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Abstract

Background: The uses of engineered nanomaterials have expanded in biomedical technology and consumer
manufacturing. Furthermore, pulmonary exposure to various engineered nanomaterials has, likewise, demonstrated
the ability to exacerbate cardiac ischemia reperfusion (I/R) injury. However, the influence of particle size or capping
agent remains unclear. In an effort to address these influences we explored response to 2 different size gold core
nanosilver particles (AgNP) with two different capping agents at 2 different time points. We hypothesized that a
pulmonary exposure to AgNP induces cardiovascular toxicity influenced by inflammation and vascular dysfunction
resulting in expansion of cardiac I/R Injury that is sensitive to particle size and the capping agent.

Methods: Male Sprague-Dawley rats were exposed to 200 pg of 20 or 110 nm polyvinylprryolidone (PVP) or citrate
capped AgNP. One and 7 days following intratracheal instillation serum was analyzed for concentrations of selected
cytokines; cardiac I/R injury and isolated coronary artery and aorta segment were assessed for constrictor responses
and endothelial dependent relaxation and endothelial independent nitric oxide dependent relaxation.

Results: AgNP instillation resulted in modest increase in selected serum cytokines with elevations in IL-2, IL-18, and
IL-6. Instillation resulted in a derangement of vascular responses to constrictors serotonin or phenylephrine, as well
as endothelial dependent relaxations with acetylcholine or endothelial independent relaxations by sodium nitroprusside
in a capping and size dependent manner. Exposure to both 20 and 110 nm AgNP resulted in exacerbation cardiac I/R
injury 1 day following IT instillation independent of capping agent with 20 nm AgNP inducing marginally greater
injury. Seven days following IT instillation the expansion of I/R injury persisted but the greatest injury was associated
with exposure to 110 nm PVP capped AgNP resulted in nearly a two-fold larger infarct size compared to naive.

Conclusions: Exposure to AgNP may result in vascular dysfunction, a potentially maladaptive sensitization of the
immune system to respond to a secondary insult (e.g, cardiac I/R) which may drive expansion of I/R injury at 1 and
7 days following IT instillation where the extent of injury could be correlated with capping agents and AgNP size.
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Background
The field of materials engineering has in recent decades
yielded a new class of nano-sized materials. Engineered
nanomaterials (ENM) are characterized by a size range
of between 1 nm and 100 nm in at least one dimension,
and a high surface to mass ratio [1, 2]. The diverse
physiochemical properties of ENM have been utilized in
a multitude of industrial, commercial and consumer
applications and have raised concerns over potential hu-
man or animal toxicity. One particular class ENM of
great interest include the nano-silver (AgNP) species.
Nano-silver particles have innate antimicrobial proper-
ties [3] and as a result have been utilized in biomedical
applications: wound dressings, silver impregnated cathe-
ters, vascular prosthetics, surgical mesh [4, 5]; and con-
sumer applications: clothing and undergarments, air
filters, laundry detergents, toiletries, and water taps [6].
The likelihood of human exposure has generated much
interest in the potential toxicity of AgNP [7, 8]. Address-
ing concerns regarding the health impact of exposure to
ENM the National Institute of Environmental Health
Sciences Centers for Nanotechnology Health Implica-
tions Research (NCNHIR) Consortium was instituted
to understand ENM’s biological interactions. Pulmonary
responses to ENMs have been a key focus regarding inves-
tigation routes [2, 9, 10], and a large body of evidence de-
scribing AgNP and pulmonary interactions [11-15].
Despite the many investigations into the how pul-
monary exposure to ENMs may impact pulmonary tox-
icity, there are far fewer investigations on the impact of
pulmonary exposures and cardiovascular toxicity [16].
There is a strong relationship between pulmonary ex-
posure to particulate matter and cardiovascular toxicity
[1, 17-22]. It has also been demonstrated that pulmon-
ary exposure to other forms of ENMs are capable of in-
ducing or exacerbating cardiovascular injury [23-26].
We have recently demonstrated that pulmonary expos-
ure to 20 nm silver-core citrate capped AgNP is capable
of inducing a systemic inflammatory response, coronary
artery dysfunction, and expansion of cardiac ischemia/
reperfusion injury [27]. Despite these findings, the
mechanisms which pulmonary exposure to AgNP may
drive cardiovascular injury remain unknown. Recent stud-
ies have described toxicological responses associated with
AgNP that may be strongly influenced by both particle

size [14, 28] and capping agents [11, 29]. Understanding
the interactions of AgNP capping as well as the influence
of particle size on cardiovascular toxicity is an important,
yet under investigated, step in understanding mechanisms
of AgNP toxicity.

