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Abstract

Background: Carbon nanotubes (CNTs) are being increasingly industrialized and applied for various products. As of
today, although several toxicological evaluations of CNTs have been conducted, designing safer CNTs is not
practiced because reaction kinetics of CNTs with bioactive species is not fully understood.

Results: The authors propose a kinetic mechanism to establish designing safe CNTs as a new goal. According to a
literature search on the behavior of CNTs and the effects of impurities, it is found that chemical reactions on CNT
surface are attributed to redox reactions involving metal impurities and carbon structures at the CNT surface.

Conclusion: A new goal is proposed to design safer CNTs using the redox potential hypothesis. The value of this
hypothesis must be practically investigated and proven through the further experiments.
Background
Designing safe Carbon Nanotubes (CNTs) is an import-
ant goal but requires elucidation of mechanisms that
drive biological responses to CNTs. Importance of physi-
cochemical properties is often suggested in articles, but
the relative importance of specific properties has not
been defined explicitly. Two critical points concerning
CNT safety evaluations are: bioactivity of CNTs and im-
purities, and the fiber paradigm. The latter not only ap-
plies to CNTs but also other nanowires and micro fibers.
Thus, we would like to discuss the former, bioactivity,
that is, chemical reactions on the CNT surface. Recent
investigations suggest that there exists an intrinsic
mechanism of redox potential with CNTs and its metal
impurities [1-5]. It must be noted that redox means both
oxidation and reduction.
Results
Redox reactions of CNTs are attributed to metal impur-
ities and the structure of carbon lattice. First, metal im-
purities are brought by synthesizing catalysts that are
transition metals, such as Fe, Ni, Co. Mo, and so on.
Among them, iron will be discussed as a typical model.
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A good method to remove metal impurities from CNTs
is a wash in concentrated nitric acid at 350°C [6]. A
strong acid wash may alter the surface of carbon
nanotubes, modifying surface reactivity. Thus, it is best
to avoid strong acid washing that would damage CNTs.
Interestingly, Guo et al. [1] reported that Fe2O3 and FeC
encapsulated by carbons cannot be mobilized nor be
bioavailable to an acid wash. Furthermore, Liu et al. [7]
discussed that it was not necessary to remove metal
impurities from CNTs as long as those metals were
enclosed and not bioavailable. Thus, it is possible to
manage iron impurities by an appropriate acid wash, and
bioactivity will be reduced as long as remaining impur-
ities are not bioavailable.
To various degrees, transition metal impurities are

usually oxidative to peroxides while metal oxides are
relatively stable. It is known that Fe (II) or Fe2+ ion gen-
erates OH radicals (OH•), a form of reactive oxygen spe-
cies (ROS), by the Fenton reaction, and that ROS induce
inflammation of tissues. As Fe3+ generated by the oxida-
tion is again reduced to Fe2+ with peroxide, iron can
continue to cause oxidant-induced inflammation in liv-
ing tissues. In contrast, Fe (III) oxide (Fe2O3) and car-
bide (FeC) do not generate ROS, because Fe (III) cannot
be an electron donor except upon treatment with a
strong reduction agent. Fe (II) is supplied not only
externally as metal impurities but also internally in a
living body. Since Fe (II) essentially catalyzes peroxide
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generating OH•, redox (reduction) reactions are required
to eliminate the radicals. A question is what redox po-
tential do CNTs exhibit.
Redox potential determines the reaction tendency of

chemicals in a system. CNTs inevitably have dangling
bonds at which unpaired electrons can be easily ex-
changed with the other species. If those dangling bonds
donate electrons to OH•, CNTs become ROS quenchers.
According to recent findings [8-11], CNTs scavenge
ROS so that those dangling bonds work as electron do-
nors. In other words, CNTs can potentially reduce OH•.
If this redox potential hypothesis is true for CNTs, they
may decrease oxidant-induced inflammation of tissues.
One should be able to stoichiometrically predict oxidant
stress once redox potential of CNTs in a reaction system
is determined. This hypothesis might apply for the other
nanomaterials as well. Furthermore, a systematic proto-
col based on chemical reaction kinetics can be applied
to develop predictive in vitro assays of redox potential
for various types of CNTs. Accumulating those redox
reaction data, guidance to design safer CNTs can be
developed. In conclusion, redox potential might be a
useful tool to estimate ROS generation and bioactivity
with CNTs. To utilize it, we have to investigate redox
potentials of biological systems further and identify the
role of oxidant stress in the toxicity of CNTs.

Conclusion
It is hypothesized that radical generation and degener-
ation (quenching) can be determined by redox potential
in a reaction system with CNTs and impurities. A goal
to design safer CNTs is proposed based on the redox
potential. It must be practically investigated and proven
through the further experiments.
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