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Abstract

Background: Increased asthma risk/exacerbation in children and infants is associated with exposure to elevated
levels of ultrafine particulate matter (PM). The presence of a newly realized class of pollutants, environmentally
persistent free radicals (EPFRs), in PM from combustion sources suggests a potentially unrecognized risk factor for
the development and/or exacerbation of asthma.

Methods: Neonatal rats (7-days of age) were exposed to EPFR-containing combustion generated ultrafine particles
(CGUFP), non-EPFR containing CGUFP, or air for 20 minutes per day for one week. Pulmonary function was
assessed in exposed rats and age matched controls. Lavage fluid was isolated and assayed for cellularity and
cytokines and in vivo indicators of oxidative stress. Pulmonary histopathology and characterization of differential
protein expression in lung homogenates was also performed.

Results: Neonates exposed to EPFR-containing CGUFP developed significant pulmonary inflammation, and airway
hyperreactivity. This correlated with increased levels of oxidative stress in the lungs. Using differential two-
dimensional electrophoresis, we identified 16 differentially expressed proteins between control and CGUFP exposed
groups. In the rats exposed to EPFR-containing CGUFP; peroxiredoxin-6, cofilin1, and annexin A8 were upregulated.

Conclusions: Exposure of neonates to EPFR-containing CGUFP induced pulmonary oxidative stress and lung
dysfunction. This correlated with alterations in the expression of various proteins associated with the response to

oxidative stress and the regulation of glucocorticoid receptor translocation in T lymphocytes.

Background

There is little doubt that exposure to airborne particu-
late matter (PM) poses a significant health risk, and
there is strong evidence to support the basic concept
that fine and ultrafine PM exposure have adverse pul-
monary effects. Increased amounts of ambient PM have
been associated with asthma and chronic obstructive
pulmonary disease (COPD) exacerbations, increased
hospitalizations for respiratory diseases, lung function
decline, and even increased respiratory mortality in sus-
ceptible populations, including infants and children
[1-7]. Despite the significant epidemiological evidence
demonstrating an association between PM exposure and
adverse pulmonary effects, the mechanisms responsible
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for the adverse pulmonary effects are not entirely clear.
Moreover, few experimental studies using age-relevant
animal models have been used in order to investigate
the detrimental effects of PM on developing lung
function.

Airborne PM is a complex mixture of chemical spe-
cies, and the unique components in PM that are respon-
sible for adverse health effects remain elusive. A number
of anthropogenic sources including combustion pro-
cesses generate PM. These emissions are a heteroge-
neous mixture of particles, oxides of nitrogen, sulfur,
carbon, dioxins furans, metals, chlorinated hydrocarbons
(CHC:s), and polycyclic aromatic hydrocarbons (PAHs).
It is extremely challenging to understand the effect of
potential synergisms between chemicals within the com-
plex mixtures to which humans are exposed and deline-
ate their potential health impacts.

We have reported the presence of environmentally
persistent free radicals (EPFRs) associated with airborne
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fine and ultrafine PM samples collected from different
locations across the United States [8-10]. We have further
generated data demonstrating that the toxicity of real-
world PM samples increases as a function of EPFR con-
centration (manuscript in preparation). The presence of
EPFRs in real-world PM samples suggests a potentially
unrecognized risk factor for the development and/or
exacerbation of asthma. Thus, we have developed a model
for understanding the health impacts of combustion-gen-
erated ultrafine particles (CGUFP) [11]. Specifically, we
have developed CGUFP containing EPFRs using 1,2-
dichlorobenzene (DCB230) and lacking EPFRs (DCB50) to
understand their role in the development of asthma.

While exposure to PM causes adverse health effects in
most people, children are especially susceptible to these
effects, as they inhale more air per pound of body weight
than adults; spend more time outdoors; and possess
immature immune systems. Exposure to ambient air pol-
lution is correlated with significant deficits in respiratory
growth, leading to clinically important deficits in lung
function in children [12]. The present investigations
assessed the effects of EPFR-containing CGUFP on lung
function in developing neonatal rat lungs.

Results

Neonatal DCB230 exposure resulted in acute airway
dysfunction

Neonatal rats were exposed to CGUFP at 200 pg/m? for
20 min/day for 7 consecutive days. Twenty-four hours
after the final exposure, pulmonary function tests were
performed on these animals. We compared the effects
of EPFR-containing CGUFP (i.e. DCB230), the non-
EPFR-containing CGUFP (i.e. DCB50), and ambient air
on airway resistance in response to inhaled MeCh. We
found that exposure to DCB230 significantly increased
airway hyperreactivity (AHR; 4.1 + 0.69 cm H,O.s/ml;
Figure 1A) compared to the air-exposed control groups
(Air: 1.3 £ 0.19). DCB50 did not significantly increase
AHR (DCB50: 2.3 + 0.51). There was a significant
decrease in lung compliance (Figure 1B) among the
DCB230 exposed rats compared to the controls
(DCB230: -0.49 + 0.075 ml/cm H,O vs. Air: -0.28 + 0.09
or DCB50: -0.26 + 0.09). Similarly, pressure-volume
curve analysis illustrated a loss of lung static compliance
in DCB230 exposed neonates (Figure 1C). The area
within the quasi-static inflation/deflation curves, which
represents hysteresis was also calculated (Figure 1D).
The area for DCB230 lungs was significantly larger than
air-exposed or DCB50 controls and there was no differ-
ence between air and DCB50 exposed animals.

