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Abstract
Background: Respiratory symptoms, impaired lung function, and asthma have been reported in
workers exposed to wood dust in a number of epidemiological studies. The underlying
pathomechanisms, however, are not well understood. Here, we studied the effects of dust from
pine (PD) and heat-treated pine (HPD) on the release of reactive oxygen species (ROS) and
inflammatory mediators in rat alveolar macrophages.

Methods: Tumour necrosis factor-alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-
2) protein release, TNF-α and MIP-2 mRNA expression, and generation of ROS were studied as
end points after treatment of rat alveolar macrophages with PD or HPD. In a separate series of
experiments, the antioxidants glutathione and N-acetyl-L-cysteine were included in combination
with wood dust. To determine the endogenous oxidative and antioxidant capacity of wood dusts,
electron spin resonance (ESR) spectroscopy was used.

Results: After 4 h incubation, both PD and HPD elicited a significantly (p < 0.05) increased mRNA
expression of TNF-α and MIP-2 as well as a concentration-dependent release of TNF-α and MIP-
2 protein. Interestingly, PD induced a significantly higher TNF-α and MIP-2 production than HPD.
Moreover, a significantly increased ROS production was observed in alveolar macrophages
exposed to both PD and HPD. In the presence of the antioxidants glutathione and N-acetyl-L-
cysteine, the PD- and HPD-induced release of ROS, TNF-α, and MIP-2 was significantly reduced.
Finally, electron spin resonance analyses demonstrated a higher endogenous antioxidant capacity
of HPD compared to PD. Endotoxin was not present in either dust sample.

Conclusion: These results indicate that pine dust is able to induce expression of TNF-α and MIP-
2 in rat alveolar macrophages by a mechanism that is, at least in part, mediated by ROS.
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Background
In addition to sino-nasal cancer [1], exposure to wood
dust has been shown to be associated with a wide variety
of acute and chronic non-malignant respiratory health
effects as well as eye irritation and dermatitis [2,3]. How-
ever, the underlying mechanisms involved are not well
understood and subject of controversial discussion.
Although inflammatory markers were found in nasal and
bronchoalveolar lavage fluid from wood-dust exposed
individuals [4-6], other studies do not corroborate the
hypothesis that inflammation plays a part in wood dust-
induced airway obstruction [7]. Moreover, recent studies
do not support the assumption that the complaints
related to exposure to wood dust are IgE-mediated [8,9].

In wood processing facilities, the proportion of respirable
wood dust ranges from 6% to 75% of the total wood aer-
osol [2]. Respirable wood dust particles may deposit in
the pulmonary alveoli and interact with alveolar macro-
phages, a cell type that plays an important role in phago-
cytosis and clearance of inhaled particulates. Upon
interaction with noxious particles, alveolar macrophages
can produce a broad spectrum of pro-inflammatory medi-
ators, such as tumour necrosis factor-alpha (TNF-α) and
macrophage inflammatory protein-2 (MIP-2) as well as
reactive oxygen (ROS) and nitrogen species [10-13]. TNF-
α is one of the pre-eminent cytokines that acts as an initi-
ator of inflammatory processes in the lung [14]. The
chemokine MIP-2 is known to mediate neutrophilic
inflammatory responses in the lung [10,15]. ROS have
been shown not only to damage cells by peroxidizing lip-
ids and disrupting DNA and proteins, but also to exert sig-
naling functions and modulate gene transcription
[16,17]. Moreover, ROS are suggested to mediate the
release of TNF-α and MIP-2 in alveolar macrophages
exposed to noxious particles [18]. Interestingly enough, a
recent study demonstrated that exposure to pine dust
induced increased ROS production and caused cell death
in both murine RAW 264.7 macrophages and human pol-
ymorphonuclear leukocytes [19].

Pine is one of the most extensively used wood species in
the wood processing industry and several studies have
shown that exposure to pine dust induced respiratory
symptoms, reduced lung function, and asthma [3,20-22].
Moreover, pine is one of the most common wood species
used for heat treatment, one of the treatment processes for
stabilization and preservation of wood. After heat-treat-
ment, both physical and chemical properties of wood are
changed [23].

This study aimed to investigate the effect of dust from
untreated as well as from heat-treated pine on the produc-
tion of TNF-α, MIP-2, and ROS by primary rat alveolar

macrophages and to elucidate the role of oxidative stress
in pine dust-induced cytokine production.

