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Abstract

Background: Heart rate and cardiovascular function are regulated by the autonomic nervous system. Heart rate
variability (HRV) as a marker reflects the activity of autonomic nervous system. The prognostic significance of HRV in
cardiovascular disease has been reported in clinical and epidemiological studies. The present study focused on the
influence of inhaled multi-walled carbon nanotubes (MWCNTs) on autonomic nervous system by HRV analysis.

Methods: Male Sprague–Dawley rats were pre-implanted with a telemetry device and kept in the individual cages
for recovery. At week four after device implantation, rats were exposed to MWCNTs for 5 h at a concentration of
5 mg/m3. The real-time EKGs were recorded by a telemetry system at pre-exposure, during exposure, 1 day and
7 days post-exposure. HRV was measured by root mean square of successive differences (RMSSD); the standard
deviation of inter-beat (RR) interval (SDNN); the percentage of successive RR interval differences greater than 5 ms
(pNN5) and 10 ms (pNN10); low frequency (LF) and high frequency (HF).

Results: Exposure to MWCNTs increased the percentage of differences between adjacent R-R intervals over 10 ms
(pNN10) (p < 0.01), RMSSD (p < 0.01), LF (p < 0.05) and HF (p < 0.01).

Conclusions: Inhalation of MWCNTs significantly alters the balance between sympathetic and parasympathetic
nervous system. Whether such transient alterations in autonomic nervous performance would alter cardiovascular
function and raise the risk of cardiovascular events in people with pre-existing cardiovascular conditions warrants
further study.
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Background
With potential wide industrial applications, the impacts
of airborne engineered nanomaterials on human health
have recently raised significant concerns to investigators.
The studies have found that due to their small size
(nanometer range), unique electrical, mechanical, and
thermal properties, inhalation of engineered nanoparti-
cles is possible and may induce a series of adverse effects
not only in the lungs, but other organs as well [1–3].
We and other investigators reported previously that

inhalation of nanoparticles, such as ultrafine titanium di-
oxide (UFTiO2), can exhibit impacts on vascular con-
striction, blood pressure and cardiac function [4, 5].
There are three major accepted hypothetic mechanisms
elucidating how inhaled nanoparticles could affect the
cardiovascular system. These hypothetic mechanisms
include a local inflammation-mediated reaction, the
particle translocation, and a neuronal-regulated pathway
[6–9]. In our previous study, our results indicated that
the effects on the cardiovascular system induced by
inhalation of UFTiO2 were most likely through an auto-
nomic neuron-regulated pathway [4, 9]. This conclusion
was based on our findings that inhalation of UFTiO2 can
stimulate pulmonary C-fiber sensory neurons and en-
hance activity of neural transmitter synthesis in nodose
ganglia [9]. Nerve fibers from the nodose ganglia project
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to the brainstem, including the medullar cardiovascular
regulatory center, to regulate autonomic efferent neuron
activity [10, 11]. Therefore, stimulation of peripheral
sensory neurons by nanoparticles can change the activity
of the central autonomic nervous system (ANS) that
regulates the cardiovascular system. The evidence sup-
porting the involvement of an autonomic neuronal-
regulated pathway was also found in several ex vivo
animal studies, which indicated that inhalation of nano-
particles affected cardiovascular function in response to
adrenergic stimulation [5]. The earlier studies conducted
by Legramante et al. and Bartoli et al. demonstrated that
inhalation of either ultrafine particles from ambient air
or engineered nanoparticles can alter baroreceptor reflex
sensitivity, providing the evidence to support the in-
volvement of an alteration of ANS following nanoparti-
cle exposure [12, 13]. The information obtained from
these studies all suggested an involvement of ANS in the
neuronal-regulation of cardiovascular function following
nanoparticle exposure.
The activity or the balance of ANS is crucial in main-

taining the proper performance of the cardiovascular
system. A disturbance of ANS can also lead to an in-
crease in cardiovascular morbidity or mortality [14–16].
HRV is a proven tool for monitoring and assessing
changes in ANS activity. By analysis of autonomic back-
ground of beat-to-beat interval fluctuations in the heart
rate record, HRV is also an independent predictor of
cardiovascular events mortality and morbidity [17, 18].
Clinical and epidemiological studies confirm a high
correlation between HRV and cardiovascular disease in
human studies [17, 18]. In epidemiological studies,
inhalation of particular matter 2.5 μm (PM 2.5) from
ambient air can trigger cardiovascular events, which
were associated with a reduced HRV [19, 20]. Although
most studies demonstrate that inhalation of engineered
nanoparticles has adverse effects on the cardiovascular
system and provided evidence for involvement of the
ANS, very few studies have focused on whether exposure
to nanoparticles will influence ANS outflow and the
balance between the sympathetic and parasympathetic
nervous system.
The objective of the present study was to determine

whether and how the activity of ANS can be influenced
by pulmonary exposure to MWCNTs by analysis of
beat-to-beat variability of the heart rate of the electro-
cardiogram (EKG) recorded from freely moving rats pre-
implanted with telemetry device.