CGUFP enhances oxidative stress in neonatal lungs
Glutathione, a key antioxidant involved in maintaining
proper lung redox balance, was measured to determine
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Figure 1 Measurement of airway function following exposure
to CGUFP. Neonatal rats (7 d of age) were exposed to CGUFP for
20 m/d for 7 d and pulmonary function was assayed 24 hr after the
final exposure. Significant increases in lung resistance (A) in
response to MeCh challenge and decreases in compliance (B)
among DCB230 exposed neonates compared with control groups
(air and DCB50). Quasi-static inflation/deflation curves (i.e. pressure-
volume loops) (C) and the area within the curves representative of
hysteresis (D). Data are means + SEM and is representative of three
independent experiments with 6 animals/group. *p < 0.05, **p <
0.01, **p < 0.001.

pulmonary oxidative stress after CGUFP exposure in
neonates. DCB230 and DCB50 exposed neonates had sig-
nificantly higher total glutathione levels than air exposed
groups analyzed (Figure 2A). However, the GSH:GSSG
ratios in DCB230 and DCB50 exposed neonates were
significantly lower than that of the air exposed group
(Figure 2B). No difference in GSH or GSH:GSSG ratios
was observed between DCB50 and DCB230 exposed
groups. Exposure to DCB230 or DCB50 resulted in ele-
vated levels of 8-isoprostanes in the BALF (Figure 2C)
compared to air exposed neonates. Elevated levels of 8-
isoprostanes was evident only in the lungs from DCB230
exposed neonates (Figure 2D).

DCB230 increased airway lymphocyte infiltration neonatal
rats

The total number of leukocytes recovered in the BALF
was significantly elevated in the DCB230 exposed animals.
Marked increases in the number of lymphocytes and neu-
trophils recovered from the BALF occurred only with
DCB230 exposure (Figure 3A). An increase in eosinophils
in the BALF from DCB230 exposed animals was also
observed; however, this number was not significantly
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Figure 2 Indicators of antioxidant status and oxidative stress
in postnatal rat lungs following exposure to CGUFP. Changes in
total glutathione (A) and GSH:GSSG ratios (B) in whole lung
homogenates and 8-Isoprostanes in BALF (C) and whole lung
homogenates (D) after CGUFP exposure. All measurements were
made 24 hr post-exposure. n = 4-6 animals/group. Data are means
+ SEM. *p < 0.05.

different from the DCB50 or air exposed animals and
represented less than 0.08% of the total recovered cells.

To begin to address the possible mechanisms
responsible for DCB230 induced AHR, we assessed
the relative contributions of lymphocyte subpopula-
tions to the airway inflammation observed in CGUFP-
exposed neonates. DCB230 exposure augmented the

Page 3 of 12

influx of both CD4+ and CD8+ lymphocytes and of
dendritic cells into the lung compared to the controls
(Figure 3B).

Altered cytokines in neonatal lungs exposed to DCB230
Pulmonary inflammation in the air, DCB50, and
DCB230 exposed animals was further quantified by
measuring the levels of various cytokines in the BALF at
24 and 72 hr after the final exposure. The following
cytokines were analyzed: IL-1fB, IL-10, IL-18, IL-6, IFN-
v, TNF-a, GRO/KC, VEGF, MCP-1, and MIP-1o. At 24
hr post-final exposure we observed decreases in IL-18,
VEGEF, MCP-1, and MIP-1a in DCB230-exposed ani-
mals compared air-exposed controls (Figure 4) while
GRO/KC levels were decreased in both DCB50 and
DCB230 exposed animals; this effect was more pro-
nounced with DCB230 exposure. At the same time
point, an increase in TNFa, IL-13, IFNy, IL-10, and IL-6
was observed only in DCB230 exposed groups. At 72 hr
post-final exposure, IL-18, VEGF, and MIP-1a levels
were raised to a similar level as air controls, though
VEGF and MIP1a remained statistically different. GRO/
KC levels continued to lower from the previous time-
point in both DCB50 and DCB230 animals. MCP-1
levels also continued to decline only in the DCB230
group. Previous spikes seen in IFNy, IL-10, and IL-6
were diminished, while production of TNFa continued
to increase in both DCB50 and DCB230 groups. Ele-
vated levels of TNF-a at 24 hr post-final exposure were
also increased at 72 hr compared to air controls. IL-1f3
was observed in DCB50 group and remained high in the
DCB230 group at this time.
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Figure 3 Effects of CGUFP exposure on pulmonary inflammation. (A) BALFs were collected and cell differentials obtained. *p < 0.05, **p <
0.01, and ***p < 0.001. (B) Lymphocyte populations in the lungs of rats exposed to CGUFP were quantified by flow cytometry using antibodies
specific for the indicated cells after gating on lymphocytes (CD4 and CD8) or non-lymphocytes (DC). Mac indicates macrophages; Neu:
neutrophils; Lym: lymphocytes; Eos: eosinophils. n = 4-6 animals/group. *p < 0.05 vs. air and #p < 0.05 vs DCB50.
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Figure 4 BALF cytokine levels in postnatal rats after CGUFP
exposure. Cytokine levels were determined in the BALF
supernatant at 24 hr and 72 hr post-final exposure. n = 6-12
animals/group. Data are expressed as means + SEM. *p < 0.05 vs Air
and #p < 0.05 vs day-matched DCB50.

