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Abstract
Background: Combustion generated particulate matter is deposited in the respiratory tract and
pose a hazard to the lungs through their potential to cause oxidative stress and inflammation. We
have previously shown that combustion of fuels and chlorinated hydrocarbons produce
semiquinone-type radicals that are stabilized on particle surfaces (i.e. environmentally persistent
free radicals; EPFRs). Because the composition and properties of actual combustion-generated
particles are complex, heterogeneous in origin, and vary from day-to-day, we have chosen to use
surrogate particle systems. In particular, we have chosen to use the radical of 2-monochlorophenol
(MCP230) as the EPFR because we have previously shown that it forms a EPFR on Cu(II)O surfaces
and catalyzes formation of PCDD/F. To understand the physicochemical properties responsible for
the adverse pulmonary effects of combustion by-products, we have exposed human bronchial
epithelial cells (BEAS-2B) to MCP230 or the CuO/silica substrate. Our general hypothesis was that
the EPFR-containing particle would have greater toxicity than the substrate species.

Results: Exposure of BEAS-2B cells to our combustion generated particle systems significantly
increased reactive oxygen species (ROS) generation and decreased cellular antioxidants resulting
in cell death. Resveratrol treatment reversed the decline in cellular glutathione (GSH), glutathione
peroxidase (GPx), and superoxide dismutase (SOD) levels for both types of combustion-generated
particle systems.

Conclusion: The enhanced cytotoxicity upon exposure to MCP230 correlated with its ability to
generate more cellular oxidative stress and concurrently reduce the antioxidant defenses of the
epithelial cells (i.e. reduced GSH, SOD activity, and GPx). The EPFRs in MCP230 also seem to be
of greater biological concern due to their ability to induce lipid peroxidation. These results are
consistent with the oxidizing nature of the CuO/silica ultrafine particles and the reducing nature
and prolonged environmental and biological lifetimes of the EPFRs in MCP230.
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Introduction
There is an increased focus on the potential adverse health
effects associated with exposure to particulate matter
(PM) including the development of cardiovascular dis-
eases, pulmonary disease and cancer [1,2]. Exposure to
PM can trigger respiratory distress in individuals with sen-
sitive airways, and those at greater risk are the elderly and
those with pre-existing respiratory or heart disease [3].

Ambient air contains a heterogeneous mixture of pollut-
ants arising from various sources. A predominant source
of ambient air pollution is emissions from combustion
and/or thermal processes. The type and amount of com-
bustion by-products generated depends on both the fuel
type and the combustion appliance and process. Emis-
sions from these processes include fine and ultrafine par-
ticles, NOx, VOCs, and other toxic products of incomplete
combustion [4,5]. The particles contain organic carbon,
metals, and other inorganic species. Interestingly, forma-
tion of chlorinated organic pollutants such as polychlo-
rinated dibenzo-p-dioxin and polychlorinated
dibenzofurans (PCDD/F) is associated with almost any
combustion process in which chlorine and a transition
metal are present. Chlorinated organic compounds are
known to exhibit toxicity in both humans and animals [6-
9]. Nevertheless, the health impacts and ramifications of
exposure to combustion by-products are scarcely known.

Previous studies have demonstrated that PM2.5 (PM with
a mean aerodynamic diameter of ≤ 2.5 μm) collected from
six different cities across the country possess large quanti-
ties of radicals with chemical and toxicological character-
istics similar to radicals of semiquinones [10]. It was
subsequently demonstrated that very long lived (lifetimes
on the order of an hour) semiquinone radicals are formed
from molecular species that are adsorbed onto particle
surfaces [11-13]. The radicals are formed via reaction with
transition metal oxides that can be easily reduced by a
chemisorbed organic compound converting the metal to
a lower oxidation state [14]. During this process, an
organic surface-bound radical is formed [11]. Association
of the thus-formed free radical with the surface of the
metal-containing particle stabilizes the radical [11,12].
This oxidized radical is in a dynamic equilibrium with the
reduced form, with enough oxidized, free radical proper-
ties to be detectable by EPR spectroscopy, and enough
reduced, chemisorbate properties to be stable and non-
reactive. Radicals thus formed with a combination of sta-
bility and non-reactivity can be referred to as environmen-
tally persistent or simply 'persistent' and can consequently
be called 'environmentally persistent free radicals'
(EPFRs) [2].

In a combustion system, the metals will predominantly
exit the system at the highest oxidation state oxide. Iron,
Nickel, Copper and Zinc are typically the highest concen-

tration metals in combustion-generated particles with
iron concentrations in the range of 0.1–1% and the other
metals typically being present up to a few hundred ppm
[14-16]. Transition metals such as copper are present in
relatively high concentrations in biomass (woody wastes
and debris) [17] and cigarette smoke and is a component
of CCA (copper, chromate, arsenic) treated wood [18-20].
Cu(II)O is documented to catalyze PCDD/F formation
through the chemisorption of simple precursors such as
halogenated benzenes that form surface stabilized PFRs
[12].

It has been proposed that molecular quinones take part in
reactive oxygen species (ROS) generating cycles. In these
cycles, quinones and hydroquinones, reduce molecular
oxygen to superoxide in a process that generates semiqui-
none radicals as intermediates [11,21]. The superoxide
reacts to form hydrogen peroxide which proceeds to form
hydroxyl radical by the Fenton reaction with endogenous
and possibly exogenous Fe2+. At issue in this mechanism
is whether quinones exist in high enough concentrations
and react fast enough to contribute to oxidative stress.

