversity by present-
ing several attributes that can span the ENMs structural 
space.

ML nano-QSTR model performance and validation
Through the dataset exploration and characteriza-
tion conducted in the previous section, the richness 
of the dataset was assured, providing the basis for the 
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development of the ML nano-QSTR model. In this par-
ticular problem, three interpretable learning algorithms, 
including decision tree (DT), random forest (RF), and 
extra-trees regressor (ET) are presented. Although DT, 
RF, and ET belong to the same family of learning algo-
rithms, i.e., tree-based models that use conditional state-
ments to make predictions, DT is the simplest. Therefore, 
it is expected that DT presents slightly lower statistical 
metrics than RF and ET. The use of such an algorithmic 
family is in agreement with recent studies that point out 
that an interpretable learning algorithm is more valuable 
to experimentalists than a highly predictive but black-box 
model since its interpretation is complex and non-trivial 
[31, 45]. To verify the reliability and robustness of the 
developed models, Table  2 presents an overview of the 
statistical metrics for training, validation, and test sets.

Regarding the evaluation of the developed models 
on existing data, i.e., training subset, DT, RF, and ET 

present an R2 between 0.95 and 0.96, highlighting their 
high statistical performance in learning the behavior of 
the training ENMs. Concerning DT, RF, and ET internal 
validation, the 5-fold cross-validation process enhanced 
their robustness as R2 for each model is between 0.7 and 
0.8. As previously mentioned, with the slight increase in 
model complexity, there is an increment in the statistical 
performance as DT presents an R2 of 0.73, RF of 0.76, and 
ET of 0.79. Overall, the internal validation of each model 
is guaranteed by R2 and Q2

LOO to be in the same order of 
magnitude. As for the evaluation of the developed models 
on new data, i.e., test subset, DT presents an R2

ext of 0.76, 
while RF and ET present an R2

ext of 0.79. This statistical 
parameter is complemented by the determination coeffi-
cient based-metrics (Q2

F1 and Q2
F2), which depict similar 

values. Altogether, both internal and external validation 
confirms that the developed models have the potential to 
reliably predict A549 cell line viability.

Fig. 2 Overview of ML nano-QSTR model approach to predict the potential human lung nano-cytotoxicity induced by ENMs based on metal oxide 
nanoparticles

 



Page 7 of 14Meneses et al. Particle and Fibre Toxicology           (2023) 20:21 

Fig. 3 Dataset overview. (a) Cell viability (%) frequency distribution; (b), (c1), (c2), and (d) Diversity of core, doping, and surface coating nanomaterials 
composition; (e), (f), and (g) Cell viability (%) variation trend with representative examples of each nano-descriptor
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From a general point of view, the key performance indi-
cator in selecting the model to be used in the final stage 
of prediction was the internal validation subset. Such a 
decision relies on ET presenting R2 and Q2-based metrics 
higher than DT in 8% and RF in 4%, while the training 
and test set statistical parameters are in the same order of 
magnitude. To corroborate this analysis, Additional file 2, 
Figure S5 presents the learning curves for the ET nano-
QSTR model for training and validation sets, highlighting 
a slight trade-off between bias and variance, which could 
be adjusted by having more training instances. Thus, 
Fig.  4 presents an overview of the agreement between 
experimental and predicted cell viability values by the ET 
model for training and test sets.

Through the exploration of Fig.  4(a), it is possible to 
quantitative and qualitatively highlight the strong corre-
lation between the observed and predicted cell viability 
values, as most ENMs are within the 95% prediction level 
range. Such analysis is complemented by Fig. 4(b), which 
enhances that training and test data points approximately 
follow a symmetrical distribution, tending to cluster 
towards the middle of the plot, around lower values of 

the y-axis (e.g., most of the residuals are between − 10 
and 10).