Methods
Animal. Male Sprague–Dawley [Hla :(SD) CVF] rats from
Hilltop Lab Animals (Scottdale, PA, USA), weighing 275–
300 g and free of viral pathogens, parasites, mycoplasmas,
Helicobacter and cilia-associated respiratory (CAR) bacillus

were used for all experiments. The rats were acclimated
for 1 week after arrival and housed in cages ventilated
with HEPA (high efficiency particulate air)-filtered air
under controlled temperature and humidity conditions
and a 12-h light/12-h dark cycle. Food (Teklad 7913) and
tap water were provided ad libitum. The animal facilities
are specific pathogen-free, environmentally controlled,
and accredited by the Association for Assessment and
Accreditation of Laboratory Animal Care International
(AAALAC). All animal procedures used during the
study have been reviewed and approved by the National
Institute for Occupational Safety and Health Animal Care
and Use Committee.

Telemetry transmitter implantation
Before the surgery, rats were kept separately, quiet, and
handled gently to avoid distress. Surgical instruments
and supplies were autoclaved, and aseptic technique was
used throughout the surgical procedure. Anesthesia was
induced with 3 % isoflurane and 1 l per minute of
oxygen in an induction chamber and maintained at 2 %
isoflurane and ½ liter per minute of oxygen during the
surgery. A temperature-controlled heating pad was used
to maintain normal body temperature of the rat and was
maintained via anal probe during the entire procedure.
Cardiopulmonary responses were examined as an intra-
operative monitoring technique along with the spinal re-
flexes to determine the proper depth of anesthesia. The
incision sites were clipped and then aseptically prepared
with povidone-iodine, followed by 70 % alcohol.
A telemetry transmitter (HD-S21, Data Sciences

International, St. Paul, MN) was positioned underneath
the abdominal wall on the left lateral side of the incision
and was secured in place by suturing to the abdom-
inal muscle using 4–0 non-absorbable suture (Surgical
Specialties Corporation, Wyomissing, PA). Two EKG
leads were tunneled subcutaneously, the negative lead
secured over the right pectoral muscle and the positive
lead secured at the left caudal rib region approximately
2 cm to the left of the xyphoid process. Post-operative
care was strictly followed by protocol: 5 mg/kg of meloxi-
cam (Metacam, Boehringer Ingelheim Vetmedica, Inc. St.
Joseph, MO) was administered subcutaneously for pain
relief, once a day for 4 days. The general condition, body
weight and food and water consumption of the rats were
closely monitored. Rats had a period of 3 weeks convales-
cence before data acquisition and inhalation exposure.

Pulmonary MWCNTs exposure
Rats received MWCNTs by inhalation exposure. Rats
were placed individually in a sealed exposure cage filled
with aerosols of MWCNTs. Sham rats (control group)
were placed in the chamber and exposed to filtered air.
In order to minimize the stress of exposure chamber to
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the rat, the exposure chamber was modified from the
same type of cage that is used for hosting the rats. The
MWCNTs aerosol concentration was 5 mg/m3, and the
exposure duration was 5 h. The aerosol generation sys-
tem, exposure chamber and physical characterization of
the MWCNTs aerosol have been described previously
[21]. Previous studies have shown that this exposure
scheme produced an actual pulmonary deposition of
41 μg MWCNTs in rats, which is equivalent to workers
exposed to the NIOSH Recommended Exposure Level
of 0.1 mg/m3 for about 108 workdays in a typical occu-
pational environment [21, 22]. Although the exposure
concentration used in our study was relative high, it rep-
resents the current OSHA Permissible Exposure Level.
In addition, it has been observed and reported that dur-
ing the production of MWCNTs, respirable particles
around emission source can be higher than the concen-
tration we used in our study [23–25].