We hypothesize that the EPFRs associated with reduced
metal oxides interact synergistically to produce ROS
(superoxide, hydrogen peroxide, and hydroxyl radicals)
while regenerating the EPFR and the oxidized form of the
transition metal such that a true catalytic cycle occurs (Fig-
ure 1). Because actual airborne and combustion-gener-
ated particles contain a myriad of potentially toxic organic
compounds and metal ions, we have chosen to use surro-
gate particle-EPFR systems. The particle substrate is silica,
which is chemically inert. The transition metal oxide in
our surrogate radical-particle systems is Cu(II)O (at 5%)
because it is known to mediate the formation of EPFRs
and PCDD/F, and it can be the dominant metal in com-
bustion of biomass. The rationale of choosing the radical
of 2-monochlorophenol was that it forms an EPFR on
Cu(II)O surfaces and is known to catalyze formation of
PCDD/F. The CuO/silica/2-MCP radical is referred to as
MCP230 throughout the manuscript as it is formed by
chemisorption on the CuO/silica particle at 230°C.

The objective in this study is to understand the potential
effects of the EPFR-metal oxide particles on human bron-
chial epithelial cells. These studies shed light in under-
standing the toxicity profile associated with EPFRs as
compared to that of simply an ultrafine particulate.

Results
Electron paramagnetic resonance of ultrafine particles
The EPR measurement of the CuO/silica samples revealed
the absence of signal that could be attributed to the pres-
ence of paramagnetic center (Figure 2A). This was not the
case for the CuO/silica system exposed to MCP at 230°C
(i.e. MCP230). In contrast, a strong signal appeared with
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Mechanism of formation of a phenoxyl-type PFR from a substituted aromatic on a metal oxide surfaceFigure 1
Mechanism of formation of a phenoxyl-type PFR from a substituted aromatic on a metal oxide surface. PFR for-
mation proceeds through a mechanism of: 1) physisorption, 2) chemisorption by elimination of HX, and electron transfer to 
form the surface-associated PFR and a reduced metal. The resulting radical may be primarily oxygen-centered or carbon-cen-
tered based on the properties of the PFR-metal complex.
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Physical properties of ultrafine particlesFigure 2
Physical properties of ultrafine particles: (A) EPR spectra of CuO/Silica and CuO/Silica exposed to 2-monochlorophenol 
at 230°C (MCP230). (B) Data showing the calculated size of MCP230 by flow cytometry. (C) Transmission electron micro-
graph of 100–200 nm Cab-o-sil Silica particles, containing CuO nanoclusters in an isotonic saline solution containing 0.02% 
tween-80. The procedure followed in preparation of this particle suspension is exactly the same in all studies presented in this 
manuscript. This figure demonstrates that the particles exist as singlets without aggregation.
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a ΔHp-p width of 20 Gauss (Figure 2A). This signal could
be deconvoluted mathematically into two components,
one with a low g-value of ~2.002 and the other with a g-
value equal to ~2.005. These two paramagnetic centers
have been previously shown to be formed as a result of
electron transfer between the chemisorbed 2-MCP mole-
cule and copper center which results in formation of: 1)
an F center in the copper oxide matrix (trapped electron in
oxygen vacancy) and 2) a 2-chlorophenoxy radical
[11,13]. The bidentate, chemisorbed radical previously
reported to be formed at higher temperatures is not
present, or is only present at very low concentrations, in
the MCP230 samples. These radicals are stabilized by the
metal center and are resistant to oxidation, decomposi-
tion, and recombination for a prolonged period.

TEM and flow-cytometry of ultrafine particles
The properties of the ultrafine particles employed in our
experiments are depicted in Figure 2. Aliquots of sus-
pended weighed samples of MCP230 in saline + 0.02%
Tween 80 were analyzed to evaluate their sizes by a flow
cytometry. These results confirmed that the particles had
a diameter of < 0.195 μm (Figure 2B). The transmission
electron micrograph shown in Figure 2C further demon-
strates that the particles, once suspended, are singlet in
nature with little-to-no aggregation. Independent induc-
tively coupled plasma atomic emission spectroscopy
measurements of dissolved particles (dissolution accom-
plished by acidification in nitric acid) determined that the
copper concentrations in MCP230 and CuO/silica sam-

ples were 3.330 ppm ± 0.169 and 3.990 ppm ± 0.234:
respectively.

Viability of BEAS-2B decreased with ultrafine particle 
exposure
Time (2 – 4 h) and concentration (25 – 100 μg/cm2)
dependent cytotoxicity assessments were performed with
CuO/silica and MCP230 ultrafine particles. BEAS-2B cells
were incubated with different concentrations (25, 50, 100
μg/cm2) of ultrafine particles (Figure 3) and their viability
was determined at various time points. Cell viability
decreased upon treatment with ultrafine particles in a
time- and dose-dependent manner. Viability of the CuO/
silica and MCP230 with a 100 μg/cm2 concentration of
ultrafine particles decreased on average to 68% of the con-
trol group at all exposure periods. Cells exposed to
MCP230 exhibited 16% more cell death than those
exposed to CuO/silica after 4 h of exposure.

