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Abstract

Background: Epidemiologic studies associate childhood exposure to traffic-related air pollution with increased
respiratory infections and asthmatic and allergic symptoms. The strongest associations between traffic exposure and
negative health impacts are observed in individuals with respiratory inflammation. We hypothesized that
interactions between nitric oxide (NO), increased during lung inflammatory responses, and reactive oxygen species
(ROS), increased as a consequence of traffic exposure — played a key role in the increased susceptibility of these
at-risk populations to traffic emissions.

Methods: Diesel exhaust particles (DEP) were used as surrogates for traffic particles. Murine lung epithelial (LA-4)
cells and BALB/c mice were treated with a cytokine mixture (cytomix: TNFa, IL-1(3, and IFNy) to induce a generic
inflammatory state. Cells were exposed to saline or DEP (25 ug/cmz) and examined for differential effects on
redox balance and cytotoxicity. Likewise, mice undergoing nose-only inhalation exposure to air or DEP

(2 mg/m? x4 h/d x 2 d) were assessed for differential effects on lung inflammation, injury, antioxidant levels,
and phagocyte ROS production.

Results: Cytomix treatment significantly increased LA-4 cell NO production though iNOS activation. Cytomix +
DEP-exposed cells incurred the greatest intracellular ROS production, with commensurate cytotoxicity, as these cells
were unable to maintain redox balance. By contrast, saline + DEP-exposed cells were able to mount effective
antioxidant responses. DEP effects were mediated by: (1) increased ROS including superoxide anion (O,"), related to
increased xanthine dehydrogenase expression and reduced cytosolic superoxide dismutase activity; and (2)
increased peroxynitrite generation related to interaction of O, with cytokine-induced NO. Effects were partially
reduced by superoxide dismutase (SOD) supplementation or by blocking iNOS induction. In mice, cytomix +
DEP-exposure resulted in greater ROS production in lung phagocytes. Phagocyte and epithelial effects were, by and
large, prevented by treatment with FeTMPyP, which accelerates peroxynitrite catalysis.
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(Continued from previous page)

Conclusions: During inflammation, due to interactions of NO and O, ", DEP-exposure was associated with
nitrosative stress in surface epithelial cells and resident lung phagocytes. As these cell types work in concert to
provide protection against inhaled pathogens and allergens, dysfunction would predispose to development of
respiratory infection and allergy. Results provide a mechanism by which individuals with pre-existing respiratory
inflammation are at increased risk for exposure to trafficcdominated urban air pollution.
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Background

Exposure to traffic emissions is associated with adverse
health outcome [1], including increased respiratory
infections and asthmatic and allergic symptoms [2-4].
Associations are based on various traffic exposure
metrics including near road black carbon levels [5], fine
particulate matter (PM,5) absorbance [6], nitrogen dioxide
[7,8] and carbon monoxide [9] concentrations, traffic
density [10], residential [6,11,12] or school [13] proximity
to major roadways, and combined assessments [14,15].

In urban areas, diesel exhaust particles (DEP) comprise
a significant amount of the airborne PM, 5 associated with
traffic emissions [16]. DEP are generated by the incom-
plete combustion of fossil fuel, and are composed of a car-
bonaceous core onto which variable amounts of organic
carbon (OC)-based compounds [e.g., quinones, polycyclic
aromatic hydrocarbons (PAHs)] and roadway-associated
metals are adsorbed [16,17]. These DEP subcomponents
are capable of producing reactive oxygen species (ROS)
either directly or secondarily via effects on cellular pro-
duction of oxidants [18,19].

The strongest associations between traffic exposure and
negative impacts on health are observed in individuals with
pre-existing respiratory conditions. Conditions include
acute bronchitis [20], chronic bronchitis [7], chronic rhin-
itis [21], chronic obstructive pulmonary disease (COPD)
[20], atopy and allergic sensitization [6,22] and, in particu-
lar, asthma [12,14]. In asthmatics, especially children [13],
traffic exposure is associated with increases in asthma
symptoms [10,11], asthma severity [12], emergency depart-
ment visits [9,15], hospitalization [8,12], and declines in
pulmonary function [14].

Biologic mechanism(s) responsible for the greater
health effects observed in these at-risk populations are
not fully understood. Increasing evidence suggests that
PM effects are, in large part, mediated by excessive react-
ive oxygen species (ROS) production [23,24]. Relatedly,
we exposed lung epithelial cells to an OC-rich DEP sam-
ple (as a surrogate for traffic particles) and showed that,
on an equi-mass basis, it induced greater cytotoxicity than
did simple elemental carbon (EC)-based particles. We fur-
ther demonstrated that if the epithelial cells were first
established within an inflammatory microenvironment, ex-
posure to the OC-rich DEP, but not the EC particles,

resulted in overt oxidative stress, leading to significant epi-
thelial damage and solute barrier dysfunction [25].

The question remained, however, as to why compar-
able exposure to traffic-based particles resulted in
greater injury in the inflamed cells — and by extension
— why disproportionate respiratory health effects occur
in exposed at-risk individuals? A common feature across
these inflammatory lung disorders is that epithelial cells
lining the respiratory tract are continually exposed to
mediators from inflammatory cells. This, in turn, results
in epithelial cell activation, with subsequent production
of secondary mediators [e.g., chemokines, nitric oxide
(NO)] [26]. NO is a critical intra- and intercellular mes-
senger. In health, constitutive expression of NO
synthases (nNOS and eNOS) by lung epithelial cells and
other cell types serve to maintain basal lung NO levels;
thereby regulating airway tone and patency [27]. Under
inflammatory conditions, however, NO production can
be greatly increased (up to 1,000-fold) via activation of
inducible NOS (iNOS). As a free radical, NO can be oxi-
dized, reduced, or complexed with other biomolecules —
with high levels contributing directly to tissue injury [27].