DCB230 induces distinct changes in pulmonary
architecture

Normal histoarchitecture was observed in the lungs of
the air and DCB50 exposed neonates (Figure 5A; DCB50
exposed lung is used as representative control). In con-
trast, neonates exposed to DCB230 exhibited significant
lymphoid aggregates in the peribronchial region
(Figure 5C). This was accompanied by areas of immense
infiltration of macrophages resulting in occlusion in the
alveolar spaces (Figure 5D) and distinct focal changes in
alveolar structure including septal destruction (DI: Air:
17.35 + 1.38% vs. DCB50: 27.31 * 4.71 vs. DCB230: 57.6
+ 4.11; Figure 5E). Although quantitative morphological
assessments were not performed, we also observed a con-
sistent, subtle decrease in the thickness of the alveolar
walls in neonatal rats exposed to DCB230 (Figure 5C).
Further analysis of the H&E sections revealed what
appeared to be an increase in the smooth muscle mass in
the peribronchial regions of DCB230 exposed mice;
therefore, sections were stained for a.-smooth muscle
actin (a-SMA) and morphometric analyses performed to
quantitate a-SMA thickness. Animals exposed to
DCB230 possessed significantly greater smooth muscle
mass in the peribronchial region compared to animals
exposed to either air or DCB50 (Air: 12.58 + 1.03 pm vs.
DCB50: 19.05 + 0.63 vs. DCB230: 34.34 + 2.71; Figure 6).

CGUFP exposure and protein expression in lungs
To address the mechanism of altered lung structure and
function following DCB230 exposure in neonates, we
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isolated total protein from the lungs of DCB230,
DCB50, and air exposed rats. The protein samples were
separated by 2-dimensional electrophoresis, and the pro-
tein spots were visualized following fluorescent staining.
Differential proteome maps, which were the overlaid gel
images of air and DCB230; air and DCB50; and DCB50
and DCB230 treated groups, showed alterations in the
expression of several protein spots following exposure.
We identified 3 spots that fit our test criteria (i.e. having
a t-test p value <0.05 and 30% fold change (-1.30 or
1.30)) in the DCB50 versus air comparison; 16 spots in
the DCB230 versus air comparison, and 2 spots in the
DCB50 versus DCB230 comparison. Two of the spots
were found in both the DCB50 versus air comparison
and in the DCB230 versus air comparison. All 12 spots
of particular interest (i.e. greatest up- or down-regula-
tion) were isolated from the appropriate gels and ana-
lyzed by MALDI-TOF-MS following in-gel digestion
(Figure 7A). We were able to identify the proteins from
5 spots. DIGE analysis revealed a remarkable upregula-
tion of cofilin-1 (CFL1) in the lungs of DCB230 exposed
compared to air and DCB50 exposed neonatal rats
(Figure 7B). DIGE also unveiled a slight upregulation of
peroxiredoxin-6 (PRDX6) in the lungs of DCB50
exposed compared to air, and a significantly larger upre-
gulation in DCB230 exposed compared to air. DIGE
data were verified by western blot analysis (Figure 7C).
Sulfotransferase 1A1 and annexin A8 expression were
also increased in the DCB230 vs. air and DCB50 vs. air
differential proteome maps. Creatine kinase M-type was
downregulated in the DCB230 compared to air exposed
neonatal rat lungs.

Discussion

PM air pollutants exacerbate a variety of pulmonary dis-
orders, including chronic obstructive pulmonary disease
[13,14], asthma [15,16] and lower respiratory tract infec-
tions, especially in infants and the elderly [17-21]. The
lungs of neonates and infants are undergoing tremen-
dous structural and functional changes. Little informa-
tion and only a few studies have been developed to
understand the impact of exposure to environmental air
pollutants during postnatal development.

Our results show that EPFR-containing DCB230
induced dramatic and sustained AHR and pulmonary
inflammation in neonatal rats. The inflammation follow-
ing DCB230 exposure was characterized by increased
lymphocyte and neutrophil cells in the airways and by
elevations in the cytokines TNF-a, IL-18, IFNy, IL-10,
and IL-6 within 24 hr of exposure. Decreases in IL-18,
GRO/KC, MCP-1, MIP-1a. and VEGF were observed
within this same time frame. By 72 hr after exposure,
some cytokines (IL-18, VEGF, IFNy, IL-10, IL-6, and
MIP-1a) had begun to return to control levels while
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Figure 5 Light micrographs of exposed rat lungs. Light micrographs of terminal bronchioles (A, C) and alveolar parenchyma (8, D, E) from 15
d old rat lungs following exposure to DCB50, which was visually identical to air (A, B), and DCB230 (C-E). Black arrows denote significant
peribronchiolar BALT; line denotes smooth muscle mass surrounding bronchiole (quantified in Figure 6); white arrow denotes lesions of
increased alveolar space (quantified in inset of E); and white arrowhead demonstrates alveolar occlusion. Bar represents 50 um (A, C) and 20 um

