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Abstract

developing cardiovascular disease.

dysfunction.

Background: There is growing evidence that exposure to small size particulate matter increases the risk of

Methods: We investigated plaque progression and vasodilatory function in apolipoprotein E knockout (Apo£”")
mice exposed to TiO,. ApoE”" mice were intratracheally instilled (0.5 mg/kg bodyweight) with rutile fine TiO, (fTiO,
288 nm), photocatalytic 92/8 anatase/rutile TiO, (pTiO,, 12 nm), or rutile nano TiO, (NTiO,, 21.6 nm) at 26 and 2
hours before measurement of vasodilatory function in aorta segments mounted in myographs. The progression of
atherosclerotic plagues in aorta was assessed in mice exposed to nanosized TiO, (0.5 mg/kg bodyweight) once a
week for 4 weeks. We measured mRNA levels of Mcp-1, Mip-2, Vcam-1, lcam-1 and Vegf in lung tissue to assess
pulmonary inflammation and vascular function. TiO,-induced alterations in nitric oxide (NO) production were
assessed in human umbilical vein endothelial cells (HUVECS).

Results: The exposure to nTiO, was associated with a modest increase in plaque progression in aorta, whereas
there were unaltered vasodilatory function and expression levels of Mcp-1, Mip-2, Vcam-1, lcam-1 and Vegf in lung
tissue. The ApoE”” mice exposed to fine and photocatalytic TiO, had unaltered vasodilatory function and lung
tissue inflammatory gene expression. The unaltered NO-dependent vasodilatory function was supported by
observations in HUVECs where the NO production was only increased by exposure to nTiO,.

Conclusion: Repeated exposure to nanosized TiO, particles was associated with modest plaque progression in
ApoE”" mice. There were no associations between the pulmonary TiO, exposure and inflammation or vasodilatory

Introduction

The investigation of toxicological effects of nanoparticles
is increasingly important due to their growing occupa-
tional use and presence as compounds in consumer pro-
ducts. The use of nanometer-size particles in paints can
reduce the production costs by the addition of lower
(mass) concentrations or add novel properties to the
final product. TiO, pigments are widely used by paint
and plastic industries for whiteness and opacity. One of
the major advantages of TiO, is its resistance to
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discoloration by UV light. TiO, particles are considered
to have low toxicity to humans and animals [1]. How-
ever, it has been shown that decreasing particle size is
associated with increased pro-inflammatory properties
[2]. An important possible health risk of particle expo-
sure is cardiovascular effects. It has been shown that
exposure to combustion-based particles in ambient air is
associated with progression of atherosclerosis, myocar-
dial infarction and cardiovascular mortality in humans
and the nanosized fraction is considered an important
culprit [3-5]. The mechanisms of these effects are con-
sidered to involve oxidative stress and inflammation,
vasomotor dysfunction, neuronal signalling and possible
translocation of particles from the airways to the
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circulation [3]. Pulmonary exposure to carbon-based
particles can accelerate plaques progression in animal
models [6,7]. However, associations between exposure
to TiO, particles and progression of atherosclerosis have
not been assessed, whereas pulmonary exposure has
been associated with vasomotor dysfunction [8].

Endothelial cells have an important barrier function
and produce factors that regulate vascular tone, cellular
adhesion, smooth muscle cell proliferation, vessel wall
inflammation, and thromboresistance [9,10]. In the
functional endothelium, acetylcholine binds to muscari-
nic receptors on the luminal surface leading to nitric
oxide (NO) production by the calcium dependent, con-
stitutive isoform of NO synthase (eNOS) [9]. Impaired
endothelium-dependent vasodilation is a central feature
of endothelial dysfunction and is associated with
increased risk of developing cardiovascular diseases [11].
Endothelial dysfunction is associated with increased
levels of proinflammatory factors, such as adhesion
molecules and chemoattractants [12], which can lead to
atherosclerosis [9,11,13]. This is attributed to increased
intravascular generation of reactive oxygen species
(ROS) such as superoxide anion radicals, leading to
reduced bioavailability of NO [12]. Superoxide dismu-
tase (SOD) converts superoxide anion radicals to hydro-
gen peroxide, which may ameliorate the production of
peroxynitrite [12]. Ex vivo exposure of isolated vessels to
the exogenous SOD mimic, tempol, has been associated
with improved endothelium-dependent vasodilation in
arteries from hypertensive rats, most likely by reduced
intracellular ROS production by tempol that diffuses
freely across cell membranes [12,14].

Inflammation plays a key role in atherogenesis as well
as destabilization of plaques [15]. According to the mul-
tistep theory, monocytes adhere to the endothelial cells
by binding to intracellular adhesion molecule-1 (ICAM-
1) and vascular cell adhesion molecule-1 (VCAM-1),
and then migrate into the intima [16,17]. Monocyte che-
moattractant protein-1 (MCP-1/CCL2) is a chemotactic
cytokine produced by endothelial cells after exposure to
cytokines and oxidized lipoproteins. MCP-1 plays an
important role in the migration and activation of mono-
cytes and T cells and regulates the proliferation of vas-
cular smooth muscle cells [18]. Activated macrophages
express proinflammatory cytokines including macro-
phage inflammatory protein 2 (MIP-2/CXCL2) [19].
This cytokine up-regulates the expression of ICAM-1
and VCAM-1 on the endothelial cell surface. Vascular
endothelial growth factor (VEGF) stimulates the prolif-
eration and growth of endothelial cells and additionally
increases vascular permeability [20].

We hypothesised that pulmonary exposure to nano-
sized particles, compared to fine particle would evoke
larger cardiovascular effects, whereas altered
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vasodilatory function would be blunted by ex vivo treat-
ment with the superoxide dismutase mimic tempol. To
this end we investigate plaque progression and vasodila-
tory function in dyslipidemic and atherosclerosis prone
apolipoprotein E knockout (ApoE”’") mice exposed by
intratracheal instillation (i.t.) to three physicochemically
different TiO, particles including nanometer-size coated
rutile TiO, (nTiO,; 20.6 nm), nanometer-size and highly
photocatalytic anatase-rich TiO, (pTiO,; 12 nm), and
sub-micrometer-size coated rutile TiO, (fTiO,; 288 nm).
Inflammation was evaluated by measuring mRNA levels
of Mip2, Icaml, Vcaml, Mcpl, and Vegf in lung tissue.
We also studied the NO production in human umbilical
vein endothelial cells (HUVECs) exposed to the three
TiO, particles.

Results

Particle and exposure characterization

The particles had different crystalline form, crystallite
size, surface area, coating and chemistry (table 1). The
fTiO, and nTiO, were mainly rutile crystal structure.
The fTiO, particles were coated with Al,O3 (3.22 wt%)
and polyol (1.3 wt%). The nTiO, particles were coated
with SiO, (12.01 wt%), Al,O3 SiO, (4.58 wt%), ZrO,
(1.17 wt%) and polylol (5.2 wt%) [21,22]. The pTiO, had
anatase crystal structure; it was uncoated, highly pure
and delivered as a suspension in water (30 wt%).