Ultrafine particles decreased the BEAS-2B cell-membrane 
integrity
To quantify live cell numbers based on the presence of
their cytoplasmic membrane integrity, BEAS-2B cells were
exposed to ultrafine particles. Calcein AM enters all cells,
and is enzymatically converted to green-fluorescent Cal-
cein in the cytoplasm. Cells with an intact plasma mem-
brane (viable cells) retain Calcein, and thus fluoresce
green. Only cells with a compromised plasma membrane
(dead cells) take up ethidium homodimer-1. The red flu-
orescence of ethidium homodimer-1 is strongly enhanced

Cytotoxicity in BEAS-2B cells exposed to CuO/Silica or MCP230 ultrafine particles for 0.5, 1, 2 and 4 hFigure 3
Cytotoxicity in BEAS-2B cells exposed to CuO/Silica or MCP230 ultrafine particles for 0.5, 1, 2 and 4 h. Results 
are expressed as mean ± SEM (n = 3). Significantly different from auntreated controls or bCuO/Silica at the same dose and 
exposure time (Two-way ANOVA; *P < 0.05, **P < 0.01, ***P < 0.001).
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once it interacts with the nucleic acids of the cell. Figure 4
shows BEAS-2B cell survival after 4 h of incubation with
100 μg/cm2 of CuO/silica or MCP230 ultrafine particles.
Alteration of cell membrane permeability was synchro-
nized with loss of esterase activity. The percentage of cel-
lular survival was as follows: Control, 97.706 ± 0.71%;
CuO/silica, 66.311 ± 2.99%; MCP230, 61.325 ± 2.05%.
Significant differences in cellular survival were observed
between control and CuO/silica or MCP230 groups. There
were no statistically significant differences between the
CuO/silica and MCP230 treatment groups.

Oxidative ability of ultrafine particles
Assessment of the oxidative ability of the ultrafine parti-
cles was determined using the DTT assay. MCP230 and
CuO/silica ultrafine particles exhibited similar redox
activity at the highest dose (50 μg) that was 8-fold greater
than the silica ultrafine particles (Figure 5A). Regression
analysis of the DTT assays exhibited a correlation coeffi-
cient (R2) of 0.933, 0.918 with CuO/silica and MCP230
respectively, suggesting the oxidative ability was incre-

mental and progressive with the increase in the ultrafine
particles concentration (data not shown).

The assay is typically interpreted in relation to the ability
of quinones to oxidize DTT resulting in the formation of
SQ radicals that then reduce O2 to O2

•-, with concomitant
formation of DTT-disulfide through the net reaction:

The actual assay measures the presence of DTT through its
reaction with DTNB [24].

The reaction is logical for the MCP230 samples which we
have previously shown to form SQ-type PFRs. However, it
is impossible for SQ-type radicals to have a role in CuO/
silica samples since quinones are not present. Since DTT is
a strong reducing agent the likely reaction is:

DTT O DTT disulfide O H+ = − + +•− +2 2 22 2

DTT Cu DTT disulfide Cu H2+ 1++ = − + + +2 2 2

Cell-membrane integrity of BEAS-2B cells on exposure to CuO/Silica and MCP230 ultrafine particlesFigure 4
Cell-membrane integrity of BEAS-2B cells on exposure to CuO/Silica and MCP230 ultrafine particles. BEAS-2B 
cells were exposed for 4 h to 100 μg/cm2 ultrafine particles. After the exposure, cells were treated with calcein AM and ethid-
ium homodimer-1. Calcein AM enters all cells and is enzymatically converted to calcein. Cells with an intact plasma membrane 
(viable cells) retain calcein in the cytoplasm and thus fluoresce green. Cells with a compromised plasma membrane (dead cells) 
take up ethidium homodimer-1, which fluoresces red when complexed with nucleic acid. Scale bar = 50 μm.
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not necessarily with concomitant formation of superoxide
[26]. Since PM will contain large amounts of transition
metals in their higher oxidation states, the use of the DTT
assay with PM samples cannot be used to definitively indi-
cate the formation of superoxide and other ROS as has
been previously reported [24]. This assay must thus be
interpreted against the background oxidation of DTT by
the Cu(II)O/silica.

Ultrafine particles induce the production of reactive 
oxygen species in vitro
Cleavage by intracellular esterases and subsequent oxida-
tion of 2,7-dichlorofluorescin diacetate results in the for-
mation of 2,7-dichlorofluorescin (DCF), which can be
detected fluorometrically, and is thus an indicator of
intracellular ROS production. Using the DCF assay,
ultrafine particles were investigated for their stimulation
of ROS formation during in vitro exposures of cultured
human lung epithelial cells. Exposure of BEAS-2B cells to
100 μg/cm2 of MCP230 and CuO/silica resulted in ~200%
greater ROS levels (Figure 5B) when compared to
untreated controls. Co-treatment with 25 μM resveratrol
significantly alleviated (~70%) this increase in ROS levels
(as indicated by the decrease in DCF fluorescence) in
CuO/silica and MCP230 exposed cells; while co-treat-
ment with 100 μM deferoxamine was only able to miti-

gate (69%) the increase in ROS levels in MCP230 exposed
cells.

Ultrafine particles perturb levels of intracellular 
glutathione and antioxidant enzymes
GSH assay
BEAS-2B cells were exposed to ultrafine particles to inves-
tigate whether they exert their effects on intracellular glu-
tathione (GSH) levels. CuO/silica and MCP230 at
concentrations of 100 μg/cm2 decreased GSH levels by
26.7% and 45%, respectively (p < 0.05) at 4 h compared
with the control values (Figure 6A). Co-treatment with
100 μM deferoxamine significantly increased the GSH lev-
els of the MCP230 exposed cells by 65% and slightly ele-
vated the levels of GSH in the CuO/silica exposed cells
(30%, p = 0.24). 25 μM of resveratrol treatment com-
pletely reversed GSH depletion in MCP230 treated cells.
CuO/silica exposed cells were protected by resveratrol to a
lesser degree with elevated GSH levels 56% (p = 0.57).

