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Abstract

Background: Studies have shown a relationship between air pollution and increased risk of cardiovascular morbidity
and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects
of co-exposure, particularly particulate matter (PM) and gas, to determine whether pollutant interactions alter (e.g.
synergistically, antagonistically) the health response. This study examines the independent effects of fine (FCAPs)

and ultrafine (UFCAPs) concentrated ambient particles on cardiac function, and determine the impact of ozone (Os)
co-exposure on the response. We hypothesized that UFCAPs would cause greater decrement in mechanical function
and electrical dysfunction than FCAPs, and that O3 co-exposure would enhance the effects of both particle-types.

Methods: Conscious/unrestrained radiotelemetered mice were exposed once whole-body to either 190 pg/m? FCAPs
or 140 pg/m? UFCAPs with/without 0.3 ppm Os; separate groups were exposed to either filtered air (FA) or Os alone.
Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure, and cardiac
mechanical function was assessed using a Langendorff perfusion preparation 24 hrs post-exposure.

Results: FCAPs alone caused a significant decrease in baseline left ventricular developed pressure (LVDP) and contractility,
whereas UFCAPs did not; neither FCAPs nor UFCAPs alone caused any ECG changes. O co-exposure with FCAPs caused
a significant decrease in heart rate variability when compared to FA but also blocked the decrement in cardiac function.
On the other hand, O5 co-exposure with UFCAPs significantly increased QRS-interval, QTc and non-conducted P-wave
arrhythmias, and decreased LVDP, rate of contractility and relaxation when compared to controls.

Conclusions: These data suggest that particle size and gaseous interactions may play a role in cardiac function
decrements one day after exposure. Although FCAPs + O3 only altered autonomic balance, UFCAPs + O3 appeared to
be more serious by increasing cardiac arrhythmias and causing mechanical decrements. As such, O appears to interact
differently with FCAPs and UFCAPs, resulting in varied cardiac changes, which suggests that the cardiovascular effects
of particle-gas co-exposures are not simply additive or even generalizable. Additionally, the mode of toxicity underlying
this effect may be subtle given none of the exposures described here impaired post-ischemia recovery.
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Background

Risk assessments of air pollution health effects have
become increasingly challenging given the complexity
of present-day air pollution mixtures. Epidemiological
studies indicate that fine (PM, ;) and ultrafine (PM, ;)
particulate matter (PM) are the principal instigators of
adverse clinical events, particularly those involving the
cardiovascular system [1]. However, air pollution is a
mixture of not only PM, but also gaseous irritants, vapors,
and biological substances; thus when examining the
effects of any given pollutant, the influence of other
components must be considered. As such, studies need
to determine whether the resultant physiological and
biochemical effects of multipollutant exposures represent
the simple additive effects of the pollutants, their syner-
gism or antagonism. One particularly relevant interaction
is that of PM and the ubiquitous gaseous co-pollutant Os.

Although studies have examined the effects of sequential
exposures, for example, ozone (O3) and then PM, 5 causes
decreased HRYV, systolic blood pressure and heart rate (HR)
in rats [2], only a few studies have addressed the health
effects of simultaneous exposures with distinct pollutants
and the effects are still not fully clear. For instance, Brook
et al. demonstrated acute arterial vasoconstriction in
healthy subjects co-exposed to PM, 5 and O3 [3], whereas
Urch et al. [4] found no significant changes in mean
arterial pressure, systolic blood pressure or HR in a
similar study population; although constriction was
observed with PM, 5 alone. Animal studies also indicate
that the effect of combining pollutants does not necessar-
ily yield the expected synergistic response, especially in
the case of susceptible models. Wagner et al. recently
showed that depression of heart rate and blood pressure
during PM,5 and O3 co-exposure was not as great as
either pollutant alone in rats fed a high-fructose diet [5].
The respiratory effects of O3 and PM co-exposure are
equally conflicting. For example, rats instilled with
ozonized DEP had increased inflammatory cells and
protein in the lungs [6], whereas mice co-exposed to O3
and DEP did not have increased cytotoxicity or inflamma-
tion [7]. Instead, in this latter study, co-exposed mice had
increased bronchoconstriction, which is a measure of
lung function. Similar investigations into the effects of
simultaneous exposure on cardiac function have not been
widely conducted.

Rodent electrocardiograms (ECG) can provide valuable
insight into cardiovascular function in air pollution
studies, particularly when pollutant concentrations are
low and overt inflammation or toxicity are not observed.
ECG is now routinely used in rodents for the detection
of disturbances in myocardial impulse formation and
conduction, as well as abnormal cardiac rhythm and
altered autonomic regulation of the heart. As such, a wide
range of cardiac responses demonstrated by controlled
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human and animal PM exposure studies have provided
biological plausibility to the health effects of air pollution
[3,8-10]. Some of these are responses observed using ECG
and have been shown to be similar in humans and animals
[11,12]. For instance, some human subjects exposed to
PM have decreased heart rate variability (HRV), which
is a predictor of increased risk [13-16], and enhanced
arrhythmogenesis [17]. Experiments in animals not only
show a similar PM-induced decrease in HRV and increased
incidence of arrhythmia [1], but also functional decrements
in the heart such as diminished left ventricular developed
pressure (LVDP) and decreased contractility [18-20]. On
the other hand, few studies, if any, have examined the ef-
fects of simultaneous PM and O3 exposure on both ECG
and mechanical function (e.g. contractility) of the heart.

Thus, the purpose of this study was to determine the
effects of concentrated ambient particles (CAPs), with
and without O3 co-exposure, on cardiac electrical and
mechanical function in mice. Previous data suggests that
PM size determines the physiological impact with fine PM
causing primarily pulmonary effects and ultrafine PM
altering cardiac function [21,22]. We hypothesized (1)
that inhalation of either fine (FCAPs) or ultrafine CAPs
(UFCAPs) would cause cardiac electrical dysfunction, me-
chanical decrements and arrhythmogenesis in mice; but
(2) that UFCAPs, due to its size, would have a greater ef-
fect on the heart than FCAPs; and (3) that O3 co-exposure
would potentiate the response elicited by both particle
sizes, respectively.