Assessment of particle distribution in the lung of mice

We investigated the distribution of particles following i.
t. instillation of Evans Blue, quantum dots and radioac-
tively labelled gold nanoparticles in wild-type mice (Fig-
ure 1). The distribution of i.t. instilled particles was
determined by three different test systems; this combi-
nation of the tests provides a reliable assessment of the
distribution in whole lungs. The Evans blue staining
served as real visual inspection of the instilled fluid,
whereas the distribution of particles were visualised by
quantum dots and radioactively labelled gold nanoparti-
cles. Collectively, these results show that the i.t. instilla-
tion procedure yielded an even distribution in the lungs.

Effect on vasodilatory response in aorta

Mice, aged 11-13 weeks, were exposed by i.t. instillation
to either a control solution with 90% isotonic saline and
10% bronchoalveolar lavage (BAL) fluid, or particle
(fTiO,, pTiO,, or nTiO,) suspended in 90% isotonic sal-
ine and 10% BAL fluid.

The endothelium-dependent vasodilation induced by
acetylcholine showed an interaction between the treat-
ment with particles and tempol (P < 0.05, ANOVA).
The post-hoc analysis of the interaction showed that the
tempol treatment was associated with a 45% (95% CI:
19-71%) reduction of the E .. value in animals i.t.
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Table 1 Primary physicochemical characteristics of the particulate TiO, materials and hydrodynamic sizes in exposure
dispersions.

Electron Microscopy Sample Product Phase  Crystallite size for  Surface Minor elements/surface  Particle size in
images material name (s) primary particles area coatings on the exposure
(nm) BET primary particles (wt%) dispersions (nm
(m*/g) + SD)
unfiltered 3.0
um
filter
Fine TiO, RDI-S 99.5% 288 21 AlLO: 3.22 34158 560.9
(fTiO,) rutile P,0s: 0.12 + 2283 +
0.5% Zr0,: 0.07 162.0
anatase *Polyol: 1.3
Photocatalytic VP Disp. 7.8% 19 N.A. Al,O3: 0.10 NA 23205
TiO, (pTIO;) W 2730 rutile 12 +
& X 92.2% 2726
w anatase
-
" W
l’. - .
“_ ~ . i
> hd
100 nm
NanoTiO, UV-Titan 100% 206 107.7 Na,O: 0.60 52235 5182
(nTiO,) L181 rutile SiO,: 12.01 + 8316 +
AlL,Os: 4.58 118.2
7105 1.17
*Polyol: 5.2

Figure 1 Distribution of particles after i.t. instillation in wild-type mice. Image A (front) and B (back) show the staining in the lung of mice
after it instillation of 1% Evans Blue solution (50 pl/mouse). Image C (no filter) and D (recorded as fluorescence passed through a 620 nm band
pass filter) are images of the lung from a mouse after it. instillation of quantum dot QD621 solution (50 pl/mouse). Image E and F have been
obtained in a single photon emission tomograph y-camera in a mouse it. instilled with 18 nm nanogold particles.
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instilled with control suspension. There were no differ-
ences in the E .. values between the particle-exposed
mice and controls for the aorta segments that were not
treated with tempol. However, the E, ., value of tempol-
treated vessels isolated from the animals exposed to
pTiO, particles was 71% (95% CI: 18 - 125%) higher
than vessels isolated from mice exposed to the control
suspension. There were no effects on ECs, values for
the acetylcholine response (P = 0.83, single-factor effect
of the particles) (table 2, Figure 2).

The vasodilation was also assessed by stimulation with
calcitonin-gene related peptide (CGRP) that activates
CGRP receptors on aortic smooth muscle cells and
endothelial cells [23]. There was no difference in the
CGRP-mediated vasodilation between the particle-
exposed mice and controls. The effect of CGRP showed
an 18% (95% CI: 3.0 - 33%) reduction of the maximal
response (E...) by ex vivo treatment with tempol,
whereas there was no difference in terms of ECs, values
(table 2, Figure 3).

The endothelium-independent vasodilation was inves-
tigated as the vasodilatory response of aorta segments to
the NO-donor nitroglycerin (NTG) or felodipine (FD;
blocks the voltage-dependent calcium channels). The
vasodilatory response to NTG indicated no difference
between the groups of exposed animals, whereas the ex
vivo tempol treatment was associated with 14% (95% CI:
1.1 - 26%) lower E,, value and 3.2 (95% CI: 1.8 - 5.6)
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fold higher ECsq value than the segments that were not
treated with tempol (table 2, Figure 4).

The vasoactive response to the calcium channel
antagonist FD was not affected by the in vivo exposure
to any particle as compared to the control suspension
and there was no difference in the vasodilation in the
presence or absence of tempol (table 2, Figure 5).

The addition of the nitric oxide synthase inhibitor N’-
monomethyl L-arginine (L-NMMA) increased the vaso-
contraction in the pre-constricted aorta segments,
whereas there was no difference in regard to either
exposure of animals to particles or ex vivo presence of
tempol (table 3).

Plaque progression

Figure 6 depicts the data from the assessment of plaque
progression in whole aorta tissue of mice exposed to 0.5
mg/kg of nTiO, by i.t. instillation once a week for four
weeks giving a total dose of 2 mg/kg, followed by a five
week particle-free period before sacrifice. We could not
detect any plaques in two mice from each group. The
plaque area was statistically significantly higher in the
nTiO, exposed mice (5.5 + 1.2%) compared to the con-
trols exposed to a solution with 90% saline and 10%
BAL fluid (4.1 + 0.8%; P = 0.018, Student’s t-test). Inclu-
sion of mice, in which we could not detect plaques in
the aorta, in the statistical analysis showed no statisti-
cally significant effect (P = 0.096, Mann-Whitney U-

Table 2 Endothelium dependent (acetylcholine: ACh, and calcitonin-gene related peptide: CGRP) and independent
(nitroglycerin: NTG, and felodipine: FD) vasodilatory function in ApoE’" mice after intratracheal instillation of TiO,

particles or control solution (90% saline and 10% BAL fluid).