Nano-descriptors interpretation
Bearing in mind that the final aim of the present work 
is to predict the potential nano-cytotoxicity induced by 
ENMs on human lung carcinoma cells, it is fundamental 
to understand the correlation between the nano-descrip-
tors and the cell viability. Moreover, it is noteworthy to 
highlight the most significant nano-descriptors in the ET 
nano-QSTR model performance. Thus, Fig. 5 presents an 
overview of some representative nano-descriptors and 
their correlation with cell viability.

Through the exploration of Fig.  5(a), it is possible to 
identify two distinct groups of nano-descriptors that 
present a negative correlation with cell viability. One 
group depicts nano-descriptors retrieved from the orig-
inal dataset, such as PMAA surface coating, Cl (3%) 
doping, and ENMs concentration. The other group 
describes a set of nano-descriptors that were calculated 
to become more preponderant in explaining variances in 
the cell viability data, such as the mathematical combina-
tion of ENMs concentration and PMAA surface, ENMs 

Table 2 ML nano-QSTR models performance for training, validation, and test sets
Model Subset R2 R2

ext Q2
LOO Q2

F1 Q2
F2 RMSE MAE CCC

DT Training 0.953 - - - - 6.147 3.840 0.976

Validation 0.733 - 0.730 - - 14.103 8.441 0.851

Test - 0.765 - 0.765 0.765 13.264 7.139 0.868

RF Training 0.965 - - - - 5.299 2.963 0.981

Validation 0.768 - 0.767 - - 13.266 7.908 0.866

Test - 0.790 - 0.789 0.789 12.573 6.879 0.881

ET Training 0.953 - - - - 6.158 3.912 0.975

Validation 0.798 - 0.797 - - 12.054 7.294 0.889

Test - 0.788 - 0.788 0.788 12.580 6.603 0.883
DT: decision tree; RF: random forest; ET: extra-trees regressor; R2: determination coefficient (R2

ext for external validation); Q: determination coefficient based-metrics 
(Q2

LOO for internal validation; Q2
F1 and Q2

F2 for external validation); RMSE: root-mean-square error; MAE: mean absolute error; CCC: coefficient of concordance.

Fig. 4 Overview of experimental and predicted cell viability (%) by ET nano-QSTR model for training and test sets. (a) Scatter plot representing the ex-
perimental cell viability (%) as a function of the predicted cell viability (%). The straight line illustrates the perfect agreement between experimental and 
calculated values. The dashed lines represent the 95% prediction level. (b1) Scatter plot representing the predicted cell viability (%) as a function of the 
residuals; (b2) Frequency distribution of the predicted cell viability (%). The dashed lines represent the residuals that are between − 10 and 10
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concentration, and ENMs diameter. Overall, Fig.  5(a) 
highlights nano-descriptors that tend to decrease cell 
viability and might promote cytotoxicity at the cellu-
lar level. As for nano-descriptors that present a positive 
correlation with the endpoint, Fig. 5(c) highlights Fe3O4 
core, Fe (4%) doping, and polyethylene glycol (PEG) sur-
face coating as the group of nano-descriptors retrieved 
from the original dataset. In a similar analysis, the other 
group describes a set of nano-descriptors obtained from 
the Elemental descriptor calculator, such as the Van der 
Waals radius of the active metal, the number of metal-
lic elements, and the number of electrons of the active 
metal. Comprehensively, Fig.  5(c) enhances nano-
descriptors that tend to increase cell viability and might 
avoid cytotoxicity at the cellular level.

From a modelling point of view, Fig. 5(b) and Fig. 5(d) 
represent a fundamental aspect as both figures highlight 

the set of nano-descriptors that contributed the most to 
the model performance. Interestingly, the nano-descrip-
tors that present a negative correlation with the endpoint 
are the most relevant from the entire set. An in-depth 
analysis of Fig. 5(b) shows that the nano-descriptor with 
the highest contribution on the model performance 
results from the mathematical combination of the ENMs 
concentration and PMAA surface coating.