Methods
Wood dust
Dust from untreated pine (PD) and heat-treated pine
(HPD) was obtained from the Kuopio Regional Institute
of Occupational Health (Kuopio, Finland). Dusts were
produced using a dust collecting face-grinding machine
with 400-grit sanding paper. For particle size distribution
analyses, wood dust specimens, gold-coated for 170 sec-
onds with BAL-TEC SCD 005 Sputter Coater (BAL-TEC
AG, Liechtenstein), were examined on a JEOL JSM-6400
scanning electron microscope (JEOL Inc., Peabody, MA)
at an acceleration voltage of 20 kV. More than 1700 parti-
cles for each dust were analyzed from electron micro-
graphs. More than 95% of wood dust particles from both
pine and heat-treated pine had a diameter less than 5 µm
(Table 1). The endotoxin content in PD and HPD as ana-
lyzed with a LAL gel-clot assay (Charles River, Germany)
was below the detection limit of 0.06 EU/ml. For experi-
ments, pine dust was suspended in RPMI-1640 medium
with 10% fetal calf serum, ultrasonicated, and vortexed.

Collection of Alveolar Macrophages
Male Sprague-Dawley rats (Charles River, Sulzfeld, Ger-
many) were anesthetized by an intraperitoneal injection
of sodium pentobarbital (30 mg/KG body weight) and
killed by exsanguination from the abdominal aorta. The
lungs were lavaged ten times with 10 ml of sterile, non-
pyrogenic phosphate-buffered saline solution (PBS; Serva,
Heidelberg, Germany). The pooled samples were centri-
fuged at 300 g for 10 min, and the cell pellet was washed
twice and re-suspended in RPMI 1640 (Seromed, Munich,
Germany) supplemented with L-glutamine, gentamycin
(0,16 mg/ml), and 10% heat-inactivated fetal bovine
serum (FBS; Gibco BRL, Eggenstein, Germany). Total cell
counts were assessed with a standard hemocytometer
(Coulter Electronics, Krefeld, Germany). Air-dried cyto-
centrifuged smears served to identify the cellular popula-
tions after staining with May-Grünwald-Giemsa. The
preparation of bronchoalveolar cells contained about 97–

Table 1: Size distribution of wood dust particles

Pine Heat-treated Pine

Number of particles counted 1796 1928
< 1 µm (%) 66.9 65.6
1–5 µm (%) 29.6 30.0
5–10 µm (%) 3.1 3.3
10–20 µm (%) 0.4 0.8
20–50 µm (%) 0.1 0.1
> 50 µm (%) 0 0.1
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100% alveolar macrophages. Cell viability as determined
by trypan blue exclusion was greater than 90%.

Treatment of cells
Alveolar macrophages were adjusted according to the dif-
ferential cell counts to 2 × 106 cells/ml. Then, 100 µl-sam-
ples of cell suspension were plated to 96-well flat-
bottomed cell culture plates (Nunclon Delta, Roskilde,
Denmark), and incubated at 37°C in 5% CO2 and 21%
O2. After 2 h, non-adherent cells were removed by wash-
ing twice with RPMI 1640, and the adherent alveolar mac-
rophages were covered with 100 µl of pine dust
suspension at concentrations ranging from 5 to 200 µg/
ml. As a negative control, 3-µm polystyrene microspheres
(Polysciences, Eppelheim, Germany) were used at a con-
centration of 100 µg/ml. As a positive control, Escherichia
coli LPS serotype 055:B5 purchased from Sigma Chemie
(Taufkirchen, Germany) was used at a concentration of
100 ng/ml. In a separate series of experiments, alveolar
macrophages were treated with 6 mM glutathione (GSH;
Sigma-Aldrich, Steinheim, Germany) or 20 mM N-acetyl-
cysteine (NAC; Sigma-Aldrich, Steinheim, Germany) for
30 min. Subsequently, the culture medium was replaced
with 100 µl of pine dust suspension at a final concentra-
tion of 200 µg/ml. After 4 h incubation in the absence or
presence of GSH (6 mM) or NAC (20 mM), supernatants
were removed and stored at -20°C. There was no effect of
either treatment on cell viability as measured by a LDH
assay kit (Merck, Germany).