Exposure i.t. instillation Drug - tempol + tempol
ECso (nM) Ermax (%) ECso (NM) Emax (%)

Control ACh 1604 + 65.0 56.7 £ 359 1059 + 356 31.2 £ 539*
fTio, 207.7 £ 759 51.8 £ 498 1075 + 489 399 + 6.23
pTiO, 2223 + 676 46.1 £ 392 493 £ 773 535 + 731"
nTiO, 101.7 + 321 54.7 £ 499 642 + 110 421 + 743
Control CGRP 87 21 879 + 2.69 133+ 273 724 + 582%
fTio, 116 + 2.1 82.7 £ 323 152 +£ 228 736 £ 323
pTiO, 94 + 090 90.0 £ 157 11.1 £ 053 782 £ 334
nTiO, 148 = 2.1 804 + 6.20 145 + 242 709 £ 6.96
Control NTG 238 £ 3.96 69.8 + 341 687 + 12.4* 603 + 2.36*
fTiO, 258 + 463 665 + 2.87 64.1 £ 169 603 + 337
pTiO, 2530 + 826 69.8 + 2.97 417 £53 65.6 + 4.30
nTiO, 213 + 443 673 + 3.03 55.1 £ 209 644 + 2.09
Control FD 104 = 2.70 847 + 3.74 757 £158 859 + 2.69
fTio, 6.67 = 1.05 846 + 462 596 + 0.94 89.7 £ 2.36
pTiO, 6.55 + 0.90 848 + 1.87 526 £ 1.04 86.1 £ 1.81
nTiO, 782 + 179 90.6 + 2.70 858 + 295 835+ 283

All measurements were done in both absence and ex vivo presence of the SOD mimic, tempol. Data are expressed as means + SEM (n = 10-11).
# Interaction between the treatment with particles and tempol (P < 0.05, ANOVA). The post-hoc analysis showed lower E,., values in animals intratracheally
instilled with control solution, whereas there are higher E, ., values in ex vivo tempol treated vessels of the animals exposed to pTiO, particles. *P < 0.05

(ANOVA) compared to Eq.x values in segments that were not treated with tempol.
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Figure 2 Endothelium-dependent acetylcholine (ACh)-induced vasodilation of aorta segments from ApoE”” mice exposed by
intratracheal instillation to control solution containing 90% saline and 10% BAL fluid (black), nTiO, (green), fTiO, (blue), or pTiO,
(red). The measurements are performed in A) absence or B) ex vivo presence of the SOD mimic, tempol. The response is expressed as the
percent vasodilation of the pre-contraction tension produced by PGF,a.. Each point on the curves represents the cumulative response at each
concentration of the vasodilator. Data are expressed as means + SEM (n = 10-11). * P < 0.05 (ANOVA) compared with E,, in segments that
were not treated with tempol. * P < 0.05 (ANOVA) compared with E,, values in tempol-treated aorta segments of control mice.
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Figure 3 Calcitonic-gene related peptide (CGRP)-induced vasodilation of aorta segments from ApoE”” mice exposed by intratracheal
instillation to control solution consisting of 90% saline and 10% BAL fluid (black), nTiO, (green), fTiO, (blue), or pTiO, (red). The
measurements are performed in A) absence or B) ex vivo presence of the SOD mimic, tempol. The response is expressed as the percent
vasodilation of the precontraction tension produced by PGF,a. Each point on the curves represents the cumulative response at each
concentration of the vasodilator. Data are expressed as means + SEM (n = 10-11). * P < 0.05 (ANOVA) compared with E., values in tempol-
treated aorta segments of control mice.
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Figure 4 Endothelium-independent nitroglycerine (NTG)-induced vasodilation of aorta segments from ApoE”" mice by intratracheal
instillation to control solution consisting of 90% saline and 10% BAL fluid (black), nTiO, (green), fTiO, (blue), or pTiO, (red). The
measurements are performed in A) absence or B) ex vivo presence of the SOD mimic, tempol. The response is expressed as the percent
vasodilation of the pre-contraction tension produced by PGF,a. Each point on the curves represents the cumulative response at each

concentration of the vasodilator. Data are expressed as means + SEM (n = 10-11).¥ P < 0.05 (ANOVA) compared with Ea, or ECso values in aorta
segments of control mice.
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Figure 5 Felodipine (FD)-induced vasodilation of aorta segments from ApoE”" mice exposed by intratracheal instillation to control
solution consisting of 90% saline and 10% BAL fluid (black), nTiO, (green), fTiO, (blue), or pTiO, (red). The measurements are
performed in A) absence or B) ex vivo presence of the SOD mimic, tempol. The response is expressed as the percent vasodilation of the pre-

contraction tension produced by PGF,a. Each point on the curves represents the cumulative response at each concentration of the vasodilator.
Data are expressed as means + SEM (n = 10-11).
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Table 3 Excess vasocontraction (in %) induced by N'-
monomethyl L-arginine (L-NMMA, 0.10 mM) after PGF,,
precontraction (1 pM) in aorta segments from ApoE -
mice after intratracheal instillation of TiO, particles or
control solution (90% saline and 10% BAL fluid).

Exposure i.t. instillation Drug - tempol + tempol
Control L-NMMA 170 + 2.84 113 + 1.08
fTiO, 102 + 149 143 + 262
pTiO, 144 + 2.89 132 +£ 221
nTiO, 124 £ 1.65 159 + 367

The measurements were done in both absence and ex vivo presence of the
SOD mimic, tempol. Data are expressed as means + SEM (n = 10-11).

test). We regard these results as showing a modestly
increased plaque progression in the mice that were
exposed to nTiO,.

Levels of mRNA of Mip-2, Mcp-1, Icam-1, Vcam-1 and
Vedf in lung tissue

The mRNA levels of Mip-2, Mcp-1, Icam-1, Vcam-1,
and Vegf in the lung tissue of mice exposed twice (26
and 2 hours before sacrifice) to nTiO,, pTiO,, or fTiO,
are reported in table 4. There was no difference in the
mRNA levels between the control group and particle
exposed mice. The results from the study on repeated
exposure to nTiO, (sacrificed five weeks after the last
exposure) are shown in table 5. This exposure was also
associated with unaltered mRNA levels of Mip-2, Mcp-
1, Icam-1, Vcam-1, and Vegf in the lung tissue.

*

% plaques of total area

Control nTiO,

Figure 6 Plaque area in whole aorta from 20-21 weeks old
ApoE”" mice on a regular diet and exposed to control solution
(90% saline and 10% BAL fluid) or nTiO,. The plaque areas were
determined in the mice after an exposure period of nTiO, (20.6 nm)
or control solution once a week by intratracheal instillation for four
weeks, followed by a period of five weeks without exposure to
particles. The data are expressed as means + SEM (n = 8). We could
not detect plaques in two mice from each group and these are not
shown in the figure. * denotes a significant effect on plaque

progression in exposed mice vs. the control group.
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Assessment of NO response in HUVECs

The exposure to nTiO, particles was associated with a
32% (95% CI: 23% - 42%) increased level of NO in
HUVEC cultures treated with 100 pg/ml (P < 0.05,
ANOVA) (Figure 7). The NO levels were unaltered by
co-incubation with diphenyleneiodonium chloride (DPI),
which is a non-selective inhibitor of NO synthase activ-
ity. This abolished the particle-induced NO production
in cells incubated with nTiO5 (P < 0.001, ANOVA). The
incubation with fTiO, or pTiO, did not increase the
level of NO (P < 0.01 and P < 0.05 for cultures treated
with fTiO, and pTiO,, respectively).