Results

Chamber and exposure characteristics

Table 1 shows the concentration and particle size of CAPs
and Os, and chamber characteristics for each exposure
group. Table 2 indicates the elemental composition of the
particulate matter from each of the exposure groups.
Other than iron (Fe), FCAPs and UFCAPs particulate
matter were of similar composition with the majority of
the elemental fraction composed of SO,.

Estimated particle doses

The following particle doses were calculated for the mice
in each of the PM-exposed group: (1) UFCAPs - 0.418 pg
(2) FCAPs - 0.426 pg (3) UFCAPs + O3 - 0.264 pg and (4)
FCAPs + O3 - 0.446 pg. Using the same model and expos-
ure characteristics the estimated human doses were deter-
mined to be: (1) UFCAPs - 103.4 pg (2) FCAPs - 81.3 pg
(3) UFCAPs + O3 - 65.8 pug and (4) FCAPs + O3 - 85.0 pg.

Heart rate

Although all animals experienced an increase in HR
while in the exposure chamber before the start of the
exposure (Baseline) and a progressive decrease during
the 4-hour exposure (Expl, Exp2, Exp3 and Exp4), there
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Table 1 Chamber and exposure characteristics
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Groups

FA UFCAPs UFCAPs + O FCAPs FCAPs + O; (o
Temperature (°C) 223401 230401 226+0.1 220401 222401 225402
Rel. humidity (%) 502+07 705+46 560436 598+ 34 500+58 524422
0; (ppb) 40+00 257 +47 2983+07 331420 3000+ 04 2990+ 1.1
PM Mass (ug/m?) 49422 1388+33.1 85.7+6.5 1909+ 328 21154373 34413
PM Total # (particles/cc) 242+14 2.1E° + 56F° 16E° +20E° 1.0E* +52F T1E* + 1682 202+42
Particle size (um) - 0.076 0.072 0.246 0.235 -
Geo. Std. Dev. - 167 1.66 1.96 1.67 -

PM CARBON
TC (ug/m?) 34+02 67.6 = 6.5(48.7%) 464+ 34(54.1%) 53.8+ 44 (28.2%) 478473 (226%) 43+04
OC (ug/m?) 37402 64.5+ 5.9 (46.5%) 446+ 3.1 (52.0%) 50.3+4.0 (26.3%) 457 £66 (21.6%) 46+04
EC (ug/m’) *x 3.1+ 0.6(2.2%) 18+03(2.1%) 34+0.5(1.8%) 2.2+0.7(1.0%) o

Reported values are mean + SEM for each group over all exposure days.
**below detection limit.
Carbon percentages are by mass.

were no significant differences in HR among any of the
exposure groups during any time period (Figure 1).

Heart rate variability (HRV)

Exposure to FCAPs + O3 caused a significant decrease in
the SDNN (4.8 +0.4 ms) compared with FA controls
(7.7 £ 0.5 ms) (Figure 1). No other significant differences
in time-domain HRV measurements were found among
any of the exposure groups pre-, during or post-exposure.
There were also no significant differences in the LF/HF
between any exposure groups.

Electrocardiogram

Figure 2 shows the electrocardiogram data before, during
and after exposure. There were no significant differences
in ECG between any of the groups during pre-exposure
or recovery. All animals experienced a decrease in PR
interval, QRS, ST interval, and QTc during the baseline,
which was likely related to the increase in HR. There-
after, PR interval and ST interval increased in all animals
during the exposure; though there were no significant
differences. In contrast, QRS and QTc were signifi-
cantly increased in mice exposed to UFCAPs + O3 when
compared to FA. Exposure to O3 alone demonstrated a
trend towards decreased QTc when compared with FA.

Cardiac arrhythmia

There was a significant increase in the number of non-
conducted P-wave arrhythmias during the 4-hour expos-
ure period to UFCAPs+ O3 when compared with FA
(Figure 3C). No other significant differences in arrhyth-
mias were observed among any of the exposure groups.
Although other types of arrhythmias were noted, they

were few in number and not statistically different between
any of the groups.

Cardiac effects before ischemia

Post-exposure (baseline) hemodynamics and the onset
time to ischemic contracture for each of the exposure
groups are listed in Table 3. As shown in Figure 4, there
was a significant decrease in LVDP in the FCAPs (31.9 +
6.7 cmH,0), O3 (54.7 £ 12.6 cmH,0) and UFCAPs + Oy
(45.0 £9.2 cmH,0) groups compared to FA (96.7 +9.6
c¢cmH,0) 24 hours after exposure and before ischemia.
Left ventricular contractility was also significantly depressed
in the UFCAPs, FCAPs, O3 and UFCAPs + O3 groups
compared to the FA control group. The maximum dP/dt
was significantly lower in FCAPs (1397 + 296 cmH,0/sec),
O3 (2483 + 480 cmH,0O/sec) and UFCAPs + O3 (1975 + 306
cmH,0/sec) when compared to FA (3880 + 208 cmH,O/
sec) and the minimum dP/dt before ischemia was also sig-
nificantly lower in the UFCAPs (-1452 + 395 cmH,O/sec),
FCAPs (-982 + 259 cmH,O/sec), O3 (-1520 + 318 cmH,O/
sec) and UFCAPs + O3 (-1323 £ 286 c¢cmH,0/sec) groups
when compared to FA (-2744 + 317 cmH,O/sec) (Figure 5;
Table 3). There was no difference in HR, coronary flow rate
or ischemic contracture between any exposure groups
before ischemia (Table 3).