Data acquisition and analysis
EKG were recorded continuously for 24 h on unre-
strained, conscious rats just before and during the
exposure and 1 day and 7 days post-exposure, On the
exposure day, rats were allowed to acclimate to the
chamber for 30 min, then 5 h (9 am-2 pm) continuous
EKG recordings were made during exposure. EKG data
were analyzed using Ponemah software (v 5.20) and
HRV time domain Marco (Data Sciences International,
St. Paul, MN). HRV was evaluated by analyzing beat-to-
beat variations in RR intervals. For the time domain
analysis, all parameters were averaged over the course of
5 h (9 am-2 pm). For the frequency domain analysis,
5-min segments (selected from each hour over the course
of 5 h) of the EKG tracing were chosen for analysis. Time
series were resampled at 20 Hz and spectral power in the
LF (0.25–1Hz), HF (1–3 Hz), total power and LF/HF were
calculated by an HRV analysis module of Ponemah soft-
ware (v 5.20).

Statistical analysis
Data were compared using two-way (Treatment by Day)
repeated measures analysis of variance. Subsequent pair-
wise comparisons were tested using Fishers LSD. All
data were analyzed using SAS software (Version 9.3) and
differences were considered statistically significant at the
level of p < 0.05. The values in the figures were expressed
as the mean ± SE.

Results
Our results indicated that HR in the control group was
slightly increased during exposure, whereas, the HR in
MWCNTs exposure group was decreased. In Fig. 1, it
compared percentage change of the HR during the
exposure from pre-exposure between the control and

MWCNTs-exposed groups. Although, the trend direc-
tion of the HR in response to the exposure was opposite,
there was no significant difference reached between the
two groups (p = 0.16).
The indices of time domain RMMSD, SDNN, pNN5

and pNN10 were analyzed over a time course of 5 h
EKG. RMMSD was increased in the MWCNTs-exposed
group and slightly reduced in control group during the
exposure. The percentage changes of RMMSD during
exposure, 1 day and 7 days post-exposure from pre-
exposure were compared between two groups. The
significant difference was only observed during the ex-
posure time period (Fig. 2). There was no difference
founded between the two groups with regards to the
SDNN (Fig. 3). Like RMMSD, both pNN5 and pNN10
showed significant difference between the control and

Fig. 1 Bar graph depicting % change of HR from the basal level before
exposure (Control vs MWCNTs: 328.0 ± 9.6 vs 347.0 ± 11.45 bmp). Each
value represents the mean ± SE of 8 rats

Fig. 2 Bar graph depicting % change of RMSSD from the basal level
before exposure (Control vs MWCNTs: 4.11 ± 0.39 vs 3.94 ± 0.30 ms).
Each value represents the mean ± SE of 8 rats. P < 0.01 compared
with control group (*)
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the MWCNTs groups during the exposure (MWCNTs-
exposed group being higher), and there was no differ-
ence observed between the two groups at 1 day and
7 days post-exposure (Fig. 4a, b).
Two frequency domains, LF and HF, are the major pa-

rameters to reflect the performance of sympathetic and
parasympathetic nervous system. The percentage changes
of LF and HF were compared between two groups as pre-
sented in Figs. 5 and 6. Both LF and HF were significantly
higher in the MWCNTs-exposed group than the control
group during the exposure but there were no differences
between the two groups at 1 day and 7 days post-exposure
(Figs. 5 and 6).

The total power, the sum of LF and HF power, reflects
total variance in heart rate pattern over a certain length
of recording and is associated with the status of the per-
formance in autonomic nervous system. The total power
was elevated during the exposure to MWCNTs (Fig. 7).
The increased total power during the exposure could be
influenced predominantly by HF power as shown in
Fig. 6. Our study found that the LF/HF ratio was not
significantly changed between the two groups during
MWCNTs exposure (Fig. 8), even though the HF was
dramatically increased as shown in Fig. 6.

Discussion
The role of autonomic nervous system (ANS) in regula-
tion of cardiovascular function has been well studied
[26]. Heart rate variability (HRV), as an indicator reflect-
ing fluctuations in the activity of sympathetic and para-
sympathetic nervous system, has been studied for its
role in the prediction of cardiovascular morbidity and
mortality in the clinical studies [17, 27]. A decrease in
HRV usually indicates a worse prognosis in patients with
cardiovascular event, and vise verse [27]. Recently
epidemiological studies demonstrated that inhalation of
PM2.5 pollutants reduces HRV and triggers cardiovascu-
lar events in a group of individuals with a pre-existing
cardiovascular condition [28]. These studies suggest that
exposure to particles can alter HRV, and there is an
association between HRV alteration and adverse cardio-
vascular events. We reported previously that inhalation
of engineered nanoparticles, ultrafine titanium dioxide
(UFTiO2), alters cardiovascular function in response to
adrenergic agonists [9]. However, whether inhalation of
engineered nanoparticles could cause the changes in
HRV has not been studied.