We hypothesize that intratracheal (IT) instillation of
AgNP induces a systemic inflammatory response result-
ing in vascular dysfunction and expansion of cardiac I/R
injury which is strongly dependent on particle size as well
as capping agent. In order to test this hypothesis Male
Sprague—Dawley (SD) rats were exposed to 200 pg of ei-
ther 20 nm or 110 nm gold core AgNP capped with either
citrate or polyvinylprryolidione (PVP) by intratracheal in-
stillation. One or 7 days following AgNP instillation serum
was analyzed for changes in cytokines as a marker of in-
flammation, subjected to cardiac ischemia/reperfusion
injury and small vessel myography, evaluating aortic
and coronary artery reactivity.

Methods

Animals

Male Sprague—-Dawley (SD) rats were purchased from
Charles River Laboratory (Raleigh, NC, USA) at 51-54
days of age and weighed between 201-225 g. Rats were
housed two per cage under a 12 h light/dark cycle.
Standard rat chow and water were provided ad libidum.
Animals were randomly assigned to the following ex-
perimental groups for 1 day or 7 days post-instillation
analysis: Naive, Citrate Vehicle, 20 nm Au-AgNp/Citrate,
100 nm Au-AgNP/Citrate, polyvinylprryolidone (PVP)
Vehicle, 20 Au-AgNP/PVP, and 110 nm Au-AgNP/PVP.
Animals were allowed a 1 week acclimatization period in
the East Carolina University Department of Comparative
Medicine vivarium before beginning experimentation.
East Carolina University’s Institutional Animal Care and
Use Committee approved all animal handling and ex-
perimental procedures.

Nanomaterial and vehicles

For the purposes of investigation both PVP and Citrate
coated gold-core silver nanoparticles (AgNP) were used
for instillation. The 20 nm and 110 nm AgNP were
manufactured and provided to the investigators by
nanoComposix (San Diego, CA) through the National
Institute of Environmental Health Sciences Centers for
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Nanotechnology Health Implications Research (NCNHIR)
Consortium funded through NIEHS. The prepared
nanomaterials were independently characterized by the
Nanotechnology Characterization Laboratory associ-
ated with the National Cancer Institute (Fredrick, MD)
as well as independently characterized by consortium
investigators [12, 30]. A summary of the nanoparticle
suspension characteristics can be found in Table 1. The
vehicle for PVP control groups was created by adding
sterile saline to a PVP dry powder (10 and 40 Kda,
Sigma-Aldrich, St. Louis, MO) to yield a 1.4 % PVP/saline
solution. The vehicle control for citrate AgNP was created
as a 2 mM solution of sodium citrate (Sigma-Aldrich, St.
Louis, MO) dissolved in deionized water.

AgNP suspension preparation, dosing, and intratracheal
instillation (IT)

AgNP aliquots were cup-horn sonicated for 30 s at 65 %
amplitude (Misonix Model 1510r-MTH, Branson Ultra-
sonics Corp. Danbury, CT). Silver nanoparticle and ve-
hicle aliquots were vortexed for 30 s immediately prior
to instillation. Rats were anesthetized by inhalation of a
50:50 isoflurane propylene-glycol mixture in an induc-
tion chamber. After establishment of deep anesthesia as
assessed by lack of hind limb withdrawal from a toe
pinch, the rat was suspended by the frontal incisors on
an inclined board. The tongue was withdrawn from the
oral cavity and anteriorly displaced using padded forceps
and a 200 pL pipette tip containing the AgNP suspen-
sion was placed into the laryngopharynx, just superior
to the glottis. Two hundred microliters of AgNP
suspension containing 200 pg of AgNP or vehicle was
dispensed into the glottal opening and the rat was
stimulated to inhale while securing the tongue with
forceps, ensuring pulmonary aspiration. The dose se-
lected was set as a proof of concept dose agreed upon
by the NCNHIR consortium members for AgNP in vivo
toxicity and at this dosing could induce potential toxi-
cological effects but not mortality or morbidity to the
animal, and represents approximately 720 times the
permissible exposure limit to all forms of silver at