Multivariate analysis of variance demonstrated that
differences in LVDP, maximum dP/d¢ and minimum dP/
d¢ between the FCAPs alone and FCAPs+ O3 groups
could be accounted for by the decrease in aluminum (Al),
barium (Ba), copper (Cu), iron (Fe) or silicon dioxide
(SiO,) compositions (Table 2); these elements clustered
together however the analysis could not determine which
element specifically was responsible. There were no
apparent differences in elemental composition between
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Table 2 Elemental composition of particulate matter in
exposure groups

Element Groups

(M9/m’)  EA” UFCAPs UFCAPs+0; FCAPs FCAPs+0; Oj
A — bd bdl 18364  08428- -
As — 00020 00040 00044 00077 -
Ba — 00070 00047 00865 00480 -
ca — bdl el 11741 06475 —
cd 00005 00005 00015 00010 —
Co — 00002 00002 00008 00006 -
Cr — 00088 00198 00129 00134 -
Cu — 00119 00727A 01550 00537 -
Fe — 00723 00848 21031 10555 —
K 0748 04325 26025 13867 -
Li — bd bl 00017 00013 -
Mg — 0082 00254 05585 06145 -
Mn 00048 00058 00604 00348 -
Mo — 00014 00032 00033 00036 -
Na 01491 02550 08990 37144 -
Ni 00053  00348A 00079 00084 -
p — bd bl 01278 0.1565 -
Pb — 00128 00124 00373 00271 —
504 . S64662 398730 304038 493026 ~ —
Sb 00035 00040 00146 00108 -
Se — bd bl 00246 00248 -
50, — gd bl 49640 284360 -
s — 00182 00239 00151 00121 —
St — 00016 00006 00179 00101 -
Ti — bdl bl 00691 00429 -
v — 00023 00052 00092 00122 -
7n — 01527 00989 02171 02057 —

bdl - Below Detection Level.

— Very low PM concentrations, insufficient sample mass for
elemental analysis.

A Significantly different from UFCAPs.

«Significantly different from FCAPs.

UFCAPs alone and UFCAP + O3, except nickel (Ni),
which were linked to any cardiac response changes, nor
were there any other significant linkages with any other
cardiac endpoints.

Cardiac effects post-ischemia

After ischemia there were minimal differences among the
groups. There was a significant decrease in HR 20 min
after reperfusion in the O3z group (213.8 +14.2 bpm)
compared to FA (285.3+17.5 bpm) (Figure 6). There
were no differences in the post-ischemia coronary flow
rates of any of the groups. Although all groups experi-
enced a significant decrease in LVDP recovery when
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compared to pre-ischemia, there was no significant dif-
ference in post-ischemia recovery of LVDP (Figure 7),
dP/dt .y, and dP/dt,,;, between any exposure groups.

Biochemical markers and inflammatory cells in BAL

and blood

Exposure to O3 alone or UFCAPs + O3 caused a signifi-
cant decrease in glutathione S-transferase (GTR) when
compared to controls. There were no other significant
differences in any other BAL cells or markers, or any of
the serum or plasma markers (Table 4).

Discussion

This study demonstrates that a single inhalation expos-
ure to either FCAPs or UFCAPs differentially affects
cardiac mechanical and electrical responses in mice, and
that the effect of O3 co-exposure on the response varies
for each particle size. FCAPs alone caused decreased
ventricular contractility but contrary to our original
hypothesis UFCAPs alone had no effect. However,
introduction of O3 as a co-pollutant with UFCAPs caused
a significant decrease in cardiac contractility 24 hours
after exposure and blunted the effects of FCAPs. In
contrast, although exposure to either FCAPs or UFCAPs
alone did not cause any significant electrocardiogram
effects, co-exposure to each with Oz caused electrical
and HRV changes that might indicate increased cardiac
risk. Overall, our results demonstrate that UFCAPs + O
produces the most significant effects across both mech-
anical and electrical cardiac function (Table 5). Thus,
these data suggest there is a differential effect of particle
size, which holds true in the presence or absence of Oj,
confirming the health effects resulting from a PM-gas
co-exposure are not simply the sum of both pollutants.
Instead, it appears each interaction (FCAPs+ O3 vs.
UFCAPs + O3) is complex and needs to be examined
separately, particularly when exposure concentrations
are low and the responses are subtle.

Our previous findings [21] suggested that UFCAPs
would cause greater cardiac effects than FCAPs. Ultrafine
black carbon particles have been shown to translocate
into the blood circulation and have the potential to
cause direct effects on the cardiovascular system [23,24].
UF particles cause heterogeneity of repolarization and
decreased HRV in humans [25], whereas mechanical
assessments in animals reveal decreased LVDP, con-
tractility and coronary flow [20,21,26,27]. In this study,
animals were exposed via whole-body inhalation as
opposed to instillation [21,26], direct perfusion [20,27],
or nasal inhalation [22], which could have resulted in a
comparatively lower effective dose and milder response
[28,29]. However, among our animals, calculations of
estimated total dose indicated that there was no differ-
ence between UFCAPs and FCAPs suggesting that in
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(See figure on previous page.)

Figure 1 The effect of CAPs with and without O3 on heart rate and heart rate variability. All animals were placed in the chambers and
allowed to acclimate for 1 hr before the exposure began (Baseline) and then exposed for 4 hrs (shaded area). When compared to pre-exposure,
all animals experienced an increase in HR during baseline, and then a progressive decrease from baseline during hour-1, 2, 3 and 4 of exposure
(Exp1, Exp2, Exp3, and Exp4). Exposure to UFCAPs with (UF/Os) or without (UF) ozone did not cause any significant changes in HR or HRV at any
time point (Column A)). Similarly, there was no effect of FCAPs alone (F) on any parameter; only exposure to FCAPs + Os (F/Os) significantly
decreased SDNN when compared to FA (Column B.). Exposure to ozone alone did not cause any significant effects (Column C)). Bracket indicates
that each hour of the exposure period is significantly different. Values are mean + SEM; *p < 0.05, significantly different from FA (n=6).

the absence of O3 more than just particle burden was
responsible for the cardiac decrements. Instead, the site
of deposition (i.e. pulmonary vs. extra-thoracic) may have
played a more important role. FCAPs, which we estimated
had a higher extra-thoracic deposition when compared to
UFCAPs (0.232 pg vs. 0.142 pg, respectively), may have
caused its effects through the activation of upper airway
sensory mechanisms. Previous studies have shown that
PM, 5 can cause irritation and subsequent activation of
autonomic reflex arcs, particularly due to the presence
of acidic components; UF particles did not produce the
same response [30]. Thus, the higher relative exposure
concentrations and differential deposition of FCAPs may
have resulted in variable epithelial injury, inflammation,
clearance and thus toxicological presentation [31].