SOD Assay
Cytosolic superoxide dismutase (SOD) activity was also
significantly decreased in both CuO/silica and MCP230
exposed cells (36% and 25% respectively; Figure 6B). A
statistically significant difference was observed between
CuO/silica and MCP230 groups (P < 0.05). Treatment

(A) DTT activity with CuO/Silica, and MCP230 ultrafine particles at various concentrationsFigure 5
(A) DTT activity with CuO/Silica, and MCP230 ultrafine particles at various concentrations. (B) ROS generation 
in CuO/Silica or MCP230 ultrafine particles exposed BEAS-2B cells co-treated with 100 μM deferoxamine (DF) or 25 μM res-
veratrol (RV) for 4 h as measured by DCF assay. Results are expressed as mean ± SEM (n = 3). a significantly different from 
untreated controls.
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with deferoxamine moderately restored (~20%) the SOD
levels in both the exposed groups; while resveratrol signif-
icantly reversed the depleted SOD levels in the CuO/silica
and MCP230 treated cells.

GPx assay
In contrast to the other assays, response to the GPx assay
was dominated by MCP230. A significant decrease
(42.5%) in glutathione peroxidase (GPx) activity was
observed in the cells exposed to MCP230 (Figure 6C) and
slight decrease (16%) in the cells exposed to CuO/silica.
Significant difference was also observed between CuO/sil-
ica and MCP230 groups (P < 0.05). Depleted levels of GPx
were restored by treatment with both deferoxamine and
resveratrol in the MCP230 treated cells, whereas GPx was
restored only by resveratrol treatment in the CuO/silica
treated cells.

Ultrafine particles increased 8-isoprostane production in 
BEAS-2B cells
Isoprostanes are produced by the non-enzymatic random
oxidation of cellular phospholipids by oxygen radicals
and are considered ideal markers of oxidative stress. Anal-
ysis of culture supernatant from cells exposed to MCP230
ultrafine particles indicated significant increases in the
levels of 8-isoprostane (Figure 7). Compared to non-
treated cells, 8-isoprostane production increased (35%) in
MCP230 exposed cells; whereas, there were no significant
changes in the 8-isoprostane levels of CuO/silica treated
cells. Likewise, a significant difference was observed
between CuO/silica and MCP230 treated cells (P < 0.05).

Co-treatment with resveratrol reduced the endogenous 8-
isoprostane levels in MCP230 exposed cells by 24%. No
significant change was evident with deferoxamine treat-
ment compared to untreated particle exposed cells.

Ultrafine particles stimulate inflammatory response
To characterize the degree of inflammatory changes
induced by the ultrafine particle exposure, we analyzed
the amount of various cytokines (IL-1β, IL-2, IL-6, IL-8, IL-
10, IL-12p40, IL12p70, IL-13, IL-15, IL-18, IFNγ, TNFα,
VEGF, IFNα2) in the cell-culture supernatants following
exposure of CuO/silica and MCP230 for 4 h (Figure 8). IL-
2, IL-12p40, IL12p70, IL-18, IFNγ, TNFα, and IFNα2
secretions were not significantly altered by exposure to
either CuO/silica or MCP230 (data not shown). In con-
trast, IL-1β and IL-6 were secreted by BEAS-2B cells upon
exposure to either CuO/silica or MCP230 exposure. Sig-
nificant decreases in IL-8, IL-10, IL-13 and VEGF secretion
were observed compared with untreated controls. Further-
more, levels of IL-13 were significantly different between
the particle exposure groups.

Discussion
ROS-induced oxidative stress is now recognized to be a
prominent feature of many acute and chronic diseases and
is currently considered to be one of the most significant
causes of the health impacts of airborne particulate matter
[11,2,35]. Semiquinone (SQ) radicals are a significant
decomposition product resulting from the burning of bio-
mass and coals [27-30] and have been demonstrated to be
highly redox active and capable of producing ROS in bio-

Cellular antioxidant status of BEAS-2B cells exposed to CuO/Silica and MCP230 ultrafine particlesFigure 6
Cellular antioxidant status of BEAS-2B cells exposed to CuO/Silica and MCP230 ultrafine particles. Cells were 
co-treated with 100 μM deferoxamine (DF) or 25 μM resveratrol (RV) ± CuO/or MCP230 ultrafine particles for 4 h. (A) 
Depletion of intracellular glutathione (GSH) (B) Cytosolic superoxide dismutase (SOD) activity (C) Alterations in the glutath-
ione peroxidase (GPx) enzyme activity. Results are expressed as mean ± SEM (n = 3). Significantly different from auntreated 
controls; bCuO/Silica; cMCP230.
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logical systems [31,11,32]. [10]. Our results indicate that
MCP230 has chemical and biological properties similar to
that previously documented for SQ radicals [36]. Further-
more, the ability of metal oxide-containing, combustion-
generated ultrafine particles, such as MCP230, to generate
and stabilize SQ-type radicals on their surfaces suggests a
previously unrecognized origin of the health effects attrib-
uted to ultrafine particles exposure. In particular, particle
(surface)-induced stabilization of SQ-type radicals pro-
longs their environmental and biological lifetimes and
enhances their potential for biological damage [37,38].