Considering that ENMs surface area is described as a 
central factor related to the toxic potential of particu-
late matter, we did explore if this descriptor could play 
a relevant role in our model. As detailed above, several 
nano-descriptors linked to the surface coating reactiv-
ity properties and diameter of the ENMs were identified 
as some of the most relevant characteristics to predict 
human lung nano-cytotoxicity. To mathematically cal-
culate the surface area of the ENMs, it is necessary to 

Fig. 5 Summary of representative nano-descriptors. (a) and (c) Negatively and positively correlated nano-descriptors with cell viability (%); (b) and (d) 
Nano-descriptors effect on ET nano-QSTR model performance
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perform some assumptions, namely (i) the ENM is a 
perfect sphere, and (ii) the ENM size is the diameter of 
the sphere. Therefore, even though indirectly, the model 
does consider the surface area of the ENMs as a driving 
factor for nano-cytotoxicity. All the assumptions and 
mathematical equations to calculate the surface area 
are explained in detail by Shin et al. [32]. Complete data 
on the direct influence of ENMs surface area on model 
performance is available in the Supplementary Informa-
tion (see Additional file 1, Table S7, and Additional file 2, 
Table S1).

Taking advantage of such knowledge, the ET nano-
QSTR model was retrained with the ENMs nano-
descriptors identified in Fig. 5 and applied to new data, 
which was not used to develop and validate the model. 
Table  3 presents an overview of the statistical metrics 
of ET nano-QSTR model when applied to the unseen 
subset.

Table 3 shows a significant increase in ET nano-QSTR 
model performance as the R2

ext increased from 0.79 to 
0.93, representing an increase of 18%. Another inter-
esting observation is the similar order of magnitude 
between the R2

ext and Q2-based metrics. Additionally, the 
RMSE, MAE, and CCC performance metrics increased 
from 12.58 to 4.37, 6.60 to 3.52, and 0.883 to 0.96, rep-
resenting an increase of 65%, 47%, and 8%, respectively. 
Overall the developed model presents a strong, reliable, 
and robust performance in predicting cell viability.

Applicability domain of the proposed model
However, it is paramount to identify the border of the 
optimum prediction space, i.e., applicability domain 
(AD). From a general point of view, the developed ET 
nano-QSTR model is valid in a chemical space where the 
ENMs possess structural and physicochemical properties 
similar to the ENMs used to train and validate the model. 
Otherwise, the ENMs might be considered outliers or 
even out of the AD. It is significant to mention that all 
the studied ENMs are within the AD. Detailed values of 
the AD of the ENMs are depicted in the Supplementary 
Information (see Additional file 1, Table S8).

Discussion
Although human lung nano-cytotoxicity induced by 
ENMs based on metal oxide nanoparticles is among the 
current occupational and environmental concerns, it 
remains unexplored and under-researched. The current 
standard in vitro and in vivo models used to evaluate 

such a type of nano-cytotoxicity are time-consuming, 
costly, and could involve many ethical concerns in animal 
experimentation. In this sense, this work presents an ET 
nano-QSTR model to assist experimental scientists by 
providing a mechanistic interpretation learned from data 
of 16 ENMs for the A549 cell line [40, 46].

The mechanistic interpretation regards the set of opti-
mal nano-descriptors, i.e., the most significant nano-
descriptors in the model performance, and considers if 
the nano-descriptors are (i) negatively or (ii) positively 
correlated with the cell viability [47, 48]. Then, three well-
recognized nanotoxicological mechanisms are used to 
complement such interpretation, including (i) the ENMs 
core type- and diameter-dependent release of cytotoxic 
metal ions (e.g., Fe2+, Fe3+, Ag+, Au+, Ti2+, Cd2+) from 
the ENMs core reactive surface, which could promote 
redox-homeostasis perturbations, (ii) the physio-path-
ological increase of intracellular reactive oxygen species 
(ROS) levels by mitochondrial dysfunction, and (iii) the 
nano-bio interaction with binding sites of key molecular 
targets, such as the human lung epithelial proteins and 
multiprotein junctional complexes that form the selective 
permeability barrier of the human lung epithelial, which 
may induce barrier dysfunction [7, 32, 49, 50].