Fig. 3 Bar graph depicting % change of SDNN from the basal level
before exposure (Control vs MWCNTs: 16.79 ± 1.48 vs 18.12 ± 1.54 ms).
Each value represents the mean ± SE of 8 rats

a b

Fig. 4 Bar graph depicting % change of pNN5 (a) and pNN10 (b) from the basal level before exposure (pNN5 (Control vs MWCNTs: 15.65 ± 3.88
vs 15.49 ± 3.18), pNN10 (Control vs MWCNTs: 3.96 ± 1.25 vs 3.31 ± 0.82)). Each value represents the mean ± SE of 8 rats. P < 0.01 compared with
control group (*)
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In the present study, we exposed the rats to
engineered MWCNTs and found that inhalation of
MWCNTs slightly decreased heart rate and increased
the HRV indices of RMSSD, pNN5, and pNN10 (Figs. 1,
2 and 4) during the exposure, which strongly indicated
that there was an alteration in autonomic nervous
activity. The small increase of HR in the control group
during the exposure (Fig. 1) was most likely due to a
minor stress reaction when the rats were placed indi-
vidually in a sealed cage. We observed that after first
30 min acclimation, the cardiovascular parameters
returned to close to the level of pre-exposure, but they
were still little bit higher compared to pre-exposure. For
example, the blood pressure dropped rapidly from the

level of entrance into the chamber after 30 min acclima-
tion, and was about 1 % higher than pre-exposure at 1 h
in control group. The blood pressure remained at this
level during the rest of the exposure period. These
observations suggest that a longer acclimate period may
be appropriate in the future experiments. Unlike the
control group, the HR was decreased slightly in the
group exposed to MWCNTs. This observation could
have resulted from direct stimulation of the peripheral
vagus nerves by MWCNTs exposure. Increases in
RMSSD, pNN5 and pNN10 could be due to activity
changes in either the parasympathetic or the sympa-
thetic nervous system. However, our study suggests that
changes in RMSSD, pNN5, and pNN10 were most likely

Fig. 6 Bar graph depicting % change of HF power from the basal level
before exposure (Control vs MWCNTs: 1.33 ± 0.30 vs 1.33 ± 0.28 ms2).
Each value represents the mean ± SE of 8 rats. P < 0.01 compared with
control group (*)

Fig. 7 Bar graph depicting % change of total power from the basal level
before exposure (Control vs MWCNTs: 2.09 ± 0.46 vs 2.21 ± 0.47 ms2).
Each value represents the mean ± SE of 8 rats. P < 0.01 compared with
control group (*)

Fig. 8 Bar graph depicting % change of LF/HF ratio from the basal
level before exposure (Control vs MWCNTs: 0.59 ± 0.09 vs 0.65 ± 0.13).
Each value represents the mean ± SE of 8

Fig. 5 Bar graph depicting % change of LF power from the basal level
before exposure (Control vs MWCNTs: 0.76 ± 0.18 vs 0.88 ± 0.22 ms2).
Each value represents the mean ± SE of 8 rats. P < 0.01 compared with
control group (*)
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due to an increase in the activity of parasympathetic
nervous system. This was supported by the significant
increase in LF and HF power of the HRV in the
MWCNTs-exposed group when compared with control
group during the exposure period (Figs. 5 and 6). HF
power is considered as an indicator of the performance
of vagus nerve on the heart. Higher HF power usually
indicates a domination of parasympathetic nervous
activity in ANS. Other evidence to support the increased
activity in parasympathetic nervous system during
exposure to MWCNTs was higher LF power in the
exposure group (Fig. 5). LF power usually serves as an
indicator of the performance of sympathetic nerves, but
in reality, LF power reflects a joint action of the vagal
and sympathetic components on the heart. More
importantly, the parasympathetic components can con-
tribute to at least 50 % of LF power total components
[29, 30]. Therefore, an increase in LF power could also
be due to an increase in vagal nerve activity. SDNN that
indicates standard deviation of normal to normal R-R in-
tervals, was not different between control and the
MWCNTs-exposed group at any time (Fig. 3). A greater
SDNN usually means higher HRV; however, SDNN can
remain unchanged even when the HRV is altered [31].
Interestingly, we noted that RMSSD, pNN5, and