On the other hand, it is not entirely surprising that on
their own FCAPs and UFCAPs did not cause any signifi-
cant changes in ECG given our previous negative results
with a more toxic pollutant [32]. Similarly, Campen
et al. [33] found that Apolipoprotein E (ApoE) -/- mice
on a high fat diet, which are assumed to be susceptible to
the cardiotoxic effects of inhaled pollutants, did not have
any ECG changes when exposed to high concentrations
of road dust PM or the vapor phase of gasoline engine
exhaust. As far as arrhythmias are concerned, spatial
dispersion of cardiac repolarization, which contributes to
arrhythmogenesis, is increased in people after co-exposure
to CAPs and Oj with each pollutant causing minimal
effects on their own [34]. Even in the presence of O, it
is clear from not only our results, but the previously
mentioned human data and other humans studies [35],
that relatively low CAPs exposures will likely only cause
mild electrical and HRV changes in healthy populations.
Thus, a significant ECG effect due to acute exposure may
not necessarily be direct evidence of serious cardiovascular
morbidity or premature mortality; rather, it may reflect a
transient instability that can worsen if exposure continues
over a longer period.

Co-exposure to UFCAPs and Oj produced electro-
physiological changes indicative of increased heterogeneity
of repolarization, as well as an increased incidence of
non-conducted p-wave arrhythmias, which suggest atrio-
ventricular block. In humans, this form of arrhythmia is
usually seen with a wide QRS complex [36], which was
also observed in our mice exposed to UFCAPs + Os; this

sometimes indicates that conduction is impaired in the
ventricles, particularly when observed with a block.
These results corroborate findings from human studies
of PM exposure [37,38] as well as human studies of PM
and Oz co-exposure [34]. Similarly, a long QTc due to
prolonged repolarization suggests increased risk of early
after-depolarizations, which can trigger arrhythmias and
potentially myocardial infarction when propagated. Indeed
it is not unusual that electrical and mechanical dysfunc-
tion were both observed in mice exposed to UFCAPs + O3
given increased arrhythmogenesis has been shown to be
associated with changes in myocardial stretch [39].

Consequently, clarifying the role of each pollutant in
the health response is challenging. It has been suggested
that PM may be the main driver of the cardiovascular
response in some instances with O3 acting as a modifier.
Brook et al. previously showed that PM and O3 together
cause acute arterial vasoconstriction in healthy humans
subjects, but so does PM alone [3,40]. However, we ob-
served depression of mechanical function with O3 alone;
although much of the current research is focused on PM
as a cardiotoxicant, several studies have also noted the
adverse cardiovascular effects of Oj inhalation; which
include decreased HR, alteration of cardiac repolariza-
tion, and increased inflammation [9,41-43]. As such, the
type of cardiac responses following air pollution may be
dependent on the type of pollutant, or combination of
pollutants, with some degree of overlapping effects.
Tankersley et al. [44] showed that both carbon black
particles and O3 caused reduced cardiac output in mice
but due to two different mechanisms. Thus, we speculate
that although both particles and gases produce similar car-
diac decrements, the mechanisms mediating the response
may not be the same (e.g. translocation vs. airway sensory
irritation). Combinations of pollutants only complicates
the assessment due the involvement of various separate
or overlapping mechanisms. Regardless, the responses
appear to be independent of total particle dose or even
pulmonary deposition given UFCAPs was estimated to be
less than FCAPs (pulmonary dose - 0.104 ug vs. 0.135 ug,
respectively).

The role of the autonomic nervous system cannot be
entirely discounted either; as demonstrated through HRYV,
the responses observed here and in other studies with
respect to PM exposure appear to be dependent on the
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Figure 2 (See legend on next page.)
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(See figure on previous page.)

o significantly different from Os alone (n =6).

Figure 2 Electrocardiogram effects before, during and after exposure to CAPs alone or with Os. All animals were placed in the chambers
and allowed to acclimate for 1 hr before the exposure began (Baseline) and then exposed for 4 hrs (shaded area). All animals experienced a decrease
in PR interval, QRS complex duration, ST interval and QTc from pre-exposure to baseline; these changes likely corresponded to the change in HR.
Although both PR and ST intervals increased in all groups during hour-1, 2, 3, and 4 of exposure (Exp1, Exp2, Exp3 and Exp4), there were no differences
in either of these parameters among any of the groups. QRS also showed an increasing trend during exposure in all groups; however only mice
exposed to UFCAPs + O3 had a significant increase in QRS and QTc when compared to FA (Column A)). There were no significant effects of
FCAPs, with or without Os, or Os alone at any time points (Column B. and C,, respectively). Bracket indicates that each hour of the exposure
period is significantly different. Values are mean + SEM. p < 0.05; *significantly different from FA, A significantly different from UFCAPs alone,

size of the particles. The interpretation and importance
of HRV in air pollution studies is still not entirely
agreed upon, particularly when examining populations
with underlying cardiovascular disease. Mills et al. [45]
and Peretz et al. [46] did not observe any HRV changes
in humans exposed to diesel exhaust, however this lack
of effect does not necessarily imply that there are no
autonomic changes, instead a trigger (e.g. stress, exercise,
etc) may be necessary to reveal any HRV differences.
On the other hand, some studies show that particles,
especially fine, cause HRV effects in humans. Several
studies have demonstrated that exposure to FCAPs
causes decreased HRV in young healthy or elderly adults
[15,47,48] with O3 co-exposure only potentiating the
response [15]. In healthy young adults, there was no
dose-response relationship between FCAPs mass and
HRYV, however when combined with O, increases in CAPs
mass decreased HRV in a dose-dependent manner [35].
On the other hand, UFCAPs either have no effect [49] or
increase HRV [17,25] or the results are less conclusive
across all studies. Long-term exposure to UFCAPs, or a
higher concentration, may have caused a significant
change in HRV given these particles have the ability to
penetrate deep into the lung, cause inflammation and
activate autonomic reflex pathways [50].