Table 1 Characterization of Au-AgNP suspensions
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0.01 mg/m? for an 8 h work day as established by NIOSH
and OSHA [31] based on rat minute ventilation rate and
alveolar surface area [32]. Following instillation the rats
were returned to their home cage and monitored until
they resumed normal grooming behavior.

Bronchoalveolar lavage, cell differential, and protein
quantification

Sprague Dawley rats were euthanized and bronchoalveo-
lar lavage (BAL) was performed employing a modified
procedure as described by Katwa et al. [33]. Rats were
anesthetized with isoflurane and euthanized by pneumo-
thorax. The left main bronchus was ligated and a trache-
otomy was performed. A 14 gauge angiocatheter was
inserted into the trachea and secured with 2—0 suture. A
bolus of Hanks balanced saline solution (23.1 ml/kg)
was lavaged into the right lung three times successively.
Recovered BAL fluid was centrifuged at 1000 x g for
10 min at 4 °C. Cell pellets were suspended in 1 mL of
cold Hanks balanced saline solution. Total cell counts
were determined with a Cellometer Auto x4 (Nexcelom
Biosciences, LLC, Lawrence, MA). BAL fluid volumes
containing 20,000 cells were centrifuged onto glass slides
using a Cytospin III (Shandon Scientific Ltd, Cheshire,
UK) and stained with three-step hematology stain (Rich-
ard Allan Scientific, Kalamazoo, MI). Cell differentials
were determined by microscopy counting 300 cells per
slide to estimate percentage of recovered cell types. BAL
supernatant was used for protein quantification using a
standard Bradford protein assay. Samples were plated in
duplicate using a 96-well plate. Absorbance values were
read at 562 nm using a BIO-TEK Synergy HT plate
reader (BIO-TEK, Winooski, VT) and data were ana-
lyzed with Gen5 software (BIO-TEK, Winooski, VT).

Serum collection

Following anesthesia by isoflurane inhalation a cardiac
puncture of the right ventricle at time of animal sacrifice
was performed. Serum was separated from whole blood
sample as previously described [23].

Citrate Capped AgNP

PVP Capped AgNP

20 nm 110 nm 20 nm 110 nm
Hydrodynamic Size (nm) 24.00+0.05 10420+0.12 26.00 +£0.09 11230+0.15
Core Diameter (nm) 2028 +0.23 111.3+20 2095+ 031 1142+14
Zeta Potential (mV) —-48.50 £ 2.06 —43.02+147 -37.12+1.14 -2592+1.24
Silver Concentration (mg/g) 1.105 £ 0.007 0.980+0.014 1.090 £ 0.001 1.101 £ 0.003
Endotoxin Concentration (EU/mL) <05+0 <05+0 1.133 +.291 <05+0

Particle characterization data for citrate and PVP capped AgNP. Hydrodynamic size reported was determined by DLS and reported as Z-average. Core diameter
was determined from TEM and Silver concentration by ICP-MS. As reported form The Nanotechnology Characterization Laboratory (NCL, Fredrick, MD) Data are as

presented as a mean + SEM of 6 separate aliquots
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Quantification of serum cytokines

Serum concentrations of IL-1f, IL-2, IL-5, IL-6, IL-10,
IL-13, IL-18, MCP-1, G-CSE, GM-CSE, IFNy, MCP-1,
MIP-1a, RANTES, and TNFa were measured at selected
time points utilizing a Milliplex MAP Cytokine/Chemo-
kine Panel (EMD Millipore, Billerica, MA) according to
the manufacturer’s instructions. Serum samples from the
PVP capped AgNP and respective vehicle group were
run on a Luminex 200 (Luminex, Austin, TX), while
serum samples from Citrate capped AgNP and vehicle
group were run on a MagPix system (Luminex, Austin,
TX). All results were reported and analyzed using the
Milliplex Analyst software (vVersion 5.1, EMD Millipore,
Billerica, MA).