The MCP230 radical/particle system assessed in this study
was formed by chemisorption of 2-MCP on a CuO/silica
ultrafine particle. The formation is through the hydroxy-
substituent of 2-MCP which formed primarily a 2-chlo-
rophenoxyl radical [11] and reduced Cu+2 to Cu+1 at the
site of chemisorption. Both 2-chlorophenoxyl and Cu+1

are reducing agents that may act independently or syner-
gistically to form ROS. Most of the Cu+2 in the MCP230
samples was not converted to Cu+1 and all of the copper
in the CuO/Silica samples was considered to be Cu+2.
Cu+2is an oxidizing agent that reacts with the substrates
and other reactants in some of the assays. As stated earlier

the DTT assay bears a significant error if transition metals
are present in the particulate samples. Thus, the results for
MCP230 in the DTT assay (where the particulate samples
are still present) must be interpreted using the results of
the assays on CuO/Silica as a control.

ROS can trigger a chain reaction on the cell membrane by
oxidizing membrane phospholipids (a process called lipid
peroxidation) and generate lipid hydroperoxide within the
cell membrane [43]. Lipid peroxidation results in the for-
mation of reactive aldehydes and isoprostanes (8-epi
PF2α). 8-epi PF2α are ROS-catalyzed isomers of arachi-
donic acid and are stable lipid peroxidation products [44].
It is because of their relative stability in vivo that they have
been used as markers of oxidative stress in both respiratory
diseases such as asthma and COPD [45]. However, one iso-
prostane member, 8-isoprostane, has also been shown to
be a strong stimulant of smooth muscle contraction
through triggering the thromboxane A2 receptor and lead-
ing to small airways constriction [46,47]. Analysis of 8-iso-
prostane levels between CuO/silica and MCP230 exposed
cells demonstrated that only PFR-containing ultrafine par-
ticles (MCP230) were capable of increasing 8-isoprostane
levels and further suggest that these particles may be of
greater biological and physiological concern.

The relationship between the biological effects of non-
EPFR and EPFR-containing ultrafine particles was further
characterized by treatment with antioxidants. In the
present study, we tested the ability of resveratrol (3, 4', 5-
trihydroxy-trans-stilbene) to attenuate ultrafine particle
induced cellular oxidative stress. Treatment of MCP230
exposed cells with resveratrol significantly decreased
EPFR-induced ROS production, which was associated
with increased levels of GSH comparable to untreated
controls. It is plausible that resveratrol attenuates ultrafine
particles-mediated depletion of GSH levels by increasing
the biosynthesis of GSH and also by scavenging ultrafine
particles-induced ROS [39].

Hydroxyl groups at 4' and 5 positions make resveratrol a
potent free radical scavenger [40]. Hence, it is probable
that resveratrol is quenching free radicals generated by the
ultrafine particles under our experimental conditions.
Our data corroborates the previous observations pertain-
ing to the antioxidant properties of resveratrol and its abil-
ity to scavenge free radicals such as •OH and O2•- [39,41].
Further, it also indicates that the MCP230 ultrafine parti-
cles are generating •OH or O2•- radicals which alter cellu-
lar oxidant-antioxidant homeostasis.

Figure 6 depicts a decrease in SOD activity in cells exposed
to MCP230. The depletion in SOD activity was restored by
resveratrol treatment (vide infra). Furthermore, significant
depletion in GPx levels were restored by resveratrol in
MCP230 treated epithelial cells signifying the role of res-

Levels of by 8-isoprostane in BEAS -2B cell supernatantFigure 7
Levels of by 8-isoprostane in BEAS -2B cell superna-
tant. BEAS-2B cells were co-treated with 100 μM deferox-
amine or 25 μM resveratrol and CuO/Silica or MCP230 
ultrafine particles for 4 h in a 6-well plate with 1 ml culture 
media. Results are expressed as mean ± SEM. Significantly dif-
ferent from auntreated controls; bCuO/Silica; cMCP230.
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veratrol in up-regulation of GSH levels. The finding of a
significant correlation between cellular redox imbalance
(GSH, SOD, GPx levels) and redox activity of the particles
(DTT production) provides further evidence for the role of
ROS generation in particle toxicity.

Intriguingly, deferoxamine consistently exhibited little-to-no
cellular benefit in the various assay results. When it did par-
tially reverse the cellular effects upon particle exposure (see
results, figure 6), the effects were similar between MCP230
and CuO/silica. Since deferoxamine is a metal chelator, it
would similarly affect MCP230 and CuO/Silca as they both
contain the same metal. However, deferoxamine was more
efficient at restoring GPx activity to baseline levels in MCP230
treated cells suggesting that MCP230 generates more O2•- rad-

icals and further that the higher levels of O2•- radicals maybe
responsible for the enhanced lipid peroxidation observed with
MCP230 group. In contrast, treatment with resveratrol
resulted in significant cellular benefit including increased cell
viability, which was associated with enhanced levels of cellular
antioxidants and decreased lipid peroxidation. Resveratrol is a
polyphenol phytoalexin and numerous studies have demon-
strated it's ability to scavenge radicals [41,42]. However, our
data with resveratrol demonstrated an increase in the levels of
GSH, GPx, and SOD levels suggesting that resveratrol in our
system is also exhibiting antioxidant signaling properties sim-
ilar to that observed by Kode et al. [39]

Our studies revealed that CuO/silica and MCP230
ultrafine particles influenced the expression of inflamma-