We hypothesized, therefore, that a key biological
mechanism underlying susceptibility of at-risk indivi-
duals to traffic-based emissions relates to interactions
between (1) particle-associated ROS and (2) endogen-
ous mediators — in particular NO, which is often
increased within inflamed airways and deep lung spaces.
To test this hypothesis, we again utilized an in vitro ap-
proach wherein murine alveolar type II-like lung epithe-
lial (LA-4) cells were pretreated with a combination of
pro-inflammatory cytokines (TNFa +IL-1p +IFNy) to
create a generic inflammatory microenvironment. We
have previously demonstrated that LA-4 cells stimu-
lated with this cytokine mixture (referred to as cytomix)
have increased production of the chemokines MIP-2
and RANTES by > 5-fold [25]. Herein, we further assess
the effects of cytomix on LA-4 cell NO production.
Then, using OC-rich DEP (again as a surrogate for
particle-phase components of traffic emissions), we
examine differential effects of DEP exposure on saline-
vs. cytomix-treated cells in terms of cytotoxicity and
changes in intracellular ROS production, superoxide
anion (O,"") production, and cell antioxidant levels.
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Additionally, because NO can react with O, ~ to pro-
duce the longer-lived oxidant, peroxynitrite (ONOQO")
[28], subsets of cells were co-treated with various block-
ers and agents including FeTMPyP which catalyzes de-
composition of ONOO™ (Figure 1A).

In a like manner to the in vitro studies, BALB/c mice
were given a cytokine mixture via oropharyngeal aspiration
to establish a generic lung inflammatory state. Two days
later, at the peak of the lung inflammatory response,
saline- or cytokine-treated mice underwent nose-only DEP
inhalation exposures for two consecutive days. Twenty
four hours later, mice were assessed for differential effects
of DEP exposure on (1) lung injury and inflammation and
(2) changes in lung antioxidant levels and ROS production
in cells obtained via bronchoalveolar lavage (BAL). As
above, a subset of mice received systemic FeTMPyP to
evaluate whether ONOO™ production contributed to DEP-
induced effects (Figure 1B).

Our results suggest that traffic-based air pollutant
health effects are mediated by a complex interplay
between the radical-generating potential of inhaled
traffic-source PM which, in concert with mediators
from ongoing lung inflammatory processes, cooperate
to alter and disrupt antioxidant defenses of lung surface
epithelial cells and phagocytic cell populations.
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Results

Nitric oxide production in cytomix-treated LA-4 cells

We first examined the effects of cytomix on LA-4 cell NO
production. We previously demonstrated that this cytomix
treatment regimen resulted in a non-injurious inflamma-
tory microenvironment [25]. Cytomix treatment consisted
of supplementing the maintenance medium of confluent
LA-4 cells with 0.2 ng/mL each of TNFa + IL-1p + IFNy
for 24 h. Data show that by 24 h, iNOS mRNA was
significantly upregulated (>100-fold) with corresponding
increases of intracellular iNOS protein relative to control
cells (Figure 2A). Furthermore, significant increases in
fluorescence of the NO-specific fluorescence probe, DAF-
FM diacetate, were detected; while no increase occurred
in cells co-treated with 1400W, an iNOS specific inhibitor
(Figure 2B). Together, data indicate that cytomix treat-
ment acutely increased NO production though activation
of epithelial cell iNOS.

ROS production and cell injury in cytomix-treated LA-4
cells exposed to DEP

To assess whether DEP exposure (25 pg/cm?®) differen-
tially impacted the redox status of cytomix-treated cells,
we evaluated intracellular ROS production, cytotoxicity,
and alterations of reduced (GSH) vs. disulfide (GSSG)

N

systemically (10 mg/kg, i.p.) (Day —1 to 4).
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Figure 1 Exposure time line. (A) Confluent LA-4 epithelial cells treated with cytomix (TNFa + IL-1B + IFNy) x 24 h followed by DEP (25 ug/cm?)
for 2 h (fluorescent end points) or 24 h (cytoxicity). (B) Exposure time line for BALB/c mice treated via oropharyngeal aspiration with PBS or
cytomix (Day 0); exposed to air or DEP (2 mg/m? 4 h/d x 2 d) (Day 2 and 3) and necropsied on Day 4. A subset of mice received FeTMPyP
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Figure 2 Cytomix treatment of LA-4 cells increases iNOS and
NO production. (A) iINOS mRNA and protein (inset) expression after
24 h post-cytomix treatment. Data are expressed as the mean fold
increase (+ SEM) over control cells and is representative of three
independent experiments. (B) Fluorescence of DAF-FM diacetate
oxidation by NO, 24 h post-cytomix treatment, in the presence of
1400W (100 uM). Data are expressed as mean fold-increase (+ SEM)
over control cells and is representative of three independent
experiments. Significance (p < 0.05) is indicated by: * vs. control;

** vs. cytomix.

N

forms of the ubiquitous antioxidant, glutathione. Data
revealed that cytomix-only treatment did not alter the
level of intracellular ROS at 2 h (as detected by changes
in H,DCEDA fluorescence) (Figure 3A); nor did it cause
detectable cytotoxicity by 24 h (based on % LDH leakage)
(Figure 3B).

DEP exposure of saline-treated cells elicited increased
ROS production by 2 h (Figure 3A); however, exposure
was not associated with significant cytotoxicity at 24 h
(Figure 2B). Based on increases in intracellular GSH
content (30%) and GSH:GSSG molar ratios (17%) at
24 h post-exposure (Table 1), it appeared that “healthy”
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epithelial cells were able to mount an effective antioxi-
dant response during DEP exposure.

On the other hand, DEP exposure of cytomix-treated
cells resulted in a greater (4-fold) increase in intracellular
ROS at 2 h (Figure 3A), with evidence of commensurate
increases in cell injury by 24 h (Figure 3B). In this sce-
nario, it appeared that, despite a significant (>2-fold) in-
crease in cellular GSH levels, cellular redox status could
not be maintained as evidenced by the ~30% decline in
the GSH:GSSG ratios (Table 1). Together, data reveal
that within an inflammatory microenvironment, DEP
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Figure 3 ROS changes and cell injury in cytomix + DEP-treated
cells. (A) ROS production, measured by fluorescence of H,DCFDA in
saline- and cytomix-treated LA-4 cells exposed to DEP (25 ug/cm? x
2 h). Data are expressed as mean fold increase (+ SEM) over control
cells and is representative of three independent experiments.
Significance (p < 0.05) indicated by: * vs. control; ** vs. DEP.