earlier trends seemed to persist for others (GRO/KC,
TNFa, IL-1B). No changes in lung function were
observed following exposure to either of the controls
(air or non-EPFR-containing DCB50). The lung dysfunc-
tion observed following DCB230 exposure correlated
with increased oxidative stress as indicated by elevated
glutathione levels, decreased GSH:GSSG ratios, and
increased 8-isoprostanes in the BALF and lungs of
DCB230 exposed neonates. The increased AHR
observed here in neonates is consistent with the findings
of many investigators studying the impact of ambient
PM on AHR in adult rodent exposure models [22-24].
Eosinophilic inflammation is a hallmark of allergic
asthma and we found it somewhat surprising that
increases in this cell population were not observed in
response to DCB230 exposure in either the lavage fluid
or the lung tissue. There are several potential reasons
increases in eosinophils was not observed: 1) eosinophi-
lic response to PM is strain/species specific; 2) the age
of the animal at the time of exposure plays a role in the
cellular response that develops [25,26]; and/or 3) the
chemical composition of the particles is important in
determining the cellular response. Eosinophils were
observed following PM exposure in adult A/] mice,

which are known to generate a strong eosinophilic
response. Brown-Norway rats, which are also known to
exhibit a strong allergic phenotype including elevations
in pulmonary eosinophils in response to allergen expo-
sure, were used in these studies and therefore, the
absence of eosinophils does not appear to be a strain-
specific response. We have demonstrated that age of
initial exposure to certain viruses is critical in determin-
ing the ensuing cellular and immune response. We are
currently performing equivalent exposures to DCB230
in adult animals to determine if the lack of eosinophils
is an age-specific phenomenon. Finally, composition of
the particles is also likely to play a significant role in
defining the type of inflammation initiated and the
ensuing T cell response and may thus account for the
observed difference in eosinophil levels.

Interestingly, we observed an increase in neutrophils
in the lavage fluid. An influx of neutrophils has been
reported following adult murine exposure to ambient
PM [22,24,27] and is observed in as many as 50% of all
asthmatics and correlates with asthma severity [28-30].
In contrast to the increase in neutrophils, we observed a
significant decrease in macrophages in the lavage fluid
at 24 hr post-exposure. Although studies are ongoing to
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Figure 6 Quantitation of peribronchiolar smooth muscle content in exposed rat lungs. (A) Quantitative assessment of the thickness of the
smooth muscle layer in major airways of 15 d old rat lungs after exposure to air, DCB50 or DCB230. Data represent means + SEM. n = 3
animals/group. *p < 0.05 vs Air and #p < 0.05 vs DCB50. (B, C, D) Representative micrographs demonstrating expression of a.-smooth muscle
actin (red) and E-cadherin (green) from 15 d old rat lungs exposed to air, DCB50, or DCB230, respectively. Cell nuclei stained with DAPI (blue).

DCB230

fully decipher the reason for this decrease in macro-
phage/monocyte cells from the lavage fluid, it appears
that these cells along with DCs are the principal cells
responsible for particle uptake in the lung and that
there is enhanced recruitment of these cells to the
draining lymph node following exposure (manuscript in
preparation). Interestingly, an adaptive immune response
as evidenced by increased CD4+ and CD8+ T lympho-
cytes was also observed following exposure to DCB230.
It is assumed that the lymphocytes are recruited in
response to chemokines secreted by antigen presenting
cells and that their role is to provide protection against
subsequent exposures to DCB230. Furthermore, these
cells most likely play a significant role in both the
observed AHR and pulmonary pathology following
DCB230 exposure. Future studies are being designed to
determine how these cells are recruited to the lung as
well as their role in the observed pulmonary pathophy-
siology associated with EPFR exposure.

Several pieces of data support the involvement of oxi-
dative stress in EPFR-induced pulmonary inflammation
and injury in this neonatal exposure model. First, we saw
increased production of 8-isoprostanes, a marker of the

oxidation of tissue phospholipids, in the lungs and lavage
fluid of exposed neonates. Oxidative stress was most pro-
minent in neonates that had been exposed to DCB230.
Augmented levels of isoprostanes have been found in
serum, plasma and urine of heavy smokers [31,32] and in
exhaled condensate of asthmatic patients [33]. Second,
we observed an increase in total glutathione that corre-
lated with a decreased ratio of GSH:GSSG indicative of
oxidative stress. Increased oxidative stress has been
observed in the epithelial lung fluid of children with
severe asthma [34] and is associated with pulmonary
deterioration [35,36]. Decreased GSH:GSSG ratios in
conjunction with increased 8-isoprostane levels in the
lungs seem to confirm a role for EPFR induced lung
injury in neonatal rats and also offers a valid mechanism
by which exposure to PM exacerbates allergic asthma.
Exposure to DCB50, a non-EPFR containing particle,
also induced some amount of oxidative stress. In these
animals, 8-isoprostane levels in the lung tissue were sig-
nificantly lower than that observed following DCB230
exposure and no significant changes in lung function
were observed following exposure to these particles.
From our previously published data, we believe this is
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Figure 7 Proteomic analysis of DCB230 exposed neonatal lungs. (A) 2-D gel proteomic map with selected spots indicating a significant
intensity change vs air exposed controls. (B) Enlargement of panels 4 and 5 from air and DCB230 exposed lungs. Panel 4 indicates PRDX6
expression (1.33 increase, p < 0.00034) and panel 5 indicates CFL1 expression (1.34 increase, p < 0.0008). (C) Western blot confirmation of
increased expression of both proteins following exposure to DCB230 as compared to air or DCB50. n = 4-6 animals/group.