Effect of CuO/Silica and MCP ultrafine particles on cytokine release from BEAS-2B at 4 h post-exposureFigure 8
Effect of CuO/Silica and MCP ultrafine particles on cytokine release from BEAS-2B at 4 h post-exposure. Since 
IL-2, IL-12p40, IL12p70, IL-18, IFNγ, TNFα, IFNα2 were not detected at 4 h after ultrafine particle exposure, they were 
excluded from the figure. Results are expressed as mean ± SEM (n = 3). Significantly different from auntreated controls, bbe-
tween CuO/Silica and MCP230 groups.
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tory cytokines from BEAS-2B cells. Pollutants, such as die-
sel exhaust particles, are known to modify antigen
presentation by suppressing IL-10 and upregulating IL-1
production [48]. Oxidative stress mediates the release of
the pro-inflammatory cytokines and increases antigen
presentation because of IL-10 downregulation [49] lead-
ing to increased sensitivity and inflammation. It has been
proposed that an oxidant-antioxidant imbalance alter the
VEGF homeostasis resulting in epithelial cell injury [49].
Our data further demonstrated that exposure of cells to
ultrafine particles resulted in diminished IL-10 and VEGF
release. As with diesel exhaust particle exposure, we
believe that the production of ROS by the ultrafine parti-
cle systems is responsible for this decrease in IL-10 and
VEGF secretion, but further investigation, is required to
determine and clarify this mechanism. Although not
tested here, the release of IL-6 by the ultrafine particle
exposed cells might be the cause of the increased cell-
death among particle exposed cells [50]. Previous studies
confirm the correlation between maximal IL-6 induction
and cell-death in normal BEAS-2B cells treated with cap-
saicin [51]. The cytokine data adds a potential and excit-
ing viewpoint to the mechanisms that may be involved in
particle induced airway injury and inflammation.

Epithelial cells play an important role in initiating or
maintaining local inflammation of the airways by the
interaction with inhaled components. Taken together,
this study shows that combustion generated ultrafine par-
ticles, which constitute an important airborne pollutant
in the urban environment, modulate the function of epi-
thelial cells by modulating the release of pro-inflamma-
tory cytokines. It further suggests that compounds with
redox potential maybe a significant source of the respira-
tory effects observed upon particulate exposure. Thus, the
physicochemical properties of combustion generated
non-EPFR and EPFR containing ultrafine particles on air-
way epithelial cells may impair the inflammatory
response of the lung, incapacitate epithelial repair mecha-
nisms, and lead to respiratory dysfunction or disease exac-
erbation.

In summary, MCP230 and CuO/silica ultrafine particles
were capable of inducing cytotoxicity in bronchial epithe-
lial cells with MCP230 being more toxic at longer expo-
sure times and equivalent doses. The enhanced
cytotoxicity upon exposure to MCP230 correlated with its
ability to generate more cellular oxidative stress (simulta-
neous increase in indicators of ROS, reduction in the anti-
oxidant defenses of the epithelial cells (i.e. reduced GSH,
SOD activity, and GPx) and increase in lipid peroxida-
tion). The EPFRs in MCP230 seem to be of greater biolog-
ical concern due to their pro-oxidant property which
triggers redox signaling, lipid peroxidation, and inflam-
matory cascades that are involved in particle-induced cell

injury. These results are consistent with the oxidizing
nature of the CuO/silica ultrafine particles and the reduc-
ing nature and prolonged environmental and biological
lifetimes of the PFRs in MCP230. More research is needed
to sort out the reactions of these two very different
ultrafine particles and their biological impacts.

Conclusion
Inhalation of airborne ultra-fine particles is a major route
of exposure to toxic combustion by-products; therefore,
data generated from these studies are pertinent to virtually
any combustion/thermal source of air pollution. This
study indicates that the EPFRs associated with PM may be
a key factor in the health effects of the latter. However,
because the formation of the EPFR is concomitant with
the formation of the reduced metal oxide, the individual
impacts of the EPFR and reduced metal cannot be fully
separated and the health impacts should be considered to
be due to the PFR-particle system. Further studies to
understand their acute molecular toxicity are ongoing and
as are studies to determine the pathophysiological issues
associated with exposure to combustion-generated, ultra-
fine radical-particle systems with valid extrapolation to
human exposure scenarios.

Materials and methods
Reagents
Dithiothreitol (DTT), deferoxamine, 2',7'-dichlorodihy-
drofluorescein-diacetate (DCFDA), 5,5'- dithio-bis(2-
nitrobenzoic acid) (DTNB), copper nitrate (copper (II)
nitrate hemipentahydrate, 99+%), 2-monochlorophenol
(Aldrich, 99+%) were obtained from Sigma (St Louis,
MO). Resveratrol (Axxora, CA), glutathione and superox-
ide dismutase assay kits were obtained from Sigma
(Sigma, MO). All organic solvents were of Fisher optima
grade (Fisher Scientific, Hampton, NH). Cabosil®- amor-
phous fumed silica EH-5 (Cabot Corp.)

Synthesis of Ultrafine Particles
Particles of 5% CuO supported on silica were prepared by
impregnation of ultrafine silica powder (Cabosil® – parti-
cle size <200 nm) with copper nitrate hemipentahydrate
using the incipient wetness method followed by calcina-
tion). The silica powder was introduced into a 0.1 M solu-
tion of the copper nitrate. The samples were stirred for 24
h at room temperature and dried at 120°C for 12 h before
calcination in air for 5 h at 450°C. The adsorbate chemi-
cal, 2-monochlorophenol was used without further puri-
fication.