(B) Cytotoxicity in saline- or cytomix-treated LA-4 cells with or without
exposure to DEP (25 pg/cm? x 24 h) based on LDH release. Data are
expressed as mean fold-increase (+ SEM) over saline-exposed cells
and is representative of three independent experiments. Significantly
(p <0.05) greater injury is indicated by: * vs. All other treatments.
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Table 1 Cellular glutathione 24 h after saline- or
cytokine-treated LA-4 cells, with and without DEP

Cell Groups n =3/group GSH GSSG GSH:GSSG ratios
Saline 148£29 35741 41+04
Cytomix 164+£120 442+32 3.7+£04
DEP 193+289 403+38 48+03
Cytomix + DEP 394£20.1%  132+2.7* 30£02

Data are expressed as mean pmol/pg protein (+ SEM). Asterisk (¥) indicates
significantly different than saline-exposed cells (p < 0.05).

exposure was associated not only with greater epithelial
ROS production, but also oxidative stress and redox
imbalance, culminating in overt cytotoxicity.

Exposure of LA-4 epithelial cells to DEP results in O,
production

We next examined more specifically (1) which reactive
species were increased and (2) what cellular changes
were occurring that may have contributed to the dimin-
ished capacity of cells to “cope” with the additional oxi-
dative burden. To assess the role of O, ™ in DEP-induced
responses, LA-4 cells were labeled with the fluorescent
probe, DHE. In the presence of O, ", DHE becomes oxi-
dized to ethidium and intercalates with nucleic acids
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emitting a red fluorescence. In contrast to saline-
exposed cells which had no nuclear staining and min-
imal cytoplasmic fluorescence, after 2 h, DEP-exposed
cells had increased focal nuclear fluorescence and
increased overall fluorescence (Figure 4A) — consistent
with increased O, generation.

We further assessed differential effects on gene expres-
sion of xanthine dehydrogenase (XdH), an O,"~ generating
enzyme. Compared to saline-exposed cells, by 24 h, DEP-
exposed cells had a ~2.5-fold increase in XdH expression
(Figure 4B). Conversely, activity of the counteracting
cytosolic antioxidant factor, superoxide dismutase (CuZn-
SOD), was significantly decreased (55%) after DEP expos-
ure. Exposure was without effect on mitochondrial SOD
(Mn-SOD) activity (Figure 4C). Together, data indicate
that DEP exposure of LA-4 cells resulted in both
increased production of O, as well as a concomitant de-
crease in cellular ability to dismute the superoxide anion.

Role of peroxynitrite in DEP-induced cytotoxicity

in cytomix-treated LA-4 cells

To more specifically implicate involvement of NO vs.
O, with the increases in H,DCFDA fluorescence
observed, we next assessed H,DCFDA oxidation in the

(p <0.05) is indicated by: * vs. control.

Figure 4 Superoxide anion production in DEP-exposed cells. (A) DHE fluorescence (red) oxidation by O, in DEP-exposed cells (25 pg/cm2 X
2 h). DNA was counter-stained with DAPI (blue) and is representative of two independent experiments. (B) XdH mRNA expression of saline- and
DEP-exposed cells (25 ug/cm? x 24 h). Data are expressed as the mean fold-increase (=SEM) over control cells and is representative of three
independent experiments. (C) Activity of cytosolic superoxide dismutase (CuZn SOD) and mitochondrial (Mn SOD) SOD from DEP-exposed cells
(25 pg/cm? x 24 h). Data are expressed as the mean (+ SEM) activity of SOD and is representative of three independent experiments. Significance
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presence of exogenously administered SOD or in cells
pretreated with the selective iNOS inhibitor, 1400W. As
before, cytomix + DEP-exposed cells had a robust (6-
fold) increase in ROS production by 2 h. ROS increases
were significantly reduced by supplemental SOD (50%
reduction) or 1400W treatment (30% reduction); with
neither intervention completely ameliorating the fluor-
escence increases (Figure 5A).

When both O, and NO levels are increased, the two
radicals can interact to produce peroxynitrite (ONOO").
To elucidate the role of ONOO' in the enhanced cell in-
jury observed during cytomix + DEP exposure, cells were
co-treated with FETMPyP to hasten catalysis of ONOO"
(Figure 1A). As before, by 24 h, the cytomix + DEP-
exposed cells had significantly greater cell injury (2.3-fold
increase) compared to the “healthy” control cells; with
FeTMPyP treatment significantly decreasing LDH release
to near control levels (1.4-fold increase) (Figure 5B).
Taken together, data suggest that the increases in NO and
O, led to generation of ONOO’; and that ONOO™ pro-
duction played a significant role in the increased suscepti-
bility of the “inflamed” epithelial cells to undergo
oxidative/nitrosative stress — and hence, cellular necrosis
— upon exposure to DEP.

DEP inhalation exposure in cytokine-treated mice

To extend our findings beyond the in vitro epithelial
model, we similarly administered a mixture of cytokines
(TNFa 1.0 ng/g body weight +IL-1p 0.5 ng/g+ IFNy
2.0 ng/g) exogenously into the airways of BALB/c mice
to induce genmeric lung inflammation prior to in vivo
DEP exposure. Initial studies to establish the pulmonary
effects of DEP inhalation exposure in healthy mice
demonstrated that, 24 h after exposure to 2 mg/m?
DEP x 4 h/d x 2 d, mice developed mild lung inflamma-
tion (with significant increases in neutrophils and lym-
phocytes in BAL fluid), but without evidence of lung
injury. Based on minor increases in GSH and GSSG
levels (20%), DEP-exposed mice had mounted low-level
antioxidant lung responses (Table 2).