Lung and heart protein oxidation

Heart and lavaged lung tissue was homogenized in a
RIPA Buffer with 50 mM DTT and Halt™ Protease
Inhibitor (Thermo Fisher Scientific, Waltham, MA).
Protein concentration was determined with a Bradford
Protein Assay (Bio-Rad Laboratories, Hercules, CA).
Determination of protein oxidation was performed
utilizing an OxyBlot™ (EMD Millipore, Billerica, MA)
according to manufacturer’s instruction. Following
derivatization, between 10-15 pg protein from each
sample were loaded onto a Criterion Stain-Free Gel
(Bio-Rad Laboratories, Hercules, CA) and electropho-
resed at 200 V for 60 min. Gels were activated for 45 s
with UV light using a ChemiDoc™ Touch (Bio-Rad La-
boratories, Hercules, CA). Proteins were transferred
utilizing a tank transfer with Towbin’s Buffer at 100 V
for 60 min on to low fluorescence PVDF membranes
(EMD Millipore, Billerica, MA). Membrane was imaged
with a ChemiDoc™ following transfer to detect and quan-
tify total protein. The membrane was then blocked in 1 %
BSA/TBS-T for 60 min followed by incubated, at room
temperature, with 1° antibody (1:150) for 60 min. The
membrane was then washed with TBS-T and incubated
with 2° antibody (1:300) for 1 h. The membrane was then
washed with TBS-T and then incubated for 5 min in
SuperSignal™ West Pico Chemiluminescent Substrate
(Thermo Fisher Scientific, Waltham, MA). The membrane
was imaged on a ChemiDoc™ and analyzed with Image
Lab™ 5.2 (Bio-Rad Laboratories, Hercules, CA). For deter-
mination of protein oxidation analyzed density of non-
derivative control lanes were subtracted from derivitized
lanes, and all lanes were normalized to total protein.

Coronary artery isolation and pharmacology

Coronary artery isolation and aorta vessel segment
pharmacological response assessments were performed 1
or 7 days following IT exposure to AgNP or vehicle
from animals not subject to cardiac I/R injury protocol.
Isolation of the coronary artery was performed as
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previously described [23]. The heart and thoracic aorta
was excised and placed in ice-cold physiological saline
solution (PSS); [mM] 140.0 NaCl, 5.0 KCl, 1.6 CaCl,, 1.2
MgSO,4, 1.2 3-[N-morpholino]-propane sulfonic acid,
5.6 D-glucose, and 0.02 EDTA (pH 7.4 @ 37 °C). Pairs
of ~2 mm segments of the left anterior descending coron-
ary artery (LAD) and aorta were excised and mounted into
chambers of a 610 M multichannel myograph (DMT, Ann
Arbor, MI). Coronary artery segment lumen diameter was
adjusted so that resting tension was 90 % of the wall ten-
sion at 13.3 kPa while the passive force of 20 mN estab-
lished for aorta segments. Tissue viability was assessed
with a potassium depolarization using 109 mM K'PSS
(Na" substituted with K* in an equal molar fashion). Stress
generation of greater than 1 mN/mm?*following K*PSS
stimulation was considered adequate for vessel viability.
Vessel segments were subsequently washed with PSS
and endothelial integrity was assessed using a 1 pM
serotonin (5-HT) or phenylephrine (PE) stimulation
followed by 3 uM acetylcholine (ACh). An ACh relax-
ation response of >50 % loss of the agonist stress was
considered acceptable endothelial integrity. Segments
were washed every 10 min with fresh PSS for a mini-
mum of 3 times and then subject cumulative dose—
response assessments [23, 34]. Paired segments were
subjected to cumulative concentrations of 5-HT (10
nM-3 uM) or PE (1 nM-10 uM). The active stress
(mN/mm?) generated in response to stimulation of
paired segments was averaged at each concentration
for data reporting. Upon establishing stable tension
after addition of the highest agonist concentration,
one of the paired segments was subject to endothelial-
dependent relaxation with addition of increasing concen-
trations of ACh (1 nM-1 pM) and the other segment was
subjected to endothelial-independent relaxation with
addition of increasing concentrations of sodium nitroprus-
side (SNP, 1 nM-1 uM).