RT-PCR
Total cellular RNA was extracted from pine dust-exposed
alveolar macrophages using a ribonuclease protection kit
(Rneasy Kit, QIAGEN, Hilden, Germany). RT-PCR was
performed as described previously [24]. The oligonucle-
otide primers (MWG-Biotech, Ebersberg, Germany) used
were 5'-TGC CTC AGC CTC TTC TCA TT-3' and 5'-TGT
GGG TGA GGA GCA CAT AG-3' (EMBL: RNTNFAA, AC:
X66539) for TNF, 5'-CAA TGC CTG ACG ACC CTA C-3'
and 5'-CAG TTA GCC TTG CCT TTG TTC-3' [25] for MIP-
2, and 5'-TCC CTC AAG ATT GTC AGC AA-3' and 5'AGA
TCC ACA ACG GAT ACA TT-3' [26] for the housekeeping
gene, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH). The sizes of the PCR products were 376 bp for
TNF, 194 bp for MIP-2, and 309 bp for GAPDH. PCR
products were visualized in 2% agarose gels containing
1% ethidium bromide. For densitometric analyses, BIO-
1D V 96 software (Vilber Lourmat, Marne La Vallee,
France) was used.

TNF-α and MIP-2 ELISA
Concentrations of TNF-α and MIP-2 in culture superna-
tants were determined by enzyme-linked immunosorbent
assay (ELISA) using commercially available kits (Bio-
source, Solingen, Germany).

Detection of intracellular ROS
To detect intracellular ROS, 2',7'-dichlorofluorescin diac-
etate (DCFH-DA) (MoBiTec, Göttingen, Germany) was
used. DCFH-DA diffuses into the cell and is hydrolyzed by
intracellular esterases to polar 2',7'-dichlorofluorescin.
This non-fluorescent fluorescin analogue can be oxidized
to highly fluorescent 2',7'-dichlorofluorescein by intracel-
lular oxidants [27]. Alveolar macrophages were cultured
to adhere and incubated with 10 µM DCFH-DA for 30
min. The cultures were washed twice with RPMI 1640 and
subsequently treated as described before. Baseline fluores-
cence was measured with a fluorometer (FLUOstar, BMG
LabTechnologies, Offenburg, Germany) immediately
after wood dusts were added. After 4 h of incubation
under 37°C in 5% CO2 and 21% O2, fluorescence was
measured again. The results are shown as percentage
change from baseline values. The addition of 1 µM H2O2
served as an internal positive control.

Electron spin resonance spectroscopy
Hydroxyl radical formation by wood dusts was assessed
by electron spin resonance (ESR) spectroscopy, as
described previously [28]. Briefly, wood dust suspensions
(20 mg/ml) were prepared in pure water. 100 µl of this
suspension was mixed with 200 µl of the spin trap 5,5-
dimethyl-1-pyrroline-N-oxide (DMPO, 0.05 M in PBS)
(Sigma, St. Louis, MO) and 100 µl H2O2 (0.5 M in PBS)
(Fluka, Seelze, Germany). The suspension was incubated
for 15 min at 37°C in a shaking water bath, and filtered
through a 0.2 µm filter (15 mm syringe filter, Satorius AG,
Goettingen, Germany) to remove particles from the sus-
pension. The filtrate was immediately transferred to a cap-
illary and measured with a Miniscope ESR spectrometer
(Magnettech, Berlin, Germany). The antioxidant activity
of wood dust suspensions was measured by using the sta-
ble spin label TEMPOL (Sigma, Steinheim, Germany).
TEMPOL was added to wood dust suspensions (10 mg/
ml) at a final concentration of 5 µM, mixed and incubated
at 37°C for 1 hour in a shaking water bath. After filtering
the suspension through a 0.2 µm filter, the filtrate was
measured as mentioned above. ESR spectra were recorded
at room temperature using the following instrumental
conditions: Magnetic field: 3360 G, sweep width: 100 G,
scan time: 30 sec, number of scans: 3, modulation ampli-
tude: 1.8 G, receiver gain: 1000. Quantification was car-
ried out as the sum of total amplitude on first derivation
of ESR signal, and outcomes are expressed as the total
amplitude in arbitrary units.

Statistical analysis
Results are presented as mean ± SEM. Statistical compari-
sons were performed by using RM ANOVA with Student-
Newman-Keuls method for multiple comparison proce-
dures. A p value < 0.05 was considered significant.
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Results
TNF-α and MIP-2 mRNA expression
After 4 h exposure of alveolar macrophages to PD and
HPD, mRNA was extracted and the supernatants were col-
lected for cytokine and chemokine measurement. A low,
basal level of TNF-α and MIP-2 mRNA expression was
observed in control macrophages. Compared to control,
TNF-α and MIP-2 mRNA expression in alveolar macro-
phages exposed to PD and HPD was significantly
increased. Interestingly, PD induced significantly (p <
0.05) higher levels of TNF-α and MIP-2 mRNA expression
than HPD (Figure 1).