The particulate samples were exposed to the vapors of the
adsorbates using a custom made vacuum exposure system
(Figure 9) that consists of a vacuum gauge, dosing vial
port, equilibration chamber and 2 reactors. Each sample
was re-oxidized in situ in air at 450°C and then evacuated
Page 10 of 14
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to 10-2 torr. The particles were dosed with adsorbate
vapors at 10 torr at 230°C for 5 min. The port and dosing
tube were evacuated for 1 h at the dosing temperature and
10-2 torr to remove any residual physisorbed dosant. The
reactor was then sealed under vacuum with a vacuum
tight PFE stop-cock and allowed to cool to room temper-
ature. The particle size was confirmed by transmission
electron microscopy and flow cytometry.

Measuring Electron paramagnetic resonance
Electron paramagnetic resonance (EPR) measurements
were performed using a Bruker EMX-20/2.7 spectrometer
at a microwave power of 1 mW, 9 GHz frequency, 4 G
amplitude and 100 kHz frequency. The spectra were sub-
jected to spectral de-convolution as non-derivative spectra
using the Origin 7E Peak Fitting module, and the overall
fit was compared with both the original absorption spec-
tra and first derivative spectra.

Flow Cytometry for Particle Sizing
For routine verification of particle size, flow cytometry
was used. Flow cytometry was performed on a FACS Aria
(BD Biosciences) using side scatter and fluorescent prop-
erties of 0.05 and 0.5 μm reference beads (Bangs Labora-
tories, IN) as previously described [22]. Flow data were
analyzed and plotted using FlowJo software (Version
7.2.2 for windows, Tree Star, Inc).

Transmission Electron Microscopy
Ultrafine particles (1 mg of 5% CuO/Cabosil) were added
to 10 ml saline (with 0.02% Tween-80) and vortexed in a
vial for 2 minutes. A drop of the resulting suspension was
deposited on a TEM grid and the grid was air-dried. TEM
was performed on a JEOL 2010 (JEOL Inc., Peabody, MA)
with 200 keV electron energy.

Inductively Coupled Plasma (ICP) – Atomic Emission 
Spectroscopy
The copper levels in MCP230 and CuO/SiO2 particles
were measured by inductively coupled plasma – atomic
emission spectroscopy using a Varian (Palo Alto, CA)
Vista MPX spectrometer equipped with a charge coupled
device (CCD) detector. Five characteristic emission wave-
lengths of copper were monitored and a minimum of 20
measurements were performed for each determination.
Calibration standards were prepared by thoroughly dis-
solving purified copper powder (J.T. Baker Chemical
Company, Phillipsburg, NJ) in a nitric acid solution
(EMD Chemicals Inc., Gibbstown, NJ) whose final con-
centration was 4% nitric acid by volume.

Culture of airway epithelial cells
BEAS-2B human bronchial epithelial cells [23] (Cat #
CRL-9609; American Type Culture Collection, Manassas,
VA) were used at passages 42–60. The cells were cultured

in BEGM media (Lonza Walkersville Inc, MD, USA) con-
taining growth supplements: human recombinant epider-
mal growth factor, hydrocortisone, insulin, bovine
pituitary extract, ethanolamine, phosphoethanolamine,
transferrin, 3,3'5-triiodothyronine, epinephrine, and
retinoic acid. Culture flasks and multi-well plates were
pre-coated with a mixture of 0.01 mg/ml fibronectin, 0.03
mg/ml bovine collagen type I and 0.01 mg/ml bovine
serum albumin dissolved in LHC-9 medium. The cells
were maintained in 75 cm2 flasks at 37°C and 6% CO2.
Media was replaced every 2 to 3 days, and cells were pas-
saged when grown 85% confluent by dislodging with
0.25% trypsin-0.53 mM EDTA.

Stimulation of airway epithelial cells
Cells grown to 80–90% confluence in 6-well polystyrene
plates (Costar, Fisher Scientific) were exposed to media or
25–100 μg/cm2 ultrafine particles in media (re-suspended
by sonication and vortexing immediately before adding to
the wells) followed by a co-treatment with 100 μM of
deferoxamine or 25 μM of resveratrol for 4 hr. Positive
controls were included to monitor changes in the BEAS-
2B cell response. All experiments were replicated with at
least two independent cell passages.

Measurement of oxidative ability of ultrafine particles
The quantitative determination of ROS formation in vitro
was made using the DTT assay [24] that enables estima-

Pictorial diagram of a two-port, particle dosing apparatusFigure 9
Pictorial diagram of a two-port, particle dosing appa-
ratus.
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tion of the oxidative ability of the particles that can trans-
fer electrons from DTT to oxygen. The loss of DTT is
followed by its reaction with 5,5'-dithiobis-(2-nitroben-
zoic acid) that is converted to 5-mercapto-2-nitrobenzoic.
All samples were prepared at concentrations of 10, 25 and
50 μg/ml in 250 mM Tris-HCl buffer (pH 8.9). 20 μl of 16
mM DTT solution and 2 ml of a test sample, including a
blank (250 mM Tris-HCl buffer only), were mixed in
tubes and incubated for 10 min at 37°C in a water bath.
40 μl of 16 mM DTNB was added to this mixture. After the
reaction was complete, 200 μl samples were placed in
microtiter wells, and the absorbance was measured at 412
nm with a SpetraMax-M2 microplate reader (Molecular
Devices, Sunnyvale, LA).