Air

due to the enhanced ability of EPFRs to modulate the
activity of a number of antioxidant enzymes including
catalase and glutathione reductase [37]. Cumulatively,
these data suggest that EPFRs play a significant role in
the adverse pulmonary responses observed and that oxi-
dative stress is only partly responsible for the observed
pulmonary responses.

We employed DIGE-based protein profiling to discern
the effects of CGUEP on protein expression in the lungs
of exposed neonates. Two of the proteins identified by
differential DIGE analysis and validated by western blot-
ting can be linked to a possible sequence of events that
begin with a pro-oxidative effect initiated by the EPFRs
and culminating with the increased expression of a
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protein that may be important in the regulation of glu-
cocorticoid sensitivity of T lymphocytes and steroid-
insensitive asthma. Those two proteins are PRDX6 and
CFL1.

PRDX6 is believed to play an important role in cata-
lyzing the reduction of peroxides via its anti-oxidative
activity, which involves removal of H,O, in primary
lung alveolar epithelial type II [38] and other cells [39]
and inhibition of LDL oxidation by reducing the highly
reactive hydroxyl radicals (OH") and HOCI [39]. Pre-
vious studies with EPFR-containing particles demon-
strate that EPFRs are a potent stimulator of LPO in
vitro [40] and that these inductive events contribute to
EPFR-induced pathologies. Further, PRDX6 can emulate
glutathione peroxidase [41] and inhibit the expression of
intercellular adhesion molecule-1 and vascular cell adhe-
sion molecule-1, both of which help recruit macro-
phages. These observations support the hypothesis that
PRDX6 plays a key role in protecting lung tissue from
oxidative stress injury (due to peroxides) caused by
CGUEPs including EPFRs.

We also observed an increase in CFL1, which has
been implicated as an inhibitor of glucocorticoid func-
tion in hormone-resistant HeLa cells and in CD4+ T
cells from patients with severe, glucocorticoid-insensitive
asthma [42-44]. The increase in CFL1 expression in the
lungs of neonatal rats exposed to EPFR-containing parti-
cles suggests that pediatric exposure to EPFR-containing
PM is a potential mechanism responsible for the devel-
opment of severe, glucocorticoid-insensitive asthma in
humans. Ongoing studies in our laboratory seek to con-
firm the role of CFL1 in dexamethasone insensitivity fol-
lowing exposure to EPFRs.

On the whole, our findings suggest that EPFRs have
the potential to induce oxidative stress in the lungs of
neonates following acute inhalation exposures and that
cytoprotective responses are initiated to deal with this
stress (i.e. PRDX6) to protect the developing lung. How-
ever, the ability to control the pro-oxidant effects of
EPFRs eventually overwhelms the system leading to the
increased expression of CFL1 [45]. Active CFL1 then
reduces nuclear translocation of glucocorticoid receptors
allowing for enhanced proinflammatory transcription
[46]. Further studies are needed to confirm the hypoth-
eses generated by these studies, but our data demon-
strate a potential mechanistic link between PM exposure
and the development of asthma in humans.

Conclusions

On the whole, proteome profiles as well as all the asso-
ciated cellular responses posits our hypothesis that
EPFRs contained in CGUEFP have the potency to induce
oxidative stress leading to the induction of pulmonary
inflammation and dysfunction. Since the formation of
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EPFRs is linked to a chemical reaction with transition
metals contained in ultrafine particles, it is important to
realize that the particles must be considered an EPFR-
transition metal-substrate system. Separation and inde-
pendent study of these components is likely to lead to
erroneous conclusions concerning the toxicity of envir-
onmental PM.

Overall, there are several factors that contribute to the
lung injury in neonates following exposure to CGUFP.
Data presented in this article suggest that exposure to
EPFR-containing CGUEFP is one of the major factors
influencing the inflammatory and pathophysiological
responses. Concerns are to understand whether the
changes caused by these exposures are reversible, and
the role of long-term exposures in the development of
steroid-insensitive asthma in humans.

Methods

Rats

Brown-Norway rat dams and pups were procured from
Harlan (IN, USA). Animals were maintained in venti-
lated cages housed in a specific, pathogen-free animal
facility. Animal protocols were prepared in accordance
with the Guide for the Care and Use of Laboratory Ani-
mals and approved by the Institutional Animal Care and
Use Committee at Louisiana State University Health
Sciences Center.