An in-depth analysis of Fig.  5, which identifies six 
negatively and positively correlated nano-descriptors 
with cell viability, suggests that the presence of PEG as 
a surface coating of a Fe3O4 core significantly enhances 
cell viability and inversely attenuates human lung nano-
cytotoxicity. As PEG presents excellent pharmacokinetic 
properties based on absorption, distribution, metabo-
lism, and excretion (ADME), its presence as a surface 
coating could significantly reduce the potential release of 
cytotoxic ions (Fe2+) from the Fe3O4 core. Overall, such 
behavior is congruent with the literature, as the surface-
dependent release of cytotoxic metal ions has been well 
documented in previous experimental works [51–54].

In this regard, the generated divalent Fe2+ ions from 
the ENMs based on metal oxide nanoparticles tend to 
increase the intracellular concentration of oxygen-free-
radical groups (e.g., hydroxyl radical). Such mechanism 
is explained due to the occurrence of the Fenton-Haber-
Weiss reaction at the subcellular level, which is directly 
associated with molecular lung cytotoxic mechanisms 
(e.g., mitochondria dysfunction promoted by Fe2+ ions) 
[55–59]. Therefore, the presence of PEG as a surface 
coating significantly contributes to the inhibition of these 
cytotoxic signaling pathways.

Table 3 ET Nano-QSTR model performance for unseen subset
Model Subset R2

ext Q2
F1 Q2

F2 RMSE MAE CCC
ET Unseen 0.927 0.929 0.925 4.375 3.528 0.961
ET: extra-trees regressor; R2

ext: determination coefficient for external validation; Q2
F1 and Q2

F2: determination coefficient based-metrics for external validation; RMSE: 
root-mean-square error; MAE: mean absolute error; CCC: coefficient of concordance.
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In opposition to the previously described behavior of 
PEG, the presence of PMAA as a surface coating or the 
Cl− (3%) as a doping condition tend to decrease cell via-
bility, as they intensify the potential release of cytotoxic 
metal ions (e.g., Fe2+, Fe3+, Ag+, among others) from the 
inorganic ENMs core or doping composition [51–54, 60]. 
Such evidence is corroborated by the ET nano-QSTR 
model, as the most influential nano-descriptor to the 
model performance derives from the arithmetic combi-
nation of the ENMs concentration and PMMA surface 
coating. Furthermore, the nano-descriptor also pres-
ents a high negative correlation (R2 = − 0.83) with cell 
viability and may be inversely linked with human lung 
nano-cytotoxicity.

Besides, all the core-based ENMs nano-descriptors, 
such as the number of metallic elements (R2 = 0.81), the 
Van der Waals radius of the active metal (R2 = 0.71), and 
the number of electrons of the active metal (R2 = 0.73), 
are positively correlated with the cell viability. Such struc-
tural attributes are directly associated with the metal 
core-based reactive properties when the ENMs are found 
in their pristine form and have an intrinsic cytotoxic 
potential according to the diameter and charge of the 
inorganic core. Nonetheless, such nano-descriptors do 
not contribute to intensifying the cytotoxicity from the in 
silico point of view. A reasonable explanation behind this 
behavior focuses on the presence of a PEG surface coat-
ing that stabilizes the ENMs’ chemical surface reactivity 
and avoids the occurrence of direct nano-bio interactions 
of the metal oxide core with binding sites of the target 
proteins forming the human lung epithelial (i.e., A549 
cells target proteins).

It is well-established that a decrease in the diameter of 
the metal oxide nanoparticles contributes to a significant 
increase in their ability to access lung cell compartments, 
including mitochondria, lysosomes, and nuclei. There-
fore, the concentration of metal oxide nanoparticles in 
such organelles will increase and play a fundamental role 
in lung epithelial barrier dysfunction [7]. More impor-
tantly, the diameter decrease of the evaluated metal oxide 
nanoparticles could contribute to an exponential increase 
in the number of reactive atoms expressed on the face-
based crystallographic planes of the ENMs core. Such 
a decrease simultaneously promotes the core chemi-
cal reactivity and its potential capacity to interact with 
relevant lung tissues and cells [7, 61, 62]. The proposed 
ML nano-QSTR model corroborates this information 
through the negatively correlated nano-descriptors that 
result from the mathematical combination of ENMs con-
centration and ENMs diameter.