Intracellular glutathione measurement
BEAS-2B cells grown to 85% confluence were treated with
the particles for 4 hr. After the treatment, cells were
washed with ice-cold PBS, scraped and lysed. Determina-
tion of reduced GSH was performed by using a commer-
cial kit (Sigma, MO). The kit assay utilizes a thiol probe
(monochlorobimane). When unbound, the probe shows
very little fluorescence; however, when bound to reduced
glutathione in a reaction that is catalyzed by glutathione
S-transferase, it forms a strongly fluorescent adduct that
can be measured using a microplate reader at excitation of
360 nm and emission wavelength of 485 nm.

Antioxidant enzyme activity
The oxidation of glutathione is catalyzed by glutathione
peoxidase (GPx). Oxidized glutathione is then reduced
back to glutathione utilizing glutathione reductase and
NADPH. The decrease in NADPH absorbance was meas-
ured at 340 nm during the oxidation of NADPH to
NADP+. GPx activity was measured using a commercial kit
from Sigma, MO. SOD activity was measured using the
SOD assay kit (Sigma, MO) according to the manufac-
turer's instructions. After ultrafine particles exposure, cells
were washed three times with cold PBS (pH 7.4) scraped
into PBS, sonicated (three bursts of 50 W for 15 s; Sonics
and Materials Inc, CT, USA) on ice, and lysates were cen-
trifuged at 12,000 rpm for 20 min at 4°C and enzyme
activities were assayed with the supernatants. Protein con-
centrations were determined by BCA assay (Thermo Fisher
Scientific Inc., Waltham, MA)

Measurement of intracellular reactive oxygen species
The production of reactive oxygen species was measured
in BEAS-2B cells loaded with 10 μM 2,7-dichlorofluo-
rescin diacetate at 37°C for 30 min in dark. The cells were
then washed, incubated with 100 μM of deferoxamine or
25 μM of resveratrol and ultrafine particles in a 96-well
plate for 4 hr. The increase in fluorescence was measured
using a microplate reader with excitation at 485 nm and
emission at 530 nm.

Biomarker of lipid peroxidation (8-iso-PGF)
Lipid peroxidation was measured by a competitive
enzyme-linked immunosorbent assay (ELISA) for 8-iso-
PGF with a commercial kit (Cayman Chemical, Ann
Arbor, MI). The assay is based on the competition
between 8-iso-PGF and 8-isoprostane-acetylcholinestase
(AChE) conjugate for a limited number of binding sites in
each ELISA plate well. The concentration of 8-iso-PGF is
inversely proportional to the number of binding sites
available, whereas AChE is held constant. Samples (Cul-
ture supernatants) after the ultrafine particles exposure
were transferred to the ELISA plate and incubated with the
antibody for 18 hr. The absorbance of the colorimetric
enzymatic reaction was read at 405 nm using the micro-
plate reader and compared with an 8-iso-PGF standard
curve to calculate concentration.

Cytotoxicity
The effects of CuO/silica or MCP230 ultrafine particle
treatments on the cytotoxicity of cells were determined by
the Alamar blue assay [25], according to the manufac-
turer's protocol (Biosource, USA).

Cell-membrane integrity assay
Cells grown on chambered slides were exposed to 100 μg/
cm2 of CuO/silica and MCP230 particle systems for 4 h.
The cells were then incubated with 2 μM of calcein AM
and 4 μM ethidium homodimer (Molecular probes, OR)
for 30 – 45 minutes at room temperature. Cells were visu-
alized using an inverted immunofluorescence microscope
(Olympus, IX-70). Fluorescent images were obtained with
a 10× objective using identical exposure times (2s) and
images were acquired using a digital imaging software
(SlideBook, Olympus). Cells with visible green fluores-
cence were scored as live; those with red fluorescence were
scored as dead. Scale bar, 50 μm.

Cytokine assays
Cell monolayers were exposed to CuO/silica or MCP230
ultrafine particles (100 μg/cm2) for 4 h. The cell-free
supernatants were harvested at 4 h, and the presence of
cytokines was determined using a high-throughput multi-
plex cytokine assay system (x-Plex human Assay; Bio-Rad)
according to the manufacturer's instructions. Each sample
was analyzed on the Bio-Plex 200 system (Bio-Rad). A
broad sensitivity range of standards ranging from 1.95 to
4184.4 pg/ml (depending on the analyte) was used to
quantitate a dynamic range of cytokine concentrations.
The concentrations of analytes in these assays were quan-
tified using a standard curve, and a nonlinear regression
was performed to derive an equation that was then used
to predict the concentration of the unknown samples. The
following cytokines were assayed: IL-1β, IL-2, IL-6, IL-8,
IL-10, IL-12p40, IL12p70, IL-13, IL-15, IL-18, IFNγ, TNFα,
VEGF, IFNα2. Values below the range of sensitivity for the
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particular analyte were excluded. Since cell viability varied
among exposures, results were expressed as pg/ml of %
viable cells.

Statistics
All data were plotted as mean ± SEM and analyzed using
GraphPad Prism (GraphPad Software Inc., Version 5.0.0).
One-way ANOVA was used to test for differences among
the groups (Tukey's post-test). Two-way ANOVA was con-
ducted for the cytotoxicity test (Bonferroni post-test). Dif-
ferences were considered statistically significant if p <
0.05.
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