We assessed a possible NO scavenging effect of tem-
pol in HUVECs exposed to 3-morpholinosydnonimine
(SIN-1) (Figure 8) or NTG. There was a strong single-
factor effect of the SIN-1 exposure, showing increased
NO production at all concentrations as compared to the
unexposed cells (P < 0.001, single-factor effect of SIN-
1). The concentrations of SIN-1 were relatively large
and there were more than 60-fold larger NO levels com-
pared to the unexposed cells. This probably explains the
flat concentration-response relationship. A wider con-
centrations span of SIN-1 (e.g. ten-fold rather than two-
fold dilutions) might have yielded a clearer concentra-
tion-response relationship. The SIN-1 treated cultures
had higher levels of NO in the presence of tempol (P <
0.01, single-factor effect of tempol). These results indi-
cate that tempol preferentially removes superoxide
anion radicals and therefore increases the level of NO in
the HUVECs. In a different experiment we treated
HUVECs with 0.55 mM NTG in the absence or pre-
sence of 1 mM tempol. HUVECs that were treated with
NTG, in the absence of tempol, had a 1.45 (95% CI:
1.38-1.51) fold larger NO level as compared to the
unexposed control. In the presence of tempol, the NTG
treatment increased the NO level by 1.47 (95% CI: 1.34-
1.60) fold. NTG was a less potent NO donor than SIN-
1, which is clearly observed by the lower production of
NO in our experiment, although it was increased rela-
tive to the control (P < 0.001, single-factor effect of
NTG). The presence of tempol did not affect the NTG-
induced NO production in HUVECs (P = 0.16, single-
factor effect of tempol). This is possibly because the
spontaneously generated superoxide anion radicals in
HUVECS: are efficiently removed by endogenous SOD.

Discussion

In this study we show that four repeated i.t. instillations
of nTiO, were associated with a modest increase in pla-
que progression in the aorta of ApoE”" mice, whereas
there was little pulmonary inflammation and only minor
effects on vasodilatory function of endothelial and
smooth muscle cells in segments after two instillations.
Ex vivo addition of the SOD mimic agent, tempol,
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Table 4 Inflammatory markers measured in mice having received two intratracheal instillations of either control
bronchoalveolar lavage (BAL) suspension or 0.5 mg/(kg bodyweight) of one of the particle suspensions; fTiO,, pTiO,,

or nTiO,, separated by 24 hours (n = 10-11).

Exposure i.t. instillation

mRNA expression level (Median (quartile 25-75%))

Mcp-1 (*10°®) Mip-2 (*10°®) lcam-1 (*10°) Vcam-1 (¥10°°) Vegf (¥10°)
Control 545 (27.7-89.3) 84.5 (41.5-1506 408 (27.4-702) 062 (0.32-0.88) 969 (59.3-271.2)
fTiO, 244 (99-389) 719 (352-1116 32.8 (29.0-54.4) 034 (0.19-0.60) 99.7 (74.2-109.4)
pTiO, 37.1 (243-52.8) 77.8 (36.2-140.0 303 (25.7-55.2) 038 (0.19-1.04) 105.1 (90.3-168.0)
nTio, 273 (20.7-64.9) 49.1 (39.0-2379 389 (183-66.8) 036 (0.27-0.63) 80.1 (47.0-144.1)

Expression of mRNA is normalised to 185 rRNA.

reduced the endothelium-dependent vasodilatory func-
tion in aorta segments from unexposed mice, whereas
tempol increased this function in segments from mice
exposed to pTiO,. The minimal effect of pulmonary
TiO, exposure on vasodilatory function was supported
by minimal effects on NO production in HUVECs.

The endothelium and its product NO are key regula-
tors of vascular function. Reduced bioavailability of NO
is involved in the initiation and progression of athero-
sclerosis. The particle exposure of HUVECs showed an
increase in the level of NO when the cells were exposed
to nTiO,. This increase was abolished after addition of
DPI, which is a non-selective inhibitor of NO synthase
activity in the concentration that we have used. The
addition of DPI also blocked the accumulation of NO in
HUVECs that were not exposed to particles, indicating
that the basal NO production originated from NO-gen-
erating enzymes. DPI also inhibits NAD(P)H oxidase,
but this probably increases the cellular NO level because
of lower possibility of reaction with superoxide anion
radicals. iNOS enzymes are expressed during inflamma-
tory conditions, but the one-hour incubation time in
our study is probably too short to be associated with
upregulation of iNOS. Collectively, the results suggest
that the particle-derived NO production originated from
eNOS activity.

We investigated the plaque progression in ApoE””
mice exposed to nTiO, once a week for four weeks, fol-
lowed by a period of five weeks before sacrifice. This
particular sample was chosen because previous in vitro
studies had indicated inflammatory response. Further-
more, Rossi et al. showed that a silica-coated TiO,
material (similar to nTiO,) was the only among several
TiO, materials that gave pulmonary inflammation [24].

The protocol used in the present study was similar to
the one used for assessment of plaque progression by i.t.
instillation of single-walled carbon nanotubes (SWCNT),
which had been associated with slightly larger plaque
area (9%) in the aorta compared with controls (5.5%) in
mice on a high-fat diet [25]. We observed only a modest
increase in plaque progression in the aorta of nTiO,
exposed mice compared to the control group. This is to
the best of our knowledge the first report on plaque
progression enhanced by i.t. instillation of nanosized
TiO, particles. This observation could be further sup-
ported by histology of key sites in the vascular tree or
staining of lipids to show fatty streaks/plaques. The
exposure was not associated with increased expression
of Mcp-1 or Mip-2 or altered vascular response in terms
of Icam-1, Vcam-1 or Vegf mRNA expression levels in
the lungs at the time of sacrifice. The mice in our study
were fed a regular diet, which might have been asso-
ciated with slow plaque progression. This is supported
by observations that i.t. instillation of carbon black par-
ticles was associated with accelerated plaque progression
(9.1%) compared to controls (5.5%) in LDLr”" mice on a
high-fat diet, whereas the same exposure was statistically
non-significantly increased from 2.2% (controls) to 3.0%
(exposed) in mice on a regular diet [6]. Similar findings
have been observed in ApoE”" mice exposed by inhala-
tion to concentrated ambient air particles where the
progression of atherosclerosis was largest in mice on a
high-fat diet [26,27]. The plaque progression in mice on
a low-fat diet was statistically non-significantly increased
in the aorta from 13.2% (filtered air) t019.2% (concen-
trated ambient air particles) [26] and 10.4% (filtered air)
to 14.2% (concentrated ambient air particles) after six
months exposure [27]. It is possible that a high-fat diet

Table 5 Inflammatory markers measured in mice exposed to nTiO, (0.5 mg/kg) or control bronchoalveolar lavage
(BAL) suspension by intratracheal instillation once a week for four weeks and sacrificed 5 weeks later (n = 10).