Studies to evaluate effects of cytomix treatment
demonstrated that mice developed significant acute lung
inflammation (peaking at 48 h) along with transient
edema (based on albumin increases in BAL fluid without
LDH increase) (Table 3). Although NO changes were
not assessed herein, pulmonary edema has been asso-
ciated with increased NO production in animal models
of acute lung injury [29,30]. Of note, both neutrophils
and lymphocytes were significantly increased, consist-
ent with MIP-2 and RANTES production, respectively.
By 48 h, based on increased GSH (20%) and GSH:
GSSG@ ratios (30%), it appeared that cytokine treatment
was also associated with mild antioxidant responses
(Table 3).
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Figure 5 ROS changes and cell injury in cytomix + DEP-exposed
LA-4 cells. (A) ROS production, measured by the fluorescence of
H,DCFDA oxidation, in cytomix + DEP-exposed (25 ug/cm2 x 2 h)
LA-4 cells, with or without SOD (200 U/mL) or 1400W (100 uM)
treatment. Data are expressed as mean fold-increase (+ SEM) over
control cells and is representative of three independent experiments.
Significance (p < 0.05) indicated by: * vs. control; ** vs. cytomix +
DEP. (B) Cytotoxicity of cytomix + DEP- exposed cells (25 ug/cm?;

X 24 h) in the presence of FeTMPyP (10 uM). Data are expressed as
mean fold increase (+ SEM) of LDH release over control cells and is
representative of three independent experiments. Significance (p <

0.05) indicated by: * vs. control; ** vs. cytomix + DEP.

In the main study, subsets of mice were treated with
phosphate-buffered saline (PBS) or cytomix as above
(Day 0), and 48 h later, mice underwent nose-only inhal-
ation exposure to filtered air or the same DEP particles
as above (Day 2 and 3) (Figure 1B). By Day 4, no signifi-
cant differences in body weights were observed across
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Table 2 BAL fluid indices and lung glutathione in mice
24 h after nose-only air or DEP inhalation exposure

Filtered Air DEP
BAL fluid cells per lung (x10%) n=4 n=4
Total Cells 853+74 1M1+£123
Macrophages 849+73 108+ 11.1
Neutrophils 0.1+0.1 14+040*
Lymphocytes 02+0.1 1.7+0.7*%
BAL fluid biochemistries
LDH (U/mL) 188+3.1 126+18
Total Protein (ug/mL) 629156 496+ 11.1
Albumin (ug/mL) 151£09 109+38
Lung glutathione (nmol/g tissue)
GSH 4012 £ 371 4860 + 561
GSSG 356+ 35.1 427 +398
GSH:GSSG ratios 11.7+£15 11.3+04

DEP exposures were at 2 mg/m? for 4 h/d x 2 d. Data are expressed as the
mean + SEM. Asterisk (*) indicates significantly different than air-exposed mice
(p<0.05).

the treatment groups. Analysis of BAL fluid on Day 4
failed to reveal significant changes in cellular or bio-
chemical indices, or in lung glutathione levels, across
the treatment groups (Table 4; Figure 6A). Somewhat
unexpectedly, unlike the earlier study, DEP-only exposed
mice did not develop detectable lung inflammation. Fur-
thermore, it appeared that the inflammatory response
induced by the single cytomix treatment had largely
resolved by Day 4. However, we again noted that both
saline + DEP- and cytomix + DEP-exposed mice had

Table 3 BAL fluid indices and lung glutathione in mice
48 h after saline- or cytokine-treatment

Saline Cytomix
n=4 n=4
BAL fluid cells per lung (x10°)
Total Cells 88.7+£48 264 +25.5%
Macrophages 725+95 10171
Neutrophils 147 6.7 1194+13.1%
Lymphocytes 14407 57.1+167%
BAL fluid biochemistries
LDH (U/mL) 375+9.1 553+£137
Total Protein (ug/mL) 676+52 1266+214
Albumin (ug/mL) 152+19 246 +2.5%
Lung glutathione (nmol/g tissue)
GSH 4050 £ 484 4908 + 1080
GSSG 331125 305 £ 74.1
GSH:GSSG ratios 123+16 16.1+35

Data are expressed as means (+ SEM). Asterisk (*) indicates significantly
different than saline-exposed mice (p < 0.05).
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mildly increased GSH (~30%) levels along with signifi-
cantly increased GSH:GSSG ratios (2.5-2.9-fold), com-
pared to corresponding subsets of air-exposed mice.
Results are indicative that, as above, DEP exposure was
associated with moderate antioxidant lung responses
(Table 4; Figure 6A).

Despite the negligible effects on lung injury and in-
flammation, results revealed that cytomix + DEP-exposed
mice had significantly increased ROS production
(4-fold) in phagocytic cells obtained via lung lavage
(based on H,DCFDA fluorescence) (Figure 6B). Fluores-
cence increases were inhibited, to control levels, in mice
receiving FeTMPyP treatment (Day -1 to 4) (Figure 6B).
We further observed that in these mice, lung tissue
GSH levels were increased (~55%) over that of the
cytomix + DEP-exposed mice that did not receive
FeTMPyP systemically (Figure 6A).

Collectively, data indicate that in vivo exposure to this
DEP regimen was associated with low-level pulmonary
oxidative stress, to which, both saline- and cytomix-
treated mice were able to mount effective antioxidant
responses, thereby preventing significant lung injury or
inflammation. Nevertheless, in mice with pre-existing
lung inflammation, DEP exposure was associated with
significantly greater ROS production within lung phago-
cytes. Because H,DCFDA fluorescence was attenuated
by FeTMPyP treatment, increases were related to
ONOO". We further speculate that because the
FeTMPyP-treated mice did not have to “cope” with the
additional phagocyte ONOO production, there was an
overshoot in the overall lung antioxidant response, as
evidenced by significant (~2-fold) increases in lung GSH
levels 24 h after DEP-exposure, relative to saline + air-
exposed mice (Figure 6A).