pNN10 were reduced, although not significantly, in the
control group during the exposure when compared with
the same group before the exposure (Figs. 2 and 4).
Reduced RMSSD, pNN5, and pNN10 during the filtered
air exposure could reflect astress-induced new balance
between the sympathetic and parasympathetic nervous
system due to reciprocal changes. The phenomenon of
reciprocal changes in ANS explains why the HF power
was reduced, although not significantly, in control group
during the filtered air exposure (Fig. 6). This is because
an increase of sympathetic nervous activity will suppress
parasympathetic nervous activity, since the parasympa-
thetic components are dominated in HF power. There-
fore, the overall summation was reduced HF power as
we showed in control group (Fig. 6). The stress re-
sponses including an acceleration of heart rate in control
rats, as shown in Fig. 1, and an increase in systemic
blood pressure was observed when the rats were placed
in the exposure cages (data are not shown). In the present
study, we also found that inhalation of MWCNTs resulted
in an increase in total power (LF plus HF, Fig. 7) and an
unchanged LF/HF ratio (Fig. 8) during the exposure.
These results suggest that inhalation of MWCNTs not
only changed parasympathetic nervous activity but also
simultaneously altered the sympathetic nervous activity.
Our study indicates that inhalation of MWCNTs and
probably other engineered nanoparticles may up-regulate
the activity of both sympathetic and parasympathetic
nervous systems.

As shown in the Figs. 2, 3, 4, 5, 6, 7 and 8), there was
no difference in HRV between the control and the
MWCNTs-exposed group at 1 day and 7 days post-
exposure. These findings suggest that the effect of inhal-
ation of MWCNTs on HRV was transient, whether this
transient effect can trigger a cardiovascular event
consequently, and particularly in the individuals with a
pre-existing cardiovascular condition, is unclear. The
mechanism by which inhalation of MWCNTs induced a
short alteration in HRV is most likely a quick adapted
reaction occurring in either peripheral or central ner-
vous system in response to a short-term exposure to
MWCNTs. It will be interesting to determine whether
this quick adaption can also occur with long-term ex-
posure to MWCNTs.
It is generally accepted that high HRV is a sign of good

adaptation, characterizing a healthy individual with
efficient autonomic mechanisms; whereas low HRV is an
indicator of abnormal and inadequate adaptation of the
ANS, which may indicate the presence of physiological
malfunction. For instance, low HRV is often reported in
the individuals with mental stress or heart failure [32–34].
Stress, one of major contributing factors to cardiovascular
disease, can directly increase sympathetic neuronal out-
flow and result in an increase of heart rate or blood pres-
sure [35]. Heart failure, due to weak cardiac muscle and
insufficient cardiac output, can increase the activity of
sympathetic nervous system through peripheral baro-
receptor and chemoreceptor reflexes to provide inotropic
support to the failing heart and to increase the stroke vol-
ume. Increase of sympathetic nervous system activity can
result in peripheral vasoconstriction which will maintain
the mean arterial perfusion pressure at proper level to
insure the normal function of the important organs, such
as the brain. Although the mechanisms are different
regarding the increase of sympathetic neuron outflow in
both situations, a correlation of low HRV with high sym-
pathetic nervous activity is common in these two different
pathophysiological conditions. Although in general, high
HRV is usually associated with healthy individuals, high
HRV can also occur in pathophysiological conditions. It
has been reported that HRV was significantly elevated in
patients with congenital long QT syndrome, a heart
rhythm disorder, which was associated with an abnormal
over-activated parasympathetic nervous system [20, 36].
In our study, the association of a HRV alteration and car-
diovascular function following MWCNT exposure is not
clear. However, inhalation of engineered nanoparticles
may induce alterations in ANS activity, even if transient,
which may worsen already disrupted ANS in the patients
with a pre-existing cardiovascular condition and trigger a
cardiovascular event. This hypothesis is supported by the
findings from the American Heart Association, that
exposure to particulate matters <2.5 μm air pollution for
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only a few hours or weeks can trigger cardiovascular
disease-related mortality and non-fatal events, while
longer-term exposure increases the risk for cardiovascular
mortality to an even greater extent than exposures over a
few days [37]. Whether HRV can serve as a reliable bio-
marker to evaluate the performance of ANS and to predict
impacts on the cardiovascular system following inhalation
of engineered nanoparticles and other toxicants warrants
further investigation.

Conclusions
The observations in the present study provide fundamen-
tal evidence to support our previous findings and the
hypothesis that pulmonary exposure to nanoparticles can
change the outflow of ANS from the higher cardiovascular
control center in medulla oblongata. In conclusion, our
study indicates that inhalation of nanoparticles can induce
transient alteration in the autonomic nervous system. Fur-
ther studies are warranted to investigate the association
between an alteration in HRV and the adverse impact of
inhaled nanoparticles on cardiovascular function.
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