Exposure i.t. instillation

mRNA expression level (Median (quartile 25-75%))

Mcp-1 (*10®) Mip-2 (*107°) Icam-1 (*10°) Vcam-1 (*10°°) Vegf (*10°)
Control 141.9 (98.3-166.5) 432 (39.3-53.0) 21.8 (174-39.0) 0.30 (0.13-0.50) 0.70 (045-1.18)
nTio, 265.9 (80.6-359.5) 533 (254-140.2) 389 (186-56.9) 040 (0.23-0.83) 0.90 (0.78-1.38)

Expression of mRNA is normalised to 18S rRNA.
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and a longer exposure period would have rendered the
mice more susceptible to particle-induced plaque pro-
gression. The mechanisms leading to accelerated plaque
progression by inhalation of concentrated ambient air
particles involves pro-oxidant and inflammatory milieu

in the vasculature, which seems to occur in animals
without pulmonary inflammation [28]. It has been
shown that accelerated progression of atherosclerosis in
ApoE”" mice on a regular diet occurred concomitantly
with loss of HDL anti-inflammatory property and
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systemic inflammation (assessed as elevated hepatic lipid
peroxidation) after inhalation of fine or ultrafine con-
centrated ambient air particles at a concentration that
did not generate pulmonary inflammation [29]. Other
studies of exposure to concentrated ambient air particles
in ApoE'/ " mice have shown evidence of NAD(P)H oxi-
dase dependent generation of reactive oxygen species,
expression of iNOS and nitrotyrosine in aorta tissue
[30].

We a priori hypothesized that excess generation of
superoxide anion radicals would be implicated in dys-
function of vasomotor response. Thus, we measured the
vasomotor function with and without the SOD mimic,
tempol. The results from our investigation do not indi-
cate any alterations of the vasomotor function related to
particle exposure. We obtained full concentration-effect
curves for all included vasodilators, indicating that we
have reliable measurements of these responses covering
a wide range of concentrations. In addition, aorta seg-
ments treated with L-NMMA had increased vasocon-
traction, whereas there was no difference between
vessels from control and particle-exposed mice, indicat-
ing that spontaneous vasocontraction did not bias the
vasodilatory response. The largest effect on vasomotor
function was observed in the measurement of the
endothelium-dependent vasodilation, where the expo-
sure to TiO, was associated with a statistically non-sig-
nificant reduction of the maximal acetylcholine
response. Mice exposed to the small anatase pTiO, had
lower E . (46.1% + 3.9) than the large rutile fTiO,
(Emax 51.8% + 5.0) and small rutile nTiO, (E, . 54.7% *
5.0), whereas the mice exposed to the control solution
had the largest E ., value (56.7% + 3.6). This is in
accordance with an earlier study showing no effect on
acetylcholine-mediated vasodilation in pulmonary
arteries of rats exposed to ultrafine and fine TiO, parti-
cles (15 and 140 nm, respectively), whereas the same
experiment showed a transient endothelial dysfunction
in rats exposed to SRM1648 urban dust [31]. Results
from another experiment showed unaltered acetylcho-
line-induced vasodilation in isolated aorta segments
exposed to TiO,, further supporting the lack of effect in
our study [32]. However, these results are in contrast to
data obtained from a different experimental model
where the vasomotor function was measured in spino-
trapezius arteries following intraluminal infusion of the
calcium ionophore A23187. It was demonstrated that
spinotrapezius muscle arterioles had unaltered respon-
siveness to NO, whereas the endothelial dysfunction
depended on the NO bioavailability [33]. Several studies
by the same group have shown that both inhalation and
i.t. instillation of fine and ultrafine TiO, were associated
with reduced or abolished endothelium-dependent vaso-
dilation in spinotrapezius muscle arteries of normal rats
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[33-36]. These observations were later extended to cor-
onary arterioles that displayed marked endothelial dys-
function in terms of altered vasodilatory response to
shear stress, acetylcholine and the Ca%* ionophore
A23187, whereas the endothelium-independent vasodila-
tory response to sodium nitroprusside was unaffected
[37]. Interestingly, these authors have also reported that
the L-NMMA treatment of coronary arterioles led to
lower additional increase in vasocontraction in nano-
sized TiO,-exposed rats [38]. The discrepancy between
our results and those obtained by the intraluminal infu-
sion of vasodilators might be explained by differences in
experimental models, the mode of particle exposure,
type of TiO, particles, or species. It has been shown
that inhalation of fine or nanosized TiO, was associated
with more severe pulmonary inflammation in rats com-
pared to mice and hamsters under conditions where the
lung TiO, burdens were equivalent [39,40]. However,
we have previously shown that ApoE”” mice had more
pulmonary inflammation than wild type mice after i.t.
instillation of nanosized carbon black and there was
vasomotor dysfunction in the exposed ApoE”" mice as
well [41,42].

Most investigations of the effect of tempol have been
carried out in animal models of disease, such as hyper-
tension or substantial burdens of atherosclerotic pla-
ques, including studies in old ApoE”" mice showing that
treatments with tempol and other SOD-mimicking
agents increases the vasodilatory response to acetylcho-
line [12,43,44]. Tempol has been found to be ineffective
as an antihypertensive agent in animal models that are
not associated with elevated oxidative stress [45]. We
used 12-13 weeks old ApoE”" mice for the vasomotor
function experiments, which have the same vasodilatory
function as wild type mice if they are not exposed to
particles, whereas aged ApoE”" mice are shown to have
substantially decreased endothelium-dependent vasodila-
tion in aorta vessels [46,47]. It has been shown that
tempol decreased acetylcholine-induced vasodilation in
normal rabbits and rats [48,49], whereas it restored acet-
ylcholine-mediated vasodilation in aorta of rabbits pre-
treated with an inhibitor of endogenous SOD (diethyl-
dithiocarbamate) and the hypoxanthine/xanthine oxidase
superoxide generating system [48]. Similarly, the SOD-
mimicking compound (M40430) improved the acetyl-
choline-mediated vasodilation in ApoE”" mice with com-
promised vascular function, whereas it was associated
with a statistically non-significant 17% decrease in acet-
ylcholine-mediated vasodilation in vessels from wild
type mice [50]. The mechanism of endothelial dysfunc-
tion in ApoE”" mice involves both decreased bioavail-
ability of NO caused by superoxide anion radicals and
degradation of the eNOS cofactor tetrahydrobiopterin
[51]. The results from the present study indicate that
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tempol eliminates vasodilator compounds and/or aug-
ments the vascular tone, as have been shown in earlier
studies [48,52]. Our results in SIN-1 exposed HUVECs
indicate that tempol increased the NO levels by remov-
ing superoxide anion radicals, which is in accordance
with previously reported observations [53]. This effect of
tempol was not observed in NTG exposed HUVECs,
which could be because the endogeneous level of SOD
efficiently removes the cellular production of superoxide
anion radicals. It is possible that exposure to a pure NO
donor (e.g. NONOate) and/or inhibition of the endogen-
ous SOD activity would show a clearer effect of tempol.
In addition, tempol converts superoxide anion radicals
to hydrogen peroxide that has been shown to mediate
vasoconstriction in aorta tissue [12,54]. This effect of
hydrogen peroxide would be associated with reduced
vasodilatory response in our experiment. It seems that
the tempol treatment has different effect in healthy and
aged/diseased vessels. This possibly limits the extrapola-
tion of our results to effects of tempol-generated hydro-
gen peroxide in aged/diseased vessels and firm
conclusions about the possible role of hydrogen perox-
ide may require co-incubation with compounds that
removes it (e.g. catalase).