Discussion

Maintaining redox balance in the lung is a dynamic
process. It is especially challenging within the air passa-
geways and alveolar spaces, where surface epithelial cells
and resident phagocytes are exposed to — and provide
the first line of defense against — a wide range of
inhaled biologic (e.g., bacteria, viruses, allergens) and en-
vironmental agents (e.g., ozone, PM). In the present in-
vestigation, we used relatively simplistic in vitro and
in vivo murine models of cytokine-induced epithelial
and lung inflammation, respectively, to demonstrate the
potential for NO (increased during inflammatory condi-
tions) and ROS (increased as a consequence of traffic
PM exposure) to “co-operate” to produce reactive oxida-
tive as well as reactive nitrosative species (RNS) within
PM-exposed lung cells. Specifically, we show that epithe-
lial cells exposed to OC-rich DEP within an inflamma-
tory microenvironment incur greater ROS/RNS burden
and corresponding epithelial cytotoxicity; and that
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Table 4 BAL fluid indices and lung glutathione ratios in saline- or cytomix-treated mice, 24 h after exposure to air or
DEP for 2 consecutive days

Air DEP
N =4/group Saline Cytomix FeTMPyP: Cytomix Saline Cytomix FeTMPyP: Cytomix
BAL fluid cells per lung (x10%)
Total Cells 110+52 96.4 £ 22 109+ 11 84.8+ 21 107 +£35 843+ 10
Macrophages 101 +44 893+ 20 101+ 11 832+21 96.4 £33 780+£9.1
Neutrophils 06+£0.10 41+£18 5515 04+0.1 75+26 47+08
Lymphocytes 09+06 30+07 3012 12+£05 28+0.7 1.6+£0.7
BAL fluid Biochemistries
LDH (U/mL) 3701938 388+86 381116 235+13 437+6.7 364+26
Total Protein (ug/mL) 668+ 17.8 820+84 742+1.7 68.1+24 88.1£169 759+23
Albumin (ug/mL) 159+3.1 166+05 141+08 169+04 147 +1.7 14.7+06
Lung GSH:GSSG 39104 3106 1.7+0.1 99+1.2% 92+1.8* 88+ 14%

Data are expressed as the mean (+ SEM) in saline- or cytomix-treated mice, 24 h after exposure to air or DEP for 2 consecutive days (2 mg/m3; 4 h/dx2d).
Asterisk (*) indicates significantly different than saline-exposed mice (p < 0.05).

Air DEP

2500 -

2000

1500

nmolig

1000 o

500 4

H,DCFDA Fluorescence
(fold-change of control)

< <
Figure 6 Day 4 comparison of mice. (A) lung glutathione levels and (B) ROS production in cells obtained by lung lavage in saline- or
cytomix-treated mice, 24 h after exposure to air or DEP for 2 days (mean + SEM; n = 4/group). Data are expressed as the mean nmol/g of lung
tissue (+ SEM) for GSH or GSSG. Significance (p < 0.05) indicated by: * vs. DEP-cytomix. For ROS cell production, data are expressed as mean fold
increase (+ SEM) over saline + air-exposed mice. Significance (p < 0.05) indicated by: * vs. air, cytomix, DEP; ** vs. cytomix + DEP.
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cytomix + DEP-exposed mice incur greater ROS/RNS
production in lung phagocytes.

What evidence exists that respiratory inflammation is
associated with increased NO production in people?
Asthma, COPD, bronchitis, and rhinitis all represent a
spectrum of respiratory disorders in which the clinical
manifestations are orchestrated by, or in large part the
result of, underlying inflammatory processes. Whereas
all three nitric oxide synthase isoforms are present in
the respiratory tract, clinical studies show that exhaled
NO (eNO) levels are higher in patients with asthma
[31,32], COPD [33] and seasonal rhinitis [34]. The mag-
nitude of eNO increase is often proportionate to the de-
gree of symptomatology, inflammation, and aeroallergen
sensitization. Elevations are, in large part, derived from
iNOS localized within the inflamed epithelium [35,36]
— with highest iNOS expression found in epithelial cells
of patients with severe asthma [37]. Additional studies
reveal eNO increases in association with childhood ex-
posure to traffic emissions [38], ambient air pollution
[39], or early life exposure to PAHs [40]. Moreover, re-
cent studies suggest that such exposures may influence
genetic and epigenetic variations in the iNOS promoters
[41,42).

How could these changes contribute to the adverse re-
spiratory outcomes associated with traffic emissions in
humans? Lung epithelial dysfunction is considered cen-
tral to development of asthma; with insults such as air
pollutants serving not simply as triggers for disease ex-
acerbation, but also as playing critical roles in the origin
and progression of airway and lung pathology [43]. A
growing body of literature further implicates impaired
antioxidant defenses and disturbances in oxidation/
reduction (redox) balance as risk factors for asthma de-
velopment and asthma severity [44,45]. Accumulating
in vitro and in vivo experimental studies have shown
that traffic PM exposure is associated with increased
lung oxidant burden related to increased ROS such as
O,"" [46-49]. Other studies of DEP-exposed rodents re-
veal concomitant increases in NO and ONOO™ in BAL
fluid cells [50,51].

In the present investigation, data demonstrated that
despite ROS increases in DEP-exposed epithelial cells,
significant cytotoxicity was not observed unless cells had
been exposed within an inflammatory microenvironment
— suggesting a cooperative role of particle-induced ROS
with existing lung inflammatory mediators. We clearly
show how DEP effects were mediated by: (1) increased
ROS (including O,"") production related to increased
XdH expression and reduced CuZn SOD activity; and
(2) increased RNS production owing to interaction of
O,"" with cytokine-induced, NO, to generate peroxyni-
trite. We confirm that DEP-induced epithelial effects
could be partially ameliorated by providing additional
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SOD or blocking iNOS induction. Epithelial cell and
in vivo phagocyte effects were, by and large, prevented
by accelerating catalysis of the longer-lived, peroxynitrite
radical, through administration of the iron porphyrin,
FeTMPyP.

Normally, in health, respiratory tract epithelial cells and
lung phagocytes work in concert to provide protection
against inhaled microorganisms. The ability to greatly in-
crease production of NO (and related RNS) is key to re-
spiratory system innate immunity. In neutrophils, for
example, cooperative action of NO and O, "~ imparts their
ability to kill ingested microbial pathogens [52]. Likewise,
after microbial phagocytosis by alveolar macrophages,
iNOS activation and respiratory “burst” activity similarly
mediate pathogen clearance [53]. A variation on this
theme occurs in airway epithelial cells during whooping
cough (pertussis) infection as infected epithelial cells re-
spond to IL-1 by increasing iNOS. Excess NO induces epi-
thelial autotoxicity and shedding of infected cells, thereby
limiting spread of pertussis organisms to adjacent healthy
cells [54]. Consequently, the lung has developed an exten-
sive capacity to withstand oxidative and nitrosative insult,
at least on a short-term basis, as required during acute in-
flammatory response to infectious agents.