Some of these pathways may lead to subsequent ische-
mic damage, which has been shown to be increased by
PM. Cozzi et al. showed that in mice intra-tracheally
instilled with ultrafine PM, infarct size and oxidative
stress in the myocardium were significantly increased
[51]. This corroborates our previous PM instillation
studies which also demonstrated an increase in post-
ischemia infarct size and decreased recovery of LVDP
[21]. It appears that the method of exposure significantly
impacts the post-ischemia response because even though
exposure to FCAPs or UFCAPs + O3 caused significant
pre-ischemia functional decrements, there was no change
in coronary flow post-ischemia and there appeared to be
an improvement of LVDP recovery (Figure 7). These find-
ings are similar to what we observed with inhalation of
multipollutant mixtures [43] and may represent activation
of some compensatory mechanism post-exposure that
actually protects the heart during ischemic injury. Lastly,
although infarct size was not measured in our animals, we

theorize that there was probably minimum to no increase
particularly given we previously observed a decrease in
infarct size with multipollutant mixture inhalation [43].
Thus, acute inhalation of fine or ultrafine PM alone or
in combination with O3 may not be potent enough to
cause serious ischemia-related damage and that a higher
concentration is necessary to overcome this apparent
response threshold.

Other than the mode of exposure, the chemical and
physical characteristics of the PM might also account for
some of the differences in response observed in this
study. Indeed it is a limitation that exposure to CAPs
alone could not be done on the same days as CAPs + Os;
this accounts for the variation in not only particle numbers
but composition as well. However, it is our assertion that
the responses to these “real-world” particle concentrations
are important, especially given the daily fluctuation of
particulate air pollution and the ubiquitousness of Os.
It is also important to note that although we compare
these results to our previous study [21], the composition
of the current FCAPs and UFCAPs is different. Our CAPs,
particularly the UFCAPs, had a higher organic (OC) and
total carbon (TC) content; thus possibly explaining the
differences in response.

As such, there was a three-fold decrease in Cu and a
two-fold decrease in Fe in the FCAPs+ O3 exposure
when compared to FCAPs alone which may have con-
tributed to the lack of effect in the former. There was
also an increase in Ni and Cu, which have been shown
to be two of the most toxic metals found in PM [52], in
the UFCAPs + O3 exposure when compared to UFCAPs
alone. In contrast, even though it appears that mass was
not a factor in the observed decrements because there was
less PM in the UFCAPs + O3 exposure than UFCAPs alone
and the opposite for the FCAPs and O3 co-exposures, there
was a significantly higher sulfate and OC/TC content in the
UFCAPs, especially the UFCAPs + O3, when compared
to FCAPs, which may explain the larger cardiac effect
[53]. On the other hand, responses to FCAPs and UFCAPs
combined with O3 might also be partially explained by the
chemical changes occurring in PM upon ozonization.
Ozone is highly reactive and therefore it has the potential
to react with certain components of PM such as the
aromatic compounds [6]. It has been documented that
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Figure 3 Typical mouse electrocardiogram and arrhythmia
count during exposure. A. Typical mouse ECG during normal
sinus rhythm and B. a non-conducted p-wave (NCPW) - represents
a sudden loss of conduction from the atria to the ventricles. C.
Non-conducted p-waves were significantly increased only in mice
exposed to UFCAPs + Os. Values are mean + SEM. p < 0.05; *significantly
different from FA, A significantly different from UFCAPs alone,
o significantly different from O3 alone (n=6).

ozonization of aromatic substances can result in the
formation of carbonyls, carboxylic acids, quinones, and ep-
oxides, which can be more toxic than the parent compound
[54,55], but also less potent due to “over-ozonization” [56].
It is yet unclear which mechanism is at play here.
Additionally, O3 may cause epithelial injury and oxidative
stress, which facilitate the PM effects [57]. Adamson et al.
[58] showed that Os; and urban particulate co-exposure
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resulted in greater epithelial injury and interstitial inflam-
mation than for either component alone; not to mention
UFP did not have a large biological effect without O3. As
such, co-exposures may produce differential responses
due to toxicological interactions within the host. Thomson
et al. [59] showed that on their own, PM and Oj; increased
expression of the potent vasoconstrictor endothelin-1
(ET-1) in the lungs and its circulating levels in the plasma,
however, together they only caused an upregulation (i.e.
without plasma “spill-over”). Although there were no sig-
nificant changes in inflammatory cells or markers in the
blood or lavage, we found that O3 alone and UFCAPs +
O3, but not FCAPs or UFCAPs alone, caused significantly
decreased serum glutathione S-transferase (GTR) levels,
which is indicative of increased oxidative stress; direct
measurement of oxidative stress in the myocardium may
have revealed a greater involvement as was shown by
Cozzi et al. [51]. Wang et al. previously showed that PM, 5
and Oj increased several markers of inflammation and
oxidative stress in rats however their exposure concentra-
tions were significantly higher than those used here [60].
Regardless, synergistic interactions between inhalable PM
and O3 can increase the generation of reactive oxygen
species due to the porous surface of particles which
provides ample surface area for reactivity, but that the
potency still depends on particle concentration, size
and other factors [61,62].