Our investigation showed no effect of pulmonary
exposure of TiO, particle with different physicochemical
characteristics on the vasodilatory function in aorta or
mRNA expression of genes relevant in the inflammatory
response in the lung, whereas the effect of one form on
plaques progression was modest. Therefore, the out-
come of the investigation is not optimal for assessment
of the importance of particle size or composition or
dose. We used mass doses and exposure protocols of
TiO, in ApoE”" mice similar to what had shown signifi-
cant effect for carbon black and SWCNT in terms of
vasodilation function and plaque progression, respec-
tively [25,42]. However, a direct dose comparison as
mass burden or even surface area, between TiO, parti-
cles and SWCNT does not take the overt differences in
structure and reactivity into account. The latter expo-
sure was associated with pulmonary inflammatory reac-
tion, systemic oxidative stress and mitochondrial
dysfunction, whereas minimal systemic inflammation
was detected [25]. TiO, and carbon black are regarded
as “low-solubility low-toxicity” particles with similar
inflammogenic potency per instilled surface area [55,56].
Indeed, we also found little pulmonary inflammation at
doses that were four times larger than the individual
doses of fTiO, and nTiO,, whereas there was a linear
relationship between the surface area and inflammation
in relation to fine and nanosized carbon black after a
single large-dose exposure [22]. The fTiO, and nTiO,
samples in our study also had rutile crystal structure
and surface coating, whereas pTiO, was an uncoated
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mixture of anatase and rutile structure. It has been
argued that the anatase crystal structure of TiO, might
be more reactive and cytotoxic as compared to rutile
crystal structure [57]. In addition, the dispersion proto-
cols might have an influence; some studies on TiO, use
dispersions in saline solution [36]. We used BAL fluid,
which provides a well dispersed suspension of nanosized
TiO, and it has been shown to cause pulmonary inflam-
mation after i.t. instillation in rats, whereas poorly dis-
persed nanosized TiO, suspensions in saline had similar
inflammogenic potency as fine TiO, particles in rats
after i.t. instillation [58,59]. However, suspensions in
BAL fluid may also lead to formation of a protein cor-
ona on the particles, which may change the particle sur-
face chemistry, although we cannot predict whether our
TiO, particles would be less potent by coating with
proteins.

Conclusions

We show for the first time that pulmonary exposure to
nanosized TiO, is associated with a modest increase in
plaque progression. On the other hand, three physico-
chemically different TiO, nanomaterials (including
nanosized TiO,) have virtually no effect on vasodilation
induced from either endothelial or smooth muscle cells
at exposure levels that were not associated with
increased Mcp-1 and Mip-2 expression.

Materials and methods

Particles

The following materials were used in this study: fine
TiO, (fTiO,, RDI-S from Kemira Pigments, Finland)
and photocatalytic TiO, (pTiO,; W2730X from Kemira
Pigments, Finland) both delivered by Beck and Joergen-
sen A/S, Denmark, and nano TiO, (nTiO,, UV-Titan
L181 from Degussa, Germany) delivered by Boesens
Fabrikker ApS, Denmark. A physicochemical characteri-
zation has been reported in detail elsewhere [21,22,60].

Material and Exposure Characterization

The phase composition and crystallite sizes were deter-
mined by Monochromated Cuy,; (1.540598 A) X-ray
diffraction using a Bruker D8 Advance X-ray diffract-
ometer equipped with a Lynxeye CCD detector (Bruker
AXS Inc., Madison, WI 53711-5373, USA). Electron
microscopy imaging was completed on lacey carbon-
coated Cu TEM-grids using a 200 kV Transmission
Electron Microscope (TEM) (Tecnai G20, FEI Company,
Hillsboro, Oregon, USA) and a Quanta 200 FEG MKII
Scanning Electron Microscope [21]. Specific surface area
was determined according to DIN ISO 9277 on a Quan-
tachrome Autosorp-1 (Quantachrome GmbH & Co. KG,
Odelzhausen, Germany) using multipoint Brunauer,
Emmett, and Teller (BET) nitrogen adsorption method
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after 1 hour degassing at 300°C as a commercial service
by Quantachrome GmbH & Co. KG. Elemental compo-
sition was analysed by X-ray Fluorescence analysis on a
Philips PW-2400 spectrometer as a commercial service
by the Department of Earth Sciences, University of Aar-
hus, Denmark. The organic content was determined
indirectly from loss on ignition.

The size distribution of the particle suspensions used
for the animal exposures was characterized by dynamic
light scattering (DLS) analysis in a Nano Zetasizer (Mal-
vern Instruments, UK). Particle dispersions (0.05 mg/kg
bodyweight) were made as described above. Dispersion
viscosities were determined using a SV-10 Vibro Visc-
ometer (A&D Company Ltd., Japan). Particle size distri-
butions were measured in disposable polystyrene
cuvettes containing 150 pl sample. The optical data
were recorded and calculated for both normal and high
resolution size distribution using the Dispersion Tech-
nology Software v. 5.0 (Malvern Instruments). Particle
suspensions were analysed unfiltered and following fil-
tration (3.0 um filter) and compared with unfiltered
BAL solution. Six measurements, consisting of 12-16
scans, were conducted for unfiltered or filtered sample.

Nitric oxide production in human Umbilical Vein
Endothelial Cells (HUVEC)

HUVECs were purchased from Cell Applications (San
Diego, CA). The cells were cultured in T75 flasks in
Endothelial Cell Growth Medium Kit (Cell Applications,
San Diego, CA, USA). Cell cultures were incubated at
37°C in 5% CO,-95% air gas mixtures. Media were
changed 24-36 hours after seeding and cells were grown
to confluence. The cells were used between passages 2-6
because they have morphologic and phenotypic charac-
teristics of endothelial cells.

We used the fluorimetric NOS Detection System
DAF-2 DA (Sigma-Aldrich, Schnelldorf, Germany) for
the measurement of NO production. The DAF-2 DA
probe penetrates cells rapidly where it is hydrolyzed by
intracellular esterase to DAF-2 that can react with NO
to the fluorescent triazolofluorescein. HUVECs were
trypsinated, transferred to a black clear bottom 96-well
MT-plate (5*10° cells/well) and allowed to attach over-
night. Particles were added in triplicate in four different
concentrations (0.1, 10, 50, and 100 pg/ml) and the cells
were incubated at 37°C for 1 hour. The cells were
washed briefly and then treated with a reaction mixture,
consisting of arginine, DAF-2 DA and Reaction Buffer.
The NO production measurement was carried out in
the absence or presence of the NOS inhibitor DPI (2
uM). The plates were incubated for 2 hours in the dark
before the measurement of triazolofluorescein (excita-
tion filter of 492 nm and an emission filter of 515 nm).
All necessary controls, both negative and positive, were
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included (non-induced, cell-free, without dye, and TNF-
o induced with and without DPI).