Respiratory pathogens, on the other hand, have evolved
intricate NO-sensing capabilities and defense mechanisms
of their own [55]. Murine models of viral infection reveal
major shifts in the cellular and temporal distribution of
lung antioxidant enzymes during, for example, influenza
pneumonia [56]. RSV infection can similarly induce sig-
nificant down-regulation of host airway antioxidant pro-
cesses (e.g, SOD activity), which in infants (possibility
owing to immature antioxidant defense mechanisms), can
result in extensive oxidative epithelial damage and severe
bronchiolitis [57].

Air pollution PM has inherent oxidant properties that
are highly correlated with OC (e.g., PAH) and metal con-
tent [58]. While such characteristics no doubt contribute
to the overall oxidant effects of traffic PM, it is likely
that — owing to their resemblance to inhaled microor-
ganisms — in vivo toxicity and health effects are
mediated largely by generation of ROS/RNS within
exposed cells during futile attempts by innate host
defenses to respond to inhaled fine PM as if they were
potential pathogens. As such, cellular redox modulation,
whether related to infection or PM exposure, appears to
be deeply entangled with host inflammatory responses.
We focused, therefore, on DEP-induced changes in
glutathione because it is the most abundant intracellular
antioxidant thiol, and is central to redox defense during
oxidative/nitrosative stress [59]. The diverse functions of
GSH (y-glu-cys-gly) originate from the sulthydryl group
in cysteine, enabling GSH to participate in redox cycling.
Glutathione redox changes regulate not only signal
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transduction and airway inflammation, but also airway
reactivity and hyperresponsiveness [60].

However, if and when simultaneous production of NO
and O, " occur, excess RNS levels can exceed available
cellular, and even tissue antioxidant capacity. Excessive
RNS — not unlike excess ROS — can induce DNA dam-
age, modify lipids [27,28,61], and cause protein misfold-
ing and dysfunction [62]. In response to misfolded
protein, the unfolded protein response (UPR) triggers a
series of intracellular events aimed at either eliminating
rogue (damaged) cells by inducing apoptosis [62] or
allowing cells to overcome the consequences of the
stress by altering expression of anti-oxidant response
genes, cell cycle progression, or inflammatory cascades
[63]. Our data similarly showed that significant epithelial
damage occurred only if DEP exposure was associated
with decreased GSH:GSSG ratios. This occurred only in
the DEP-exposed “inflamed” cells in vitro. It appeared
that as cumulative oxidative/nitrosative stress exceeded
LA-4 cell capacity to maintain adequate redox status
(i.e., GSH:GSSG ratios decreased), epithelial function
became progressively impaired, resulting in cellular
apoptosis and/or necrosis.

There were several limitations to this investigation.
First, alveolar epithelial cell responses to PM may differ
from that of airway epithelial cells, and further, particle
effects in cell lines may or may not reflect that of their
corresponding primary cells of origin. To this end, we
previously showed that both LA-4 cells and primary
murine airway epithelial cultures (established at an air-
liquid interface) were more susceptible to DEP-induced
effects when exposed within this cytokine-induced in-
flammatory microenvironment [25]. Henceforth, we
used the LA-4 cells as general surrogates to assess par-
ticle effects on surface cells of the respiratory tract.
These generic in vitro and in vivo inflammatory models
may also fail to recapitulate key features of disease pro-
cesses occurring in asthmatics (i.e., Ty2- or eosinophil-
mediated effects). However, if traffic PM exposure was
to only influence allergen-specific processes, effects
would be unlikely to explain the health associations
noted in patients with COPD, chronic bronchitis, or 50%
of adult asthmatics who are not overtly atopic [64]. It
was because augmented health effects are associated
with a broad range of inflammatory conditions, that we
intentionally developed this cytokine combination to
model a generic inflammatory state. Nonetheless, efforts
are in progress to refine the in vivo cytokine protocol to
better simulate longer-lived, lower-level, inflammation in
the mice.

Although expression of XdH was increased during
DEP exposure, XdH (normally involved in the metabol-
ism of purines), can also be converted to xanthine oxi-
dase, thus contributing to still greater O, " production.
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DEP influences on the mitochondrial respiratory chain
or other enzyme systems (e.g, NADPH oxidases, P45
enzymes) cannot be ruled out as important sources
of O, " production [65]. Likewise, other oxidant (e.g.,
H,0,, OH) or nitrosative [e.g., nitrosonium (NO),
nitroxyl (NO7), HNO] species may have contributed to
DEP-induced redox changes.

Herein, relatively high-dose, short-term exposures to
DEP were utilized. In so doing, this study was primarily
designed to examine differential effects of DEP in
healthy vs. diseased states, and as such, showed that
under inflammatory conditions, LA-4 cells were 10-fold
more susceptible to DEP-induced epithelial damage [25].
Although real world exposures to urban air pollution are
lower-level, they are also chronic and involve multiple
pollutants. It may be relevant that school buses contribute
substantially to DEP exposure in children, with onboard
PM, 5 levels being four-fold higher than ambient levels,
and two-fold higher than roadway levels [66]. Aerosol
particle counts at schools are 2.3- to 4.7-fold higher than
areas without bus-related traffic [67]. Likewise, in urban
schools serviced by diesel buses, ambient near- and in-
school PM, 5 fluctuations correspond temporally with bus
drop-off hours and are highest in schools with the great-
est number of buses in operation [68].

We further acknowledge that DEP composition can
vary, and hence we used select DEP samples that
resembled tunnel traffic PM (in terms of relative EC and
OC content) to represent traffic-based PM. Other com-
ponents of near-road emissions, for example, gaseous
and semivolatile compounds [69] and metals from tire,
brake, and rotor wear [70] reportedly have pro-oxidant
properties and also participate redox cycling. It is pos-
sible, therefore, that similar to these diesel-derived parti-
cles, under inflammatory conditions, exposure to other
traffic-related oxidants may similarly enhance ROS/RNS
production.