Combustion Generated Ultrafine Particles (CGUFP)
Particles were synthesized essentially as previously
described and had a mean diameter of 0.2 pm [11]. In
brief, EPFR containing CGUFP (DCB230) was formed as
follows: 5% CuO supported on silica was dosed with
adsorbate vapors (i.e. 1,2 dichlorobenzene) in a custom
made vacuum exposure system for 5 min at 10 torr at
230°C. Any physisorbed dosant was removed by evacua-
tion at 107 torr, and the particles were allowed to cool to
room temperature under vacuum. The presence of free
radicals was confirmed by electron paramagnetic reso-
nance. Based on previous studies [11] it is known, that
1,2-dichlorobenzene adsorbed on CuO/Silica particles at
230°C forms primarily o-semiquinone EPFRs. Non-EPFR
containing CGUFP (DCB50) was formed by dosing silica
with adsorbate vapors (i.e. 1,2 dichlorobenzene) in a cus-
tom made vacuum exposure system for 5 min at 10 torr
at 50°C. The particles were allowed to cool to room tem-
perature and evacuated at 102 torr to remove remaining
gas phase reactant, which allowed for the formation of
particles containing silica matrix and adsorbed molecular
1,2-dichlorobenzene as reference material to 1,2-dichlor-
obenzene originating EPFRs. The absence of free radicals
was confirmed by electron paramagnetic resonance. The
size of the particles was confirmed prior to experiments
using flow cytometry also as previously described [40].
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Animal Exposures

Neonates (7 days of age) were divided into three expo-
sure groups: Air, DCB50, and DCB230. Neonates were
subjected to nose-only exposures of DCB230 or DCB50
at 200 pg/m® or air using the In-expose inhalation sys-
tem (SciReq) for 20 min/day for seven consecutive days.
All assessments were performed 24 hours following the
final exposure. Cytokines were additionally assessed at
72 hours following the final inhalation exposure. Each
group consisted of 4-6 rats, and all experiments were
performed in triplicate.

Pulmonary Mechanics

Respiratory mechanics were measured using the forced
oscillation technique (FlexiVent; Scireq) as previously
described [25]. Exposed rats were anesthetized, intu-
bated, and mechanically ventilated by a computer con-
trolled piston ventilator. Rats were then challenged with
an aerosolized bronchoconstrictor, methacholine
(MeCh), at increasing doses (MeCh: 0, 6.25, 12.5, 25
mg/ml). At each dose, lung resistance, compliance, and
elastance were calculated using the single compartment
model and pressure-volume data were captured using a
step-wise quasi-static inflation/deflation maneuver to
total lung capacity/functional residual capacity, respec-
tively. For comparison among the groups and across
measurement days, all data were normalized to their
individual baseline resistance values ((value-baseline)/
baseline) and plotted as normalized resistance. Baseline
values ranged from 0.701 to 0.805 ¢cm H,O-s/ml and
were not statistically different among the groups.

Glutathione Levels

Briefly, tissue was homogenized in 5% sulfosalicylic acid
(in ice-cold 5% metaphosphoric acid mixture) and cen-
trifuged at 2500 g for 10 min, 4°C. An aliquot of the
supernatant was used for the assay. Oxidation of GSH
by 5,5'-dithio-bis (2-nitrobenzoic acid) to form nitroben-
zoic acid and the enzymatic recycling of glutathione
(GSH) from glutathione disulfide (GSSG) by glutathione
reductase (GR) in the presence of NADPH were spec-
trocphotometrically measured at 412 nm [47].

8-Isoprostanes

Lipid peroxidation was measured by a competitive
enzyme-linked immunosorbent assay (ELISA) for 8-iso-
PGF with a commercial kit (Cayman Chemical, Ann
Arbor, MI). The assay is based on the competition
between 8-iso-PGF and 8-isoprostane-acetylcholinestase
(AChE) conjugate for a limited number of binding sites
in each ELISA plate well. The concentration of 8-iso-
PGF is inversely proportional to the number of binding
sites available, whereas AChE is held constant. For lung
homogenates, samples were weighed and homogenized

Page 9 of 12

in 0.1 M PBS (1 mM EDTA, 0.005% butylated hydroxy-
toluene). Samples (BALF and lung homogenates) were
transferred to the ELISA plate and incubated with the
antibody for 18 hr. The absorbance of the colorimetric
enzymatic reaction was read at 405 nm using the Spe-
traMax-M2 (Molecular Devices, Sunnyvale, CA) and
compared with an 8-iso-PGF standard curve to calculate
concentration.

BALF Cellularity

Bronchoalveolar lavage fluid (BALF) was harvested in 1
ml of PBS containing 2% BSA. Isolated BALF was used to
determine total number of leukocytes. Cytospin slide pre-
parations were made, stained with Diff-Quik (Fisher
Scientific), and used for differential cell counts. All
counts were performed by two unbiased observers using
standard morphological criteria to classify individual leu-
kocyte populations. Six rats from each group were used
for these analyses, and 200 cells were counted per animal.