We investigated whether or not tempol was able to
scavenge NO in HUVECs treated with SIN-1 (Sigma-
Aldrich, Schnelldorf, Germany) or NTG. The HUVECs
were exposed to SIN-1 in absence or presence of tempol
(I mM). We used the same concentration of tempol in
this experiment as the concentration in the aorta rings.
SIN-1 generates superoxide anion radicals and NO by
spontaneous decomposition [53]. It is therefore possible
to test the specificity of tempol on NO in our experi-
mental setup. In a different experiment we treated
HUVECs with 0.55 mM NTG. The level of NO in
HUVECs was determined DAF-2 DA assay.

Animals

Eleven weeks old female ApoE”~ (C57BL/6-Apoe ™)
mice were obtained from Taconic MB (Ejby, Denmark)
and acclimatized before entering the experiments. The
mice were housed in a temperature- (22-24°C) and
moisture- (40-70%) controlled room with a 12:12 h
light-dark cycle. All mice were given free access to tap
water and standard mouse chow (Standard Altromin no.
1314, Lage, Germany) during acclimatization and hous-
ing periods. The experiments were approved by the
Danish “Animal Experimental Inspectorate” and carried
out following their guidelines for ethical conduct and
care when using animals in research.

Instillation exposure of mice

We assessed the distribution of particles by our i.t.
instillation procedure in wild-type mice. This was
assessed by i.t. instillation of 1% Evans Blue solution (50
pul/mouse). The lungs were subsequently dried and
inflated. In another experiment we instilled 50 pl/mouse
of quantum dots (ADSQD621, American Dye Source
Inc., Quebec, Canada) and obtained images in a Unit-
One dark box using a super sensitive camera (IXON
EM+ DU-897 BI, Andor Technologies). The lungs were
illuminated through a 600 nm short wave pass filter and
the image was obtained through a 620 nm band pass fil-
ter. In a third experiment we instilled 40 pl/mouse of
radioactive gold particles (18 nm) generated by neutron
activation. The images were obtained for 40 min in a
single photo emission computed tomography y-camera
(Prism 2000, Phillips) equipped with a pinhole collima-
tor and adjusted for y-energy of 4000 keV of *®*Au.

The particles were suspended by sonication in a solu-
tion containing 90% sterile, isotonic saline and 10% BAL
fluid. The latter was prepared by flushing the lungs of
unexposed female ApoE”’" mice twice with 0.6 ml iso-
tonic saline. The particle suspensions were sonicated on
ice using a Branson Sonifier S-450D (Branson Ultraso-
nics Corp., Danbury, CT, USA) equipped with a
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disruptor horn (Model number: 101-147-037). Total
sonication time was 16 min, with alternating 10 s pulses
ON and 10 s pauses and with amplitude of 10%. Control
solutions contained 90% sterile, isotonic saline and 10%
BAL fluid from ApoE”’" mice. The solutions were
divided in aliquots and immediately frozen at -80°C
until use. Prior to use, the solutions were thawed at
room temperature and vigorously vortexed. We have
previously observed that i.t. instillation of saline with
10% BAL fluid was associated with a slightly increased
influx of neutrophils, which we have attributed to the
instillation procedure rather than the content of BAL
fluid [41]. We have not assessed the effect of BAL fluid
in regard to vascular endpoints because all the mice in
our experiment received vehicle with BAL fluid and the
results cannot be biased because of that.

For the assessment of vasodilatory function, four
groups of 10-11 mice aged 11-12 weeks received two i.t.
instillations of either control solution (90% saline and
10% BAL fluid) or 0.5 mg/(kg bodyweight) of one of the
particle suspensions; fTiO,, pTiO,, or nTiO,, separated
by 24 hours. We used this dose and exposure period
because we have previously observed that exposure to
nanosized carbon black was associated with endothe-
lium-dependent vasorelaxation by an identical protocol
in ApoE'/ " mice [42]. The mice were anesthetized using
Hypnorm® (fentanyl citrate 0.315 mg/ml and fluanisone
10 mg/ml from Janssen Pharma) and Dormicum® (Mid-
azolam 5 mg/mL from Roche), both mixed with equal
volume sterile water. A volume of 0.2 ml was injected
subcutaneously in the neck of each mouse before each
instillation. The sedated mice were kept on 37°C heating
plates prior and subsequent to instillation until recovery
from anaesthesia. Two hours after the second dose the
mice were sacrificed. To minimize day to day variation,
2-3 particle suspensions were instilled on each exposure
day and a control mice was furthermore included each
day.

For assessment of effects on plaque progression two
groups of 10 mice received 0.5 mg/kg nTiO, or control
solution (90% saline and 10% BAL fluid) by i.t. instilla-
tion once a week for four weeks and sacrificed 5 weeks
later. We used this dose and exposure period because it
was similar to a study on SWCNT [25], which we used
as a reference condition although we kept the mice on
regular chow. We did not use a high-fat diet because we
wanted to compare the results from plaque progression
experiment with the assessment of vasodilatory function
that was carried out on mice fed a regular chow. The
plaque progression was not assessed in mice exposed to
fTiO, and pTiO, because there was little effect on
atherosclerosis in our preliminary experiment with

nTiO2.
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During instillation the mouse was placed supine on an
approximately 40 degree slope, where it was held in a
favourable position by its front teeth. A light was gently
touching the larynx to allow intubation of the trachea
with a 24 gauge BD Insyte catheter (Ref: 381212, Becton
Dickinson, Denmark) with a shortened needle. The cor-
rect placement was verified by a highly sensitive pres-
sure transducer confirming breath and thereby the right
placement in the trachea. A volume of 50 pl particle
suspension followed by 150 pl air was instilled and the
catheter was quickly removed. To ensure that the parti-
cle suspension remained in the lungs, the mouse was
placed vertically with its head up for 30-60 s.

Isolation of organs

After the mice were sacrificed the tissues, except the
heart and aorta, were immediately removed, quickly fro-
zen in liquid nitrogen, and stored at -80°C until further
analysis. The heart and aorta were carefully removed
from the animal, stored at ice cold physiological saline
solution (PSS: 119 mM NaCl, 25 mM NaHCOg, 4.7 mM
KCl, 1.18 mM KH,POy, 1.17 mM MgSO, 7H,0, 1.5
mM CaCl, 2H,0, 0.027 mM ethylene diamine tetraace-
tic acid and 5.5 mM glucose, pH = 7.4) and dissected
free of connective tissue under a light microscope to
further use.