TNF-α and MIP-2 release
As shown in Figure 2, exposure of alveolar macrophages
to both PD and HPD elicited a significantly (p < 0.05)
increased production of TNF-α and MIP-2 when com-
pared to untreated control cells. This effect was
concentration-dependent and already observed at the
lowest concentration of 5 µg/ml. Moreover, PD induced a
1.3–2.8 fold (p < 0.05) higher release of TNF-α and MIP-
2 than HPD. Polystyrene microspheres at a concentration
of 100 µg/ml, which served as a negative control, did not
induce an increased production of TNF-α and MIP-2. In
contrast, exposure to LPS at a concentration of 100 ng/ml,
which served as a positive control, induced a strong
release of both mediators (data not shown).

TNF-α and MIP-2 mRNA expression in alveolar macro-phages after exposure to PD and HPD (100 µg/ml) for 4 hFigure 1
TNF-α and MIP-2 mRNA expression in alveolar macro-
phages after exposure to PD and HPD (100 µg/ml) for 4 h. 
(A) RT-PCR products of GAPDH, TNF-α and MIP-2 in an 
ethidium bromide stained agarose gel. Data shown are from 
four representative experiments. GAPDH were used as nor-
malization control. (B) Densitometric analysis of 4 gels. *p < 
0.05 compared with untreated control. #p < 0.05 compared 
with HPD.
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ROS generation
To detect ROS production in PD- and HPD-stimulated
alveolar macrophages, the oxidant-sensitive dye DCFH-
DA was used. After 4 h incubation, wood dusts at a con-
centration of 200 µg/ml induced a significantly (p < 0.05)
increased ROS generation when compared to untreated
control cells (Figure 3). However, the level of PD-induced
ROS generation in alveolar macrophages was not statisti-
cally different from the level of HPD-induced ROS gener-
ation. Treatment of the cells with GSH (6 mM) or NAC
(20 mM) caused significant suppression of both PD- and
HPD-induced ROS generation.

Effect of antioxidants on cytokine and chemokine 
expression
To elucidate whether oxidative stress participates in the
up-regulation of inflammatory cytokine expression, TNF-

α and MIP-2 release was examined in PD- and HPD-
exposed alveolar macrophages in the presence or absence
of the antioxidants GSH and NAC. Treatment with both
GSH and NAC significantly (p < 0.05) reduced the TNF-α
and MIP-2 release elicited by the exposure of alveolar
macrophages to PD and HPD (Figure 4).

Endogenous oxidant and antioxidant activity of pine dust
ESR spectroscopy showed that suspensions of both PD
and HPD caused formation of •OH in the presence of
H2O2. However, the ability of PD and HPD to generate
•OH was not statistically different (Figure 5). The antioxi-
dant capacity of pine dust suspensions was measured by
the use of the stable spin label TEMPOL. Interestingly,
HPD caused a significantly greater reduction of TEMPOL
than PD, indicating that HPD has greater antioxidant
capacity than PD (Figure 5).

Discussion
A higher prevalence of non-malignant respiratory dis-
eases, such as bronchitis, chronic obstructive pulmonary
disease, cryptogenic fibrosing alveolitis, and asthma has
been reported in workers exposed to a variety of wood
dusts [2]. Sensitization to wood dust from some wood
species such as red cedar has been shown to be involved
in mechanisms generating a work-related asthmatic
response [29]. However, more recent studies have shown
that sensitization to wood dust from pine, oak, beech and
other wood species may not be the only or even the most

TNF-α and MIP-2 protein release of alveolar macrophages after 4 h of stimulation with 200 µg/ml pine dust in the absence and presence of GSH (6 mM) or NAC (20 mM)Figure 4
TNF-α and MIP-2 protein release of alveolar macrophages 
after 4 h of stimulation with 200 µg/ml pine dust in the 
absence and presence of GSH (6 mM) or NAC (20 mM). (A) 
TNF-α release, (B) MIP-2 release. Values represent means ± 
SEM of six separate experiments performed in duplicate. *p 
< 0.05 compared with PD or HPD without GSH or NAC 
treatment.
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important mechanism involved in wood dust-induced
respiratory symptoms [8,9]. Therefore, our study aimed to
investigate the non-specific inflammatory response of pri-
mary lung macrophages to wood dust from pine, one of
the most extensively used wood species in the wood
processing industry.