Pulmonary Lymphocyte Characterization

A single cell suspension of lung cells was prepared using
a standardized protocol [48]. Briefly, lungs were perfused,
excised, cut into small pieces and incubated at 37°C for 1
hour in RPMI-1640 media supplemented by 2% heat
inactivated FBS, 1 mg/ml collagenase I (Invitrogen), and
150 pug/ml DNase I (Sigma). After incubation, single cells
were obtained by mashing the lung pieces through a 40
pum cell strainer (BD Biosciences). Red blood cells were
lysed using 1x RBC lysis buffer (eBioscience) and cells
were stained with the following antibodies purchased
from BD Pharmingen: APC-CD4, FITC-CD8, and Biotin-
CD3, and from Santa Cruz: PE-OX62. Cell staining was
determined with an LSRII (BD Biosciences) flow cyt-
ometer after gating on the lymphocyte population as
determined by forward and side scatter properties. Flow
data were analyzed and plotted using FlowJo software
(Version 7.2.2 for windows, Tree Star, Inc).

Cytokine Levels in BALF

Cytokine levels were measured from 50 pl of cell-free
BALF (rat cytokine assay; Millipore, MO, USA) using a
high-throughput multiplex cytokine assay system
according to the manufacturer’s instructions. Each sam-
ple was analyzed in duplicate on the Bio-Plex 200 sys-
tem (BioRad). A broad range of standards (4.88 to
20,000 pg/ml; depending on the analyte) was used to
quantitate a dynamic range of cytokine concentrations.
The concentrations of analytes in these assays were
quantified using a standard curve and a 5-parameter
logistic regression was performed to derive an equation
that was then used to predict the concentration of the
unknown samples. The following cytokines were
assayed: IL-1pB, IL-10, IL-18, IFN-y, TNF-a, GRO/KC,
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VEGF, MCP-1, and MIP-1a. The data presented
excluded any value outside the range of sensitivity for
the particular analyte.

Pulmonary Histopathology

Lungs were perfused with PBS and heparin, inflated by
gentle infusion of HistoChoice Tissue Fixative (Amresco,
Inc.) to total lung capacity, and isolated. The fixed lungs
were then dehydrated, embedded in paraffin, and sec-
tioned at 4 pm sections. Each lung section was stained
with hematoxylin and eosin (H&E). Lung sections were
probed for E-cadherin and a-smooth muscle actin
(SMA) using the following antibodies (Abcam) and dilu-
tions: anti-SMA (1:1000), E-cadherin (1:400). Primary
antibodies were respectively detected with goat anti-
mouse Alexa Fluor 568 (1:500) and with Goat anti-Rab-
bit Alexa Fluor 488 (1:500) both from Invitrogen. Cell
nuclei were stained with DAPIL.

Alveolar septal lesioning was quantified from H&E
stained lung sections of animals exposed to air, DCB50,
and DCB230. The destruction of alveolar walls was quan-
tified using the destructive index (DI) method [49]. A
grid with 42 points that were at the center of hairline
crosses was superimposed on the lung field. Structures
lying under these points were classified as normal (N) or
destroyed (D) alveolar and/or duct spaces. Points falling
over other structures, such as duct walls, alveolar walls,
etc. did not enter into the calculations. The DI was calcu-
lated using the formula: DI = D/(D + N) x 100.

To quantify smooth muscle thickness, images of major
airways were taken at 40x magnification from lung sec-
tions of rats exposed to DCB230, DCB50, or air. Using
AxioVision software, a line perpendicular to the basal
lamina was drawn from the basement membrane to the
edge of the smooth muscle layer. Smooth muscle cells
were identified according to morphology and stain.
After this was repeated 4-5x per airway, an average was
taken from the software-generated thickness values
(um). Averages from 3 different animals per exposure
group were compared.

2D-Gel Electrophoresis and Mass Spectroscopy to Identify
Proteins

Tissue Preparation and Protein quantification

Lungs from exposed animals (4 animals/group) were
sonicated following the addition of 400 pl of Lysis Buffer
(7 M Urea, 2 M ThioUrea, 4% CHAPS, 30 mM Tris,
pHA8.5, and 20% glycerol). Sonication was performed 4
times at 25% amplitude for 15 seconds each; returning
to ice in between. Protein concentrations were deter-
mined by Bradford protein assay using an 8 point BSA
standard concentration curve. For CyDye labeling, sam-
ples were aliquotted into 50 pg fractions.
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Cy-Dye labeling

The mixed internal standard methodology of [50] was
used in these studies. Briefly, aliquots of 50 ug protein
from each sample were labeled with 400 pmol of either
Cy3 or Cy5 (vehicle and/or treated randomized). In a
similar fashion, 50 pg of each of the samples (vehicle
and treated) was pooled and labeled with 400 pmol Cy2
per 50 pg standard. Equal protein loading of replicate #1
versus replicate #2, and the standard-sample mixture
was resolved between pH 3-10NL per gel. Samples were
dissolved in rehydration buffer (7 M Urea, 2 M
ThioUrea, 4% CHAPS, 20% glycerol) supplemented with
IPG buffer (GE Healthcare).