Results of the present investigation provide biologic
plausibility for the ever increasing epidemiological data-
base associating traffic exposure with adverse health
impact, especially in individuals with pre-existing re-
spiratory diseases [1,8,71]. Relatedly, in asthmatics, air-
way redox balance appears to be shifted toward a more
oxidized state [45] and the epithelial barrier is already
somewhat compromised [72]. In poorly controlled
asthma, alveolar macrophages are prone to apoptosis
and phagocytosis is impaired [73]. Experimental studies
implicate glutathione depletion and redox imbalance in
these phagocyte deficits [74]. Our data similarly impli-
cates cellular redox imbalance as a precursor to both:
(1) phagocyte and epithelial cell signaling and associated
inflammatory processes and (2) epithelial injury and bar-
rier dysfunction. These results support novel therapeutic
approaches designed to increase the airways’ resistance
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against the inhaled environment agents rather than fo-
cusing solely on suppression of inflammation [43]. An-
cillary medical and nutritional interventions may be
warranted, particularly in children and at-risk popula-
tions [75-77].

Based on the above experimental and clinical findings,
we put forth the supposition that in at-risk populations,
traffic-associated ROS/RNS production further compro-
mises epithelial barrier and phagocytic cell function,
thereby allowing penetration of inhaled pathogens and
allergens deeper into lung tissue. In so doing, chronic
traffic exposure would predispose individuals to repeated
respiratory infection and immune cell antigen exposure,
respectively; which overtime would promote and elicit
end organ expression of atopic asthma [72]. This
scenario is supported by epidemiologic reports world-
wide associating early life or childhood exposures to
air pollution from traffic with development of respira-
tory infections and asthmatic and allergic symptoms
[2-4,6,15,20,22,78].

Conclusions

Under inflammatory respiratory conditions, adverse
health effects related to exposure to traffic emissions ap-
pear to involve a complex interplay between radical-
generating capacities of traffic particles with in vivo
mediators related to ongoing inflammatory processes. In
highly exposed cells (i.e., surface epithelial cells and
phagocytic cell populations), repeated exposure to traffic
emissions may result in dual ROS + RNS insult which, in
at-risk populations, exceeds cellular capacity to maintain
redox balance. In so doing, exposure could cause and
perpetuate epithelial barrier dysfunction [72] and alter
innate and adaptive lung immune response [73]. Our
results provide a possible unifying mechanism to explain
why individuals with a variety of pre-existing inflamma-
tory diseases are particularly susceptible to developing
adverse respiratory health effects during acute and
chronic exposure to traffic emissions.

Materials and methods

DEP samples

For the in vitro studies, particles generated in 1999 by
a diesel powered automobile were used (a gift from
Dr. Daniel Costa, US EPA). As previously reported,
these particles closely resembled urban tunnel traffic
emissions in that they were comprised of 35% OC,
35% EC, and low levels of soluble metal [25]. Due to
limited quantities of this sample, the murine inhalation
studies were performed using a DEP sample of com-
parable OC content (~35%) that had been generated in
bulk and characterized by the Inhalation Toxicology
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Facility (US EPA, Research Triangle Park, NC) as
described previously [79].

Cell culture treatment and DEP exposure

LA-4 cells, a murine alveolar type II-like epithelial cell line
(ATCC, Manassas, VA; passages 49—55) were grown to con-
fluence for 1-2 days in Ham's F12K medium with 10% FBS.
Upon nearing confluence, cells were maintained in serum-
free Ham's F12K medium with select growth factors and
0.5 mg/mL BSA (Sigma, St. Louis, MO) as described previ-
ously [25]. Cytomix treatment consisted of supplementing
the maintenance medium with 0.2 ng/mL each of TNF« +
IL-1B + IENy (R&D Systems, Minneapolis, MN) for 24 h.
Fresh medium (without cytomix) was then applied and cells
were exposed to DEP at 25 pg/cm? for 2 h (for fluorescent
end points) or 24 h (for cytotoxicity) (Figure 1A). For DEP
exposures, freshly prepared particle suspensions in saline
(sonicated 3-times on ice; 10 sec each) were spiked into
medium. In select experiments, to block iNOS expression,
cells were pre-treated with the selective iNOS inhibitor,
1400W dihydrochloride (100 uM; Sigma, St. Louis, MO) for
24 h prior to applying cytomix. To decrease O, levels,
superoxide dismutase (SOD; 200 U/mlL; Sigma, St. Louis,
MO) was added to the medium 1 h prior to DEP exposure.
To catalyze decomposition of peroxynitrite, cells were trea-
ted with a synthetic porphyrin complexed to iron (FeTM-
PyP; 10 uM; Cayman Chemical, Ann Arbor, MI) during
DEP exposure. Unless otherwise indicated, n =4 wells per
treatment group per time point assessed.

In vitro assessments

Nitric oxide

Changes in iNOS gene expression, protein, and NO pro-
duction were assessed in LA-4 cells 24 h after addition
of cytomix. Total RNA was isolated using an RNeasy kit
(Qiagen, Valencia, CA). cDNA synthesis and realtime
PCR using gene-specific primers and probes for iNOS,
xanthine dehydrogenase (XdH), and p-actin (Applied
Biosystems, Foster City, CA) were performed using
SuperScript III Platinum One-Step Quantitative RT-PCR
System (Invitrogen, Carlsbad, CA). Differential expres-
sion was determined using the 2728€T method [80]. Cell
lysate iNOS protein levels were assessed by separating
equal amounts of protein on E-PAGE 8% gels (Invitro-
gen, Carlsbad, CA). Protein was transferred, blocked for
1 h, probed overnight at 4°C with antibodies to iNOS
(1:500; BD Transduction Laboratories, San Jose, CA) or
B-actin (1:5000; Sigma, St. Louis, MO), washed again,
and incubated for 1 h with corresponding secondary
antibodies. Signals were detected using chemilumines-
cence (LumiGlo, Cell Signaling Technology, Danvers,
MA) with images acquired using an Alpha Innotech
8900 imaging station (San Leandro, CA). NO production
was assessed after 30 min incubation with the
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fluorescent probe, DAF-FM (10 pM; Invitrogen). Fluor-
escence was quantified on a plate reader (Packard Fluor-
oCount BF10000).