Conclusion

The results of this study demonstrate that fine and ultra-
fine CAPs differentially alter cardiac responses, which
include both mechanical and electrical effects. More
importantly, these data clearly show that the effects of
co-exposure may not be simply additive or synergistic,
nor even generalizable. Although only fine CAPs had
significant effects on its own, Oz co-exposure with
FCAPs caused decreased HRV whereas with UFCAPs
caused electrical changes and arrhythmia. Interestingly,
O3 co-exposure only caused mechanical decrements
with UFCAPs and to our surprise blunted the effects of
FCAPs. This indicates that the size, and potentially the
chemical composition, of the particle is an important
determinant of the type of cardiac response, particularly
when gaseous co-pollutants are present. Although the
responses were subtle, the important message may be
that latent underlying changes are occurring post-
exposure and that the deleterious effects of even a single
exposure to air pollution needs to be considered. Some
of these might not manifest as overt symptoms, however
the latent effect might not be any less serious, instead
increasing the susceptibility to subsequent triggered
adverse responses (i.e. due to loss of compensatory
capacity), particularly in people with existing cardiovas-
cular disease.
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Table 3 Baseline hemodynamic properties and the onset time to ischemic contracture

Group (n=6-8) LVDP (cmH,0) HR (bpm)

Flow rate (mL/min) dP/dt,,., (cmH,0/sec)

dP/dtin, (cmH,0/sec) Time to contracture (min)

FA 96.7 +9.6 3066+175 1.7+03 3880 + 208 -2744 + 317 143+19
UFCAPs 59.7+154 2703+196 1.7£05 2564 + 825 -1452 £ 395 146+18
UFCAPs + 05 450£93% 2951185 20£05 1975 + 306* -1323 + 286* 15116
FCAPs 319+£6.7% 3013+276 57£29 1397 + 296* -981 + 259* 11.1+£05
FCAPs + O3 880+ 184 2776+157 1.7x02 3034 +£528 -2219+£ 3% 129+13
O3 547x126 2463+364 25+06 2483 £ 480 -1520+318 153£16

Values are means + SEM. Flow rate = coronary flow rate; dP/dty.x = maximum 1st derivative of the change in left ventricular pressure/time; dP/dti, = minimum 1st
derivative of the change in left ventricular pressure/time; time to contracture = onset time to ischemic contracture. *Significantly different from FA; p < 0.05; n =5-8.

Materials and methods

Animals

Ten to twelve-week old female C57BL/6 mice (body
weight =21.6 +0.1 g) were used in this study (Jackson
Laboratory - Bar Harbor, ME). Mice were initially housed
five per cage and maintained on a 12-hr light/dark cycle at
approximately 22°C and 50% relative humidity in an AAA-
LAC-approved facility. Food (Prolab RMH 3000; PMI
Nutrition International, St. Louis, MO) and water were
provided ad libitum. Each mouse implanted with a radio-
telemeter was singly housed after surgery. All protocols
were approved by the Institutional Animal Care and Use
Committee of the U.S. Environmental Protection Agency

and are in accordance with the National Institutes of

Health Guides for the Care and Use of Laboratory
Animals. The animals were treated humanely and with
regard for alleviation of suffering.

150+

Figure 4 Effect of CAPs exposure on left ventricular developed
pressure (LVDP). Exposure to FCAPs alone (F) significantly decreased
LVDP at baseline (24 hrs after exposure - prior to ischemia) when
compared to FA, however there was no effect with O3 co-exposure. In
contrast, UFCAPs alone had no effect on LVDP but with O5 co-exposure
caused a significant decrease when compared to FA. Values are means

+ SEM (n = 5-8/group). *Significantly different from FA; p < 0.05.
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Figure 5 Effect of CAPs exposure with and without O3 on rate
of left ventricle contractility and relaxation. Assessment of
contractility (dP/dtqax - upper panel) and lusitropy (dP/dtq, - lower
panel) were carried out at baseline 24 hrs after exposure - prior to
ischemia. Exposure to FCAPs alone significantly decreased dP/dt, .«
and dP/dt,.i, at baseline when compared to FA, however there was
no effect with O5 co-exposure (FCAPs/Os). In contrast, UFCAPs alone
had no effect; but, O5 co-exposure with UFCAPs (UFCAPs/O;) caused
both dP/dt, . and dP/dt i, to significantly decrease when compared
to FA. Values are means + SEM (n = 5-8 in each group). *Significantly
different from FA; p < 0.05.
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Figure 6 Heart rate twenty minutes after ischemia-reperfusion.
After 20 mins of reperfusion, heart rate (HR) was significantly lower
in animals exposed to O3 when compared to FA. There were no
other significant differences in post-ischemia HR between any
groups or at any other time point. Values are means + SEM (n =5-8
in each group). *Significantly different from FA; p < 0.05.

Experimental groups

Mice were randomly assigned to one of six exposure
groups: (1) fine concentrated ambient particles (FCAPs);
(2) ultrafine CAPs (UFCAPs); (3) ozone (O3); (4) FCAPs
and O3 co-exposure (FCAPs + Os); (5) UFCAPs and O3
co-exposure (UFCAPs + Os); and (6) filtered air (FA). Each
group had n = 6. Separate groups (same as above) of mice
were used for Langendorff cardiac perfusion experiments
(n=5-8).

Surgical implantation of radiotelemeters

Animals were weighed and then anesthetized using in-
haled isoflurane (Isothesia, Butler Animal Health Supply,
Dublin OH). Anesthesia was induced by spontaneous
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breathing of 2.5% isoflurane in pure oxygen at a flow
rate of 1 L/min and then maintained by 1.5% isoflurane
in pure oxygen at a flow rate of 0.5 L/min; all animals
received the analgesic Buprenorphrine (0.03 mg/kg, i.p.
manufacturer). Briefly, using aseptic technique, each ani-
mal was implanted subcutaneously with a radiotelemeter
(ETA-F10, Data Sciences International, St Paul, MN);
the transmitter was placed under the skin to the right of
the midline on the dorsal side. The two electrode leads
were then tunneled subcutaneously across the lateral
dorsal sides; the distal portions were fixed in positions
that approximated those of the lead II of a standard elec-
trocardiogram (ECG). Body heat was maintained both
during and immediately after the surgery. Animals were
given food and water post-surgery and were housed indi-
vidually. All animals were allowed 7-10 days to recover
from the surgery and reestablish circadian rhythms.