Overall, the current mechanistic interpretation brings 
a novel contribution to assist experimental scientists in 
understanding and analyzing nanotoxicological data. 
Nonetheless, achieving a broader domain of applicability 

and trustability in nano-QSTR models is still a challenge. 
Therefore, it is necessary to start or continue to collect 
human lung experimental data standardly, i.e., to imple-
ment the findability, accessibility, interoperability, and 
reusability (FAIR) data principles [63]. In this regard, it is 
crucial to highlight that data concerning (i) the potential 
release of cytotoxic metal ions through time and conse-
quently, (ii) the actual concentration of ENMs that reach 
the cells were not included in the modeling procedure 
due to the unavailability of such data for human lung 
cells.

Indeed, using advanced computational models to pre-
dict the effective cellular dose is fundamental to under-
standing the interaction of submerged materials with 
biological systems. Recently, DeLoid et al. [64] explored 
both three-dimensional computational fluid dynam-
ics (CFD) and a newly-developed one-dimensional Dis-
torted Grid (DG) model to predict the delivered dose 
metrics for submerged ENMs in culture media. The last 
model was later used and validated in a study by Kowoll 
et al. [65] to predict the deposition of particles on cellular 
and intercellular human lung surfaces. Interestingly, the 
authors highlight both model capabilities and limitations, 
specifically regarding the spatial distribution of parti-
cles on heterogeneous surfaces, which is the case in our 
study. Such considerations are even more relevant since 
Kowoll et al. performed the experiments in a human lung 
cell line (i.e., A549 cells) that fit with the same biological 
model considered in our in silico study.

Therefore, in future works, we plan to address these 
limitations by incorporating computational particoki-
netics models to estimate the relationship between the 
release of cytotoxic metal ions through time, the relevant 
in vitro dose criteria for the dosimetry of ENMs, and 
their influence on the shape of the dose-response curve 
[66]. Even with all the challenges, a prospective nano-
QSTR model should be performed in a useful way that 
could lead and orient experimental scientists to decision-
making processes about nanotoxicological data.

Conclusions
An ML nano-QSTR model was successfully developed 
to predict the potential human lung nano-cytotoxicity 
induced by ENMs based on metal oxide nanoparticles. 
Results demonstrated that using tree-based learning 
algorithms (e.g., extra-trees regressor) allowed the devel-
opment of a simple, interpretable, and robust nano-
QSTR model, as ET presented R2 and Q2-based metrics 
of 0.95, 0.80, and 0.79 for training, internal validation, 
and external validation subsets. By taking advantage 
of the advances in AI and ML, which continue to pro-
vide opportunities to move forward in the mechanistic 
understanding of nanotoxicology responses, we could 
identify the six most significant nano-descriptors in the 
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model performance. Therefore, we could understand if 
the nano-descriptors are (i) negatively or (ii) positively 
correlated with the cell viability. As for the (i) negatively 
correlated, a decrease in the diameter of the metal oxide 
nanoparticles contributes to a significant increase in their 
ability to access lung cell compartments, thus promoting 
lung epithelial barrier dysfunction. As for the (ii) posi-
tively correlated, the presence of PEG as a surface coat-
ing significantly stabilizes the ENMs’ chemical surface 
reactivity and avoids the potential release of cytotoxic 
ions, promoting cell viability and inversely attenuating 
human lung nano-cytotoxicity. By exploiting such knowl-
edge, the ML nano-QSTR model was retrained with the 
most significant nano-descriptors and applied to new 
data (e.g., unseen subset), allowing the increase of R2 
and Q2-based metrics from 0.79 to 0.92. Based on these 
findings, the present work may pave the way to possibly 
predict ENMs’ potential occupational risks and make 
regulatory decisions in nanotoxicology and environmen-
tal health.
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