2-D gel electrophoresis and imaging

Cy-dye labeled samples for each subject (410 pl final
volume) were actively rehydrated into 24 cm 3-10NL
immobilized pH gradient (IPG) strips (GE Healthcare)
for 15 hours, followed by isoelectric focusing using an
IPGphor (GE Healthcare) step 1: Step 300 V for 2
hours, step 2: Gradient 1000 V for 6 hours, step3: Gra-
dient 8000 V for 6 hours, step 4: Step 8000 V for 8
hours, and step 5: step 200 V for HOLD. The cysteines
were reduced and carbamidomethylated, while the pro-
teins were equilibrated into the second-dimensional
loading buffer by incubating the focused strips in equili-
bration buffer (6 M Urea, 20% glycerol, 2% SDS, 375
mM Tris, pH8.8) supplemented with 20 mg/ml DTT for
15 min at room temperature with shaking, followed by
25 mg/ml iodoacetamide in equilibration buffer for an
additional 15 min room temperature incubation. IPG
strips were then cemented onto 2" dimension gels
using an overlay consisting of 0.5% agarose in SDS run-
ning buffer (25 mM Tris, 192 mM glycine, 0.1% SDS,
trace of bromophenol blue). Homogeneous polyacryla-
mide gels (12%) were used for the second-dimensional
SDS-PAGE which was then carried out on all gels
simultaneously using a DALT6 (GE Healthcare) at 5 W/
gel for 30 min followed by 17 W/gel for 4 h. The Cy2
(standard), Cy3 and Cy5 (vehicle or treated) for each gel
were individually imaged using mutually exclusive exci-
tation/emission wavelengths of 488 nm (ex) and 520 nm
(em) BP40 (bandpass) for Cy2, 532 nm (ex) and 580 nm
(em) BP 30 for Cy3, and 633 nm (ex) and 670 nm (em)
BP30 for Cy5 using a Typhoon 9400(GE Healthcare).
After imaging for Cy-Dye components, the non-silanized
glass plate was removed, and the gels were fixed in 10%
methanol, 7% acetic acid for 1 h, rinsed in water three
times and then incubated in SYPRO Ruby in the dark
overnight. The SYPRO Ruby post-stain allows for the
correction of unlabeled protein’s migration in relation to
the 1-3% CyDye labeled migration, and ensures accurate
protein excision. Sypro Ruby images were acquired on
the same imager using 450 nm (ex) and 610 nm BP40
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filter, as well as re-imaged post-excision to ensure accu-
rate protein excision.

DIGE analysis

DeCyder software (GE Healthcare) was used for simulta-
neous comparison of abundance changes across all sam-
ples, and for comparisons of individual Cy3 and Cy5
samples for each subject. Difference ratios or abundance
changes and paired Student’s t-test p-values for the var-
iance of these ratios for each protein pair across all sam-
ples were calculated. Fold abundance changes are
reported, whereby a fold increase is calculated directly
from the volume ratio and a fold decrease by the inverse
of volume ratio.

In-gel digestion

Proteins of interest were excised using the Ettan Spot
Picker (GE Healthcare) based on a ‘hit list’ generated in
DeCyder. Spots were de-stained by successive changes
of 20 mM ammonium bicarbonate and 50% acetonitrile,
followed by dehydration with a 20 minute incubation
with 100% acetonitrile. Dehydrated gel plugs were auto-
matically digested in-gel with 8 uL 20 pug/ml porcine
modified trypsin protease (Promega) in 20 mM ammo-
nium bicarbonate for 6 hours at 37°C. Tryptic peptides
were then extracted from the gel plugs in two cycles of
50% acetonitrile, 0.1% trifluoroacetic acid and dried by
evaporation. Peptides were reconstituted in 1 pl 50%
Acetonitrile and 0.1% trifluoroacetic acid and mixed
with an equal volume of 10 mg/ml a-Cyano-4-hydroxy-
cinnamic acid for spotting onto a MALDI plate.

Mass Spectrometry and Identification of Proteins
Matrix-assisted laser-desorption ionization time-of-
flight mass spectrometry (MALDI-TOF-MS): The par-
ent polypeptides were identified by comparing the pro-
file of tryptic peptide masses generated by the mass
spectrometer with predicted tryptic peptides from all
known polypeptides using the MASCOT program. Since
a covalent modification such as thiolation or nitration
changes a peptide mass by a known amount, it is possi-
ble through MASCOT and other programs to identify
both a protein and its posttranslational modifications.

Statistical Analysis

All data were plotted as mean + SEM and analyzed
using GraphPad Prism (GraphPad Software Inc., Version
5.0.0). Two-way ANOVA (Bonferroni post-test) was
used to evaluate the differences of airway responsive-
ness, airway resistance, elastance, compliance, and BALF
cellularity. One-way ANOVA was used to evaluate the
differences of PV loop, cytokine levels between groups,
alveolar septal destruction index, and smooth muscle
proliferation. Tukey’s one-way analysis of variance was
performed to test for significance between the groups.
Differences between means were considered significant
when p < 0.05.
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Abbreviations

CGUFP: combustion generated ultrafine particles; COPD: chronic obstructive
pulmonary disease; DCB50: non-EPFR particle consisting of 1,2-
dichlorobenzene physisorbed to silica/CuO; DCB230: EPFRs of 1,2-
dichlorobenzene chemisorbed to silica/CuO at 230°C; EPFRs: environmentally
persistent free radical-containing pollutant-particle systems; PM: ultrafine
particulate matter; ROS: reactive oxygen species
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