Cytotoxicity

Using a commercially available kit for lactate dehydrogen-
ase (LDH) (Thermo Fisher Diagnostics, Middletown, VA),
LDH % release was used to assess LA-4 cytotoxicity. Cell
lysate protein was determined using a kit (Thermo Scien-
tific, Rockford, IL). Assays were modified and adapted for
use on the KONELAB Arena 30 clinical chemistry
analyzer (Thermo Clinical Labsystems, Espoo, Finland).

Intracellular ROS production

Changes in generic ROS production were evaluated by
incubating LA-4 cells for 30 min with the non-specific
fluorescent probe, 2'7'-dichloro-fluorescein diacetate
(H,DCFDA; 10 pM; Invitrogen, Carlsbad, CA) followed
by exposure to DEP for 2 h. Fluorescence was quantified
using a fluorescence plate reader. Changes in intracellu-
lar O, levels were detected in LA-4 cells grown on
chamber slides and incubated for 30 min with the probe,
dihydroethidium (DHE; 10 pM; Invitrogen, Carlsbad,
CA) and then exposed to DEP for 2 h. Cells were imaged
using a fluorescent microscope (Nikon Eclipse Ti; Nikon
Elements software; Nikon Instruments, Inc.).

SOD Activity

After probe sonication, cell lysates were placed in cold
20 mM HEPES buffering solution, centrifuged, and
supernatants assayed for SOD activity as per the manu-
facturer's instructions (RANSOD, RANDOX Laboratories
Ltd, Co., Antrim, UK).

Glutathione

As described previously [25], dislodged LA-4 cells were
treated with cold 10% perchloric acid containing 0.4 M
boric acid (Sigma, St. Louis, MO). After centrifugation
(20 min, 4°C, 20,000 g), cell-free supernatants were trea-
ted with dansyl chloride (Sigma) to label the reduced
(GSH) and disulfide (GSSG) glutathione fractions. After
gradient HPLC separation (Discovery C;g columns;
Sigma), the fluorescent products of dansylated GSH and
GSSG, as well as GSH and GSSG standards, were
acquired (excitation at 335 nm; emission at 515 nm)
using a fluorescence detector (Model 1100; Agilent
Technologies, Santa Clara, CA) and quantified (Chom-
Perfect Chomatography Data System software; Justice
Laboratory Software, Denville, NJ).

DEP inhalation exposures

Mice

Female BALB/c mice (Charles River Labs, Wilmington,
MA), 12-16 weeks of age (19-23 g) were housed in an
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AAALAC-accredited facility maintained on a 12 h light/
dark cycle. Food and water were provided ad libitum ex-
cept during the DEP exposures. Mice were acclimated to
the facilities and nose-only exposure tubes prior to use.
All procedures were approved by the Institutional Ani-
mal Care and Use Committee.

Cytomix treatment

Mice were briefly anesthetized with vaporized isoflurane
(Webster Veterinary Supply Inc., Sterling, MA) to ad-
minister 50 pL of either sterile PBS or cytomix into the
lungs via oropharyngeal aspiration. Based on dose-range
finding studies with these cytokines individually, and in
combination (data not shown), the cytomix regimen
used herein consisted of a single treatment with TNFa
(1.0 ng/g of body weight)+IL-18 (0.5 ng/g)+ IFNy
(2.0 ng/g) R&D Systems, Minneapolis, MN.

DEP exposures

Using the EPA string-generation particle exposure sys-
tem, mice were placed in separate 24-port nose-only
flow-by inhalation chambers and exposed to filtered air
or resuspended DEP [81]. Particle concentration and size
distribution were monitored and confirmed as previously
described [82]. A pilot inhalation study in healthy mice
was performed to determine a DEP exposure regimen
that would induce mild, but detectable, lung inflamma-
tion. In the formal DEP inhalation study (Figure 1B),
mice were pre-treated (Day 0) with phosphate-buffered
saline (PBS) or cytomix as above, and 48 h later under-
went nose-only inhalation exposure to filtered air or
DEP (2.0 mg/m?) for two consecutive days (4 h/d x 2 d)
(Day 2 and 3). Mice were euthanized (Day 4) via
anesthetic overdose (Euthasol, 150-200 mg/kg, i.p.) fol-
lowed by exsanguination. In a subset of mice, FeTMPyP
was administered (10 mg/kg, i.p.) 24 h prior to cytokine
treatment and daily until euthanasia (Day -1 to 4).

In vivo assessments

Mice were observed daily. Immediately following eu-
thanasia, mice were weighed, tracheas cannulated and
the left lung lobes ligated, resected, and snap frozen
(-80°C). The remaining accessory and right lung lobes
were lavaged with three separate volumes (0.6 mL) of
HBSS. Pooled BAL fluid was centrifuged (800 gx
10 min). Resulting supernatants were analyzed using
commercially available kits for total protein (Thermo
Scientific, Rockford, IL), albumin (DiaSorin, Stillwater,
MN), and LDH (Thermo Fisher Diagnostics, Middle-
town, VA) adapted for the KONELAB Arena 30 analyzer.
Pelleted cells were re-suspended in HBSS and cells
enumerated using a Z1 Coulter counter (Coulter,
Hialeah, FL). Differential cell counts (200 cells/slide)
were performed on cytospin (Shandon Pittsburgh, PA)
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preparations stained with a modified Wright-Giemsa
stain on an automated slide stainer (Hematek 2000,
Miles Inc., Elkhart, IN). Data are expressed as the total
number of cells retrieved during the lavage procedure.
Intracellular ROS production was assessed in 10,000
cells that were plated onto cell culture plates (in HBSS),
labeled with the H,DCFDA probe (10 pM) for 30 min,
quantifying fluorescence as above.

Lung GSH and GSSG levels were determined by hom-
ogenizing the frozen lung tissue in cold 4% perchloric
acid PCA containing 0.2 M boric acid, 4 mM diethylene-
triaminepentaacetic acid. Homogenates were centrifuged
and supernatants labeled with dansyl chloride, separated
with HPLC, quantified as above, and normalized to tis-
sue mass.

Statistical analysis

Expressed as the mean + SEM, data were analyzed using
an analysis of variance (ANOVA) and where relevant,
Bonferroni post-hoc testing for comparisons between
multiple groups (GraphPad Prism 4.0.2). A value p < 0.05
was considered to reflect statistically significant effects.
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