Radiotelemetry data acquisition

Radiotelemetry methodology (Data Sciences International,
Inc., St. Paul, MN) was used to track changes in cardiovas-
cular function by monitoring heart rate (HR), and ECG
waveforms immediately following telemeter implantation,
through exposure until 24 hours post-exposure. This
methodology provided continuous monitoring and collec-
tion of physiologic data from individual mice to a remote
receiver. Sixty-second ECG segments were recorded every
5 minutes during the pre- and post-exposure periods and
continuously during exposure (baseline and hours 1-4);
HR was automatically obtained from the waveforms
(Dataquest ART Software, version 3.01, Data Sciences
International, St. Paul, MN, USA).

Electrocardiogram analysis
ECGAuto software (EMKA Technologies USA, Falls
Church VA) was used to visualize individual ECG

100+
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Figure 7 Post-ischemia recovery of LVDP. Following ischemia, all animals experienced a significant decrease in recovery LVDP (expressed as a
percentage of pre-ischemia) when compared to pre-ischemia. There were no significant differences among any groups in the recovery LVDP at
20 (R20), 40 (R40) or 60 (R60) minutes post-ischemia; however there was a trend towards increased % LVDP in the FCAPs, Os and UFCAPs + O3
groups at R20, R40 and R60 when compared to FA; consequently, these groups were the same ones demonstrating pre-ischemia changes. Values
are means + SEM (n = 5-8 in each group). *Significantly different from FA; p < 0.05.
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Table 4 Biochemical markers in the bronchoalveolar lavage and serum

Bronchoalveolar lavage Blood
Group LDH(U/L) MIA(ug/ml)  NAG(U/L)  Protein(ug/ml)  ACE(U/L) CK(U/L) CRP(pg/dl) HBDH(U/L)  GTR(IU/ml) LDH(U/L) SOD(U/ml)  Protein(g/dl)
Air 672+124  103%04 60+02 131.0£95 1939+264 23E3£8915 648%+100 2163518 0042+0014 55141537 19402 4404
UFCAPs 50.7+37 97+02 67+04 870+118 2503+335 10E3+329  732%56 172965  0022+0002  3906+302 16+0.02 48+02
UFCAPs+0; 776%203 10608 53+05 1202+314 1587253 10E3+1785 651+66 2395+591 0015+£0004* 4418+614 20£0.2 47%02
FCAPs 585%£137  98%05 6.0£0.1 949143 191.3+£233  12B3£1242 869%129 190.1£320 0023+0005 3969%715 18%0.1 50+£0.2
FCAPs + O3 782+3137 102%03 64+03 1274111 1675222 19E3+4995 55696 1701205 0019+ 0.003 3824%536 19+£0.2 43%0.1
O3 539%75 95+04 50+02 83.7%£63 1424+£303 1.7E3+3340 719180 2039+364 0016+0004* 4319%86.1 26+03 4503

Values are mean + SEM. *p < 0.05; significantly different from FA.
LDH - Lactate dehydrogenase.

MIA - Microalbumin.

NAG - N-acetyl-b-d-glucosaminidase.

ACE - angiotensin converting enzyme.

CK - Creatine Kinase.

CRP - C-reactive protein.

HBDH - a-hydroxybutyrate dehydrogenase.

GTR - glutathione-S-transferase.

SOD - Superoxide dismutase.
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Table 5 Summary of effects
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Group LVDP dP/dt,.,, dP/dt.,,, LVDP recovery Coronary flow Heart rate SDNN RMSSD LF/HF QTc NCPW
(post-ischemia) rate (post-ischemia)

FA - - - - - - - - - - -

UFCAPs NE NE NE NE NE NE NE NE NE NE  NE

UFCAPs+05 | l ! NE NE NE NE NE NE i i

FCAPs l l l NE NE NE NE NE NE NE NE

FCAPs + O3 NE NE NE NE NE NE l NE NE NE  NE

O3 NE NE NE NE NE NE NE NE NE NE  NE

NE = No Effect.

| =significant decrease.
1 = significant increase.
NOTE: the above responses are compared to Air.

waveforms, analyze and quantify ECG segment durations
and areas, as well as identify cardiac arrhythmias as
previously described [63]. Briefly, using ECGAuto, P-
wave, QRS complex, and T-wave were identified for
individual ECG waveforms and compiled into a library.
Analysis of all experimental ECG waveforms was then
based on established libraries. The following parameters
were determined for each ECG waveform: PR interval
(Pstare-R), QRS complex duration (Qsar-S), ST segment
interval (S-Te,q) and QT interval (Qgart-Tena)- QT interval
was corrected for HR using the correction formula for
mice QTc = QT/(RR/100)"* [64]. Figure 3A and B show a
typical ECG trace as well as a typical non-conducted p-
wave (NCPW) arrhythmia, which indicates an intermittent
atrioventricular block, as observed in mice, respectively.

HRV analysis

Heart rate variability (HRV) was calculated as the mean of
the differences between sequential RRs for the complete
set of ECG waveforms using ECGAuto. For each 1-min
stream of ECG waveforms, mean time between successive
QRS complex peaks (RR interval), mean HR, and mean
HRV-analysis—generated time-domain measures were
acquired. The time-domain measures included standard
deviation of the time between normal-to-normal beats
(SDNN), and root mean squared of successive differences
(RMSSD). HRV analysis was also conducted in the
frequency domain using a fast-Fourier transform. The
spectral power obtained from this transformation rep-
resents the total harmonic variability for the frequency
range being analyzed. In this study, the spectrum was
divided into low-frequency (LF) and high-frequency
(HF) regions. The ratio of these two frequency domains
(LF/HF) provides an estimate of the relative balance
between sympathetic (LF) and vagal (HF) activity.