Here we show that pine dust induces TNF-α and MIP-2
mRNA expression as well as TNF-α and MIP-2 protein
release in rat alveolar macrophages. Alveolar macro-
phages are important in processing airborne particles and
play a key role in mediating inflammatory responses of
the lung through the release of various proteolytic
enzymes, reactive oxygen and nitrogen species, arachi-
donic acid metabolites, cytokines such as TNF-α, and
chemokines such as MIP-2 [11]. TNF-α plays an impor-
tant role as a mediator of the respiratory tract's response
to particles. Studies have shown that a variety of agents
which elicit marked lung inflammation can activate alve-
olar macrophages to release TNF-α, while agents with lim-
ited inflammatory activity do not stimulate macrophage
TNF-α production. MIP-2 plays a major role in mediating
the neutrophilic inflammatory response of the rodent
lung to particles such as quartz and crocidolite asbestos
[10]. TNF-α and MIP-2 gene expression is under the con-
trol of redox-sensitive inflammation-related transcription
factors such as NF-κB. Activation of NF-κB is regulated via
a number of second messengers, including calcium and
ROS [16]. In addition to providing evidence that pine dust
stimulates both TNF-α and MIP-2 mRNA production and
protein release from rat alveolar macrophages, our study
clearly demonstrates that pine dust stimulates the genera-
tion of ROS in alveolar macrophages, as previously shown
in mouse macrophages and human leukocytes by Naarala
et al. [19].

To investigated the role of oxidative stress in pine dust-
induced cytokine and chemokine response we treated
pine dust-exposed alveolar macrophages with the antioxi-
dants GSH and NAC. GSH plays a major role in the anti-
oxidant system by working as a substrate for glutathione
peroxidase, and it has been previously shown that extra-
cellular GSH can elevate intracellular GSH levels and pro-
tect phagocytes against oxidant damage [30]. NAC is a
thiol compound that can act as a cysteine source for the
repletion of intracellular glutathione and act as a direct
scavenger of ROS. NAC has been shown to attenuate oxi-
dant-mediated toxicity induced by chrysotile fibres in rats
[31] and to down-regulate the nitric oxide pathway in
alveolar macrophages [22]. We found that treatment with
GSH or NAC attenuated pine dust-induced ROS genera-
tion as well as TNF-α and MIP-2 protein release. These
findings are concordant with previous studies on silica
and ultrafine particles [18,33,34] and indicate that pine
dust-induced oxidative stress mediates, at least in part, the
expression of TNF-α and MIP-2 in alveolar macrophages.

Interestingly enough, dust from untreated pine (PD)
induced a significantly stronger inflammatory response in
alveolar macrophages than dust from heat-treated pine
(HPD). Consequently, we used ESR spectroscopy to assess
the endogenous oxidative and antioxidant capacity of the
wood dusts under study. Whereas the ability to generate
hydroxyl radical did not differ among PD and HPD, HPD
exhibited greater antioxidant capacity than PD. As we
have demonstrated in this study that oxidative stress may
play a role in mediating the expression of TNF-α and MIP-
2, we suggest that the greater antioxidant capacity of HPD
may neutralize oxidative stress and thus attenuate expres-
sion of TNF-α and MIP-2. As mentioned before, both
physical and chemical properties of wood are changed
when heat-treated for several hours with temperatures up
to 230°C. In particular, the pine resin is easily volatilized
and almost completely removed from the wood [23]. One
of the components of resin, δ-3-carene, has been reported
to decrease the viability of alveolar macrophages and
affect the engulfment of particles in vitro [35]. Another
component of pine resin, abietic acid, has been shown to
produce lytic damage to alveolar, tracheal, and bronchial
epithelial cells [36]. Further studies are warranted to con-
firm our results and to determine the specific chemical
and physical properties of dust from heat-treated pine that
might be responsible for the effects seen in this study.
Recently, metabolites of pine bark extract have been
shown to have antioxidant activity and to inhibit matrix
metalloproteinases (37).

In summary, our findings indicate that non-specific
inflammatory reactions, mediated via ROS production,
may play a role in pulmonary effects of wood dust. How-
ever, it is not clear from this in vitro study whether the

Hydroxyl radical formation (A) and antioxidant capacity (B) of PD and HPD as measured by ESR spectroscopyFigure 5
Hydroxyl radical formation (A) and antioxidant capacity (B) 
of PD and HPD as measured by ESR spectroscopy. Data are 
from three representative experiments.
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oxidative stress driving TNF-α and MIP-2 protein release is
due to ROS derived directly from the dust particles or
from cell-generated ROS.

Conclusions
Here, we demonstrate that pine dust is able to induce
inflammatory responses in vitro. Oxidative stress seems to
play an important role in the pine dust-induced cytokine
and chemokine response, suggesting that wood dust par-
ticles may exert pro-inflammatory effects by a mechanism
that is, at least in part, mediated by ROS.
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