Vasodilatory function

Four aorta segments from each mouse were mounted on
steel pins with a diameter 150 pm in the organ cham-
bers of the myograph (multi Myograph 610 M from
Danish Myo Technology, Aarhus, Denmark) containing
5 ml cold oxygenated PSS continually perfused with a
95% O, and 5% CO, gas mixture. The distal region of
the thoracic aorta was purposely selected to avoid
lesions in the segments used for the contractility studies.
Each myograph was connected to a computer and the
data were collected by the software Myodaq (Danish
Myo Technology, Aarhus, Denmark).

The experimental procedure has previously been
described in detail [47]. In brief, the temperature in the
organ baths were slowly raised to 37°C and the seg-
ments were allowed to equilibrate for 30 min. A stan-
dard normalization procedure was performed by which
the internal lumen diameter of each aortic segment was
determined. This procedure enables us to obtain an
optimal active tension development in the aortic seg-
ments. Preliminary to the specific experiments, it was
verified that the aorta segments were variable and that
contraction was reproducible. This was done by substi-
tuting the PSS in each organ bath with 5 ml warm, oxy-
genated 125 mM K'-PSS (119 mM KCL, 25 mM
NaHCOs3;, 4.7 mM KCL, 1.18 mM KH,POy, 1.17 mM



Mikkelsen et al. Particle and Fibre Toxicology 2011, 8:32
http://www.particleandfibretoxicology.com/content/8/1/32

MgSO, 7H,0, 1.5 mM CaCl, 2H,0, 0.027 mM ethylene
diamine tetraacetic acid and 5.5 mM glucose, pH = 7.4)
followed by 4 times of wash with PSS. This procedure
was repeated for a total of three to four times. The K
"-PSS treatment furthermore ensured that the sympa-
thetic nerve endings were depleted for neurotransmit-
ters. The segments were pre-contracted PGF,o (1 pM)
before the response to the vasodilators was assessed.

The endothelial function was analyzed by the follow-
ing vasodilators; acetylcholine (ACh; 10°-10™ M) and
calcitonin-gene related peptide (CGRP; 107''-3*107 M).
Acetylcholine-induced vasodilation is endothelium
dependent as the dilatory effect is exerted via binding to
muscarinic receptors (M3) on the endothelial cells,
whereas CGRP-induced vasodilation is only partly
mediated through the endothelium [23]. Furthermore,
the endothelium-independent vasomotor response was
investigated by using the NO-donor NTG (0'°-3*107
M), and by using FD (10713-10® M), which blocks the
voltage-dependent calcium channels on smooth muscle
cells.

We tested the effect of particle exposure on vasocon-
traction in vessels that were treated with L-NMMA (10
4 M), which is a non-selective inhibitor of NOS. In addi-
tion, all measurements were done in the absence and
presence of tempol (1 mM).

The values of the maximal steady state contraction or
dilation (E...,) and the concentration at which half the
Enax was obtained (ECsq) were calculated using the
GraphPad Prism version 4 (San Diego, CA, USA). Non-
linear regression analysis with equation for sigmoid con-
centration-response (with variable slope) was used. The
results are expressed as the means + standard error of
the mean (S.E.M.).

Plaque area assessment

The area of atherosclerotic plaques was determined in
the aorta of mice five weeks after four weekly exposures.
The entire aorta from the junction with the heart to the
iliac bifurcation was placed in a flat bed scanner. The
plaques were observed as whitish spots against a black
background (Figure 9). The fraction of area of the total
aortic surface that contained plaques was determined on
a digital microscope image (Digital Imaging Solutions;
analySIS®™ getIT!) by means of the computer software
Image ] and calculated as % plaques proportional to
total aorta area.

Analysis of mRNA expression levels of Mcp-1, Mip-2,
Icam-1, Vcam-1, and Vegf in lungs from ApoE”" mice
We have previously found close correspondence
between Mcp-1 and Mip-2 mRNA levels in the lung and
neutrophil infiltration in BAL fluid in mice exposed to
different nanosized particles [41,61,62]. We did not

Page 14 of 17

Figure 9 Representative images of whole aorta tissue from the
junction with the heart to the iliac bifurcation from a mouse
with undetectable plaque (A) or detectable (B) plaque areas
seen as white spots.

analyse the cell content of cells in the BAL fluid because
we did not want to influence the endothelium by the
lung infusion and anaesthetic administration that are
parts of the BAL fluid collection procedure. We have
measured mRNA levels in the lung tissue for Mcp-1 and
Mip-2 as markers of pulmonary inflammation.

Mcp-1, Mip-2, Vcam-1, Icam-1, and Vegf gene expres-
sion was determined using Real-Time Reverse Tran-
scriptase-Polymerase Chain Reaction (RT-PCR).
Quantification of the target mRNA was done relative to
reference 18S RNA using the relative 24t method [63].
Total RNA was purified from lung tissue using the TRI-
zol® Reagent method (Invitrogen A/S, Taastrup, Den-
mark) and DNase treated as described by the
manufacturer (Promega Corporation, Madison, WI)
prior to RT-PCR. For cDNA synthesis, less than 1 pg of
RNA was used as recommended by Applied Biosystems.

For quantification of the mRNA levels, we used probe
and primer solutions (Applied Biosystems,, Foster City,
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CA, USA) as follows: Mcp-1  (AssaylD.
Mm99999056_m1), Mip-2 (AssayID. Mm00436450_m1),
Veam-1 (AssayID. Mm01320973_m1), Icam-1 (AssayID.
MmO00516024_g1), Vegf (AssayID. Mm01281449_m]1),
and 18S rRNA (TagMan® Ribosomal RNA control
reagents: VIC™ Probe). The mRNA levels were quanti-
fied in separate wells.

The PCR reactions were performed in triplicate on the
Applied Biosystems 7900HT Fast Real-Time PCR Sys-
tem in 10 pl reactions. Four pl of the cDNA preparation
was mixed with 98 pl Mastermix (Applied Biosystems,
Foster City, CA, USA) and sterile water was added to a
final volume of 185 ul. Aliquots of 32 ul were mixed
with the respective probe and primer mix solutions. The
final concentration of primers and probes were 900 nM
and 200 nM, respectively.

Data analysis

The results are expressed as the means + standard error
of the mean (S.E.M.). Graphs are composed using
Graph-Pad Prism by Intuitive Software for Science (San
Diego, CA, USA, http://www.graphpad.com). Nonlinear
regression analysis with equation for sigmoid concentra-
tion-response (with variable slope) was used.

Statistics

The data on the production of NO by HUVEC were
analyzed by three-factor ANOVA test with the concen-
tration, type of particle and ex vivo treatment with DPI
as categorical variables. The data on vasodilatory func-
tion endpoints were analysed by two-factor ANOVA
test with the particle and ex vivo treatment with tempol
as categorical variables. The statistical significance of the
tempol treatment is reported as single-factor effects.
The mRNA expressions in lung tissue were analyzed by
Kruskal-Wallis or Mann-Whitney U-test because of
unequal variance between the groups. All tests were
accepted as statistically significant at 5% level. The sta-
tistical analysis was performed in Statistica version 5.5
(StatSoft Inc., Tulsa, OK, USA).
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