Concentrated ambient particle and ozone exposure

See Additional file 1 for full exposure details. Briefly,
concentrated ambient particles (CAPs) and ozone (Os)
were generated in the U.S. EPA’s Concentrated Air Particles

Laboratory, Research Triangle Park, NC. All exposures
were carried out in the summer months of June and July
and under sunny and warm climate conditions. Ambient
air containing PM from outside the facility entered the sys-
tems and passed through a size selective inlet removing
PM >25 pum so that remaining particles were in the size
fractions of interest. The largest source of PM was from
mobile sources (=20%), wood combustion (=21%), road
dust (=4%) and other minor sources such as brake wear
and marine salt; the remaining PM was from secondary
sulfates (=50-55%).

Incoming air was then split into two streams and
particles were selectively concentrated into either the
fine (0.1 to 2.5 um) or ultrafine mode (<300 nm) and
then delivered into two separate chambers. Real time
measurements of number concentration and particle size
distribution were performed using a scanning mobility
particle sizer (SMPS) and an Aerodynamic Particle Sizer
(APS). A generator was used to produce O3z (0.3 ppm),
which was then delivered to a third chamber. Chamber
plumbing was altered to allow different configurations of
concentrated PM and/or Oj including: FCAPs alone,
UFCAPs alone, FCAPs + O3, UFCAPs + O3, O alone, or
filtered air (FA). Exposure to FCAPs/UFCAPs alone
had to be done on separate days from FCAPs/UFCAPs
co-exposures with O3 due to limitations in the exposure
system (i.e. exposure to CAPs alone and CAPs + O3 could
not be done on the same day); day-to-day variations in
particle concentrations and composition were expected
due to this.

The study protocol included two days of animal-to-
chamber acclimatization prior to exposure. A normal
four-hour exposure (Expl (exposure hour 1), Exp2, Exp3,
and Exp4) started with one hour of additional chamber
acclimatization (Baseline). All mice were moved back
to their home-cages after the exposure (Recovery). The
Multiple Pathway Particle Dosimetry (MPPD; Version
3.0) model was used to predict particle doses [65,66] for
mice and humans; ventilatory parameters were estimated

using typical values [67].
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Cardiac perfusion

The procedure for cardiac perfusion has been previously
described [21]. Briefly, 24 hours after exposure, mice
were anesthetized with sodium pentobarbital (80 mg/kg,
i.p.). Heparin (100 units) was injected intravenously
before removal of heart. The hearts were rapidly removed
and placed in ice-cold Krebs-Henseleit buffer, after which
the aortas were cannulated. Retrograde perfusion via the
aorta was performed under constant pressure (100
c¢cmH,0) above the heart. The non-recirculating perfusate
was a Krebs-Henseleit buffer containing (in mmol/L) 120
NaCl, 5.9 KCl, 1.2 MgSO,, 1.75 CaCl,, 25 NaHCO3, and
11 glucose. The buffer was aerated with 95% O,—5% CO,
and maintained at pH 7.4 and a temperature of 37°C.

For assessment of contractile function, a latex balloon
on the tip of a polyethylene catheter was inserted through
the left atrium into the left ventricle. The catheter was
connected to a pressure transducer (Argon Medical
Devices, Athens, TX) at the same height as the heart.
The pressure of the left ventricular balloon was inflated
to 0-5 cmH,0. A PowerLab system was used to collect
and process the heart rate, left ventricular developed
pressure (LVDP = LV peak minus end-diastolic pressure
(LVEDP)), and contractility (dP/dt) data (AD Instruments,
Milford, MA). All hearts were perfused for 25 min; we
then initiated 20 min of global no-flow ischemia by
stopping the flow of oxygenated perfusion buffer, followed
by 1 h of reperfusion. Onset of ischemic contracture was
measured as the time from the start of ischemia until
initial contracture (at least 5 ¢cmH,O increase in left
ventricular pressure). Recovery of LVDP, expressed as a
percentage of the initial pre-ischemic LVDP, was mea-
sured at 20, 40 and 60 min of reperfusion after 20 min
of ischemia.

Tissue collection and analysis

See Additional file 1 for full details, procedures were
performed as previously described [32]. Briefly, 24 hrs
after exposure, mice were euthanized and blood and lung
lavage fluid (BAL) were collected, processed and analyzed.
Multiple biochemical markers (e.g. lactate dehydrogenase,
protein, etc) were assessed in the BAL, and serum or
plasma supernatants were analyzed for creatine kinase,
C-reactive protein (CRP), and other markers to assess
cardiopulmonary inflammation, injury and oxidative stress.

Statistics

All data are expressed as means + SEM. Statistical ana-
lyses of the data were performed with GraphPad Prism 5
(GraphPad software, San Diego CA). For HR, ECG inter-
vals and HRV, two-way analysis of variance (ANOVA)
for repeated-measures and Bonferroni post hoc tests
were used to determine statistical differences. A one-way
ANOVA was used to analyze arrhythmia counts. For
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Langendorff cardiac perfusion data, comparisons between
groups were performed by one-way ANOVA followed
by Bonferroni post hoc test for multiple comparisons.
Comparisons were made across all groups taking into
account the multiple endpoints, exposure groups and
time points as well as any interactions. An oblique
principal component cluster analysis and multivariate
analysis of variance (MANOVA — GLM procedure and
least squares means post hoc test) were performed
using SAS version 9.3 software, (SAS Institute Inc, Cary,
NC) to determine whether the elements found in the CAPs
on their own or in combination with one another had
an effect on the cardiac responses. The objective of this
approach was to reduce the large number of variables (i.e.
elements) to a smaller set that still retain the information
in the original data set and then examine for effects. Five
clusters were revealed and elements belonging to the
same cluster had strong correlations. A p-value < 0.05 was
considered statistically significant.

Additional file

[ Additional file 1: Supplementary Material. J
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