Cardiac ischemia/reperfusion

One or 7 days following AgNP or vehicle intratracheal
(IT) instillation rats were anesthetized with an intra-
muscular injection of ketamine/xylazine (90/10 mg/kg,
respectively) and subject to a cardiac ischemia/reperfu-
sion (I/R) injury [24, 27]. Anesthesia was maintained
throughout the procedure with supplemental injections
of ketamine/xylazine. Body temperature was maintained
at 37 °C with a heating pad and TC-1000 Temperature
Controller (CWE, Inc., Ardmore, PA). Once an adequate
plane of anesthesia was achieved, as assessed by lack of
hind limb withdrawal from a toe pinch, the rats were intu-
bated via tracheostomy with a 16 gauge angiocatheter.
Rats were then ventilated with 100 % oxygen via an
Inspira Advanced Safety Ventilator (Harvard Apparatus,
Holliston, MA) with setting of 3 mL tidal volume at 81



Holland et al. Particle and Fibre Toxicology (2016) 13:48

breaths per minute. Following a left parasternal thoracot-
omy, a temporary ligature of 6-0 vicryl suture was placed
around the left anterior descending (LAD) coronary artery
to induce 20 min of ischemia and removed to allow reper-
fusion as previously described [24].

Quantification of infarct size

Following the ischemia reperfusion protocol the vena
cava was severed and the descending thoracic aorta was
cannulated with polyethelene 90 and advanced to the
coronary ostia. The heart was retrograde perfused with
5 mL 0.09 % saline solution followed by 5 mL of 0.25 %
TTC (Sigma-Aldrich, St. Louis, MO) to determine viable
from infarcted tissue [35]. Following infusion of TTC
the LAD was re-occluded and the heart infused with 1 %
Evans blue dye for demarcation of remote myocardium
(i.e, myocardium not subjected to the induced ischemic
injury). Following Evans blue infusion, the heart was
excised and sliced into approximate 1 mm thick sections
distal to the occlusion. The slices were gently sand-
wiched between two glass slides and both sides and
digitally photographed. Image ] (National Institutes of
Health) was used to quantify the area of the left
ventricle, area at risk, and area of infarction.

Statistical analysis

All data are presented as mean value + SEM. A p-value
of < 0.05 indicates statistical significance unless other-
wise noted. GraphPad Prism software (Version 6,
LaJolla, CA) was used for the purposes of statistical
analysis and graphing. Coronary artery vascular re-
sponse curves were generated using nonlinear regres-
sion analysis of the f-pair parameter best-fit values.

Table 2 Lung BAL cell differentials and protein
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Curves were compared using ANOVA with Tukey’s
post-test for multiple comparisons. Calculated ECs,
and Hill slope values were generated by averaging the
normalized concentration-response curves (0—100 %)
of individual subjects within a cohort. Results were
compared using ANOVA and Tukey’s post-test for mul-
tiple comparisons. Differences between time and par-
ticle capping were performed by t-test. Group size was
calculated based on power analysis of cardiac I/R
experiments.

Results
Broncheolar alveolar lavage cell differentials
and protein quantification
Summary of the bronchiolar alveolar lavage (BAL) data
can be found in Table 2. One day following instillation
of 20 nm of 110 nm citrate capped AgNP the total
percentage of BAL macrophages was significantly
smaller compared to the citrate control. Concurrently, a
larger number of recovered epithelial cells was observed
for both 20 nm of 110 nm citrate capped AgNP. There
were no differences in percentage of neutrophils, eosino-
phils, or lymphocytes 1 day following exposure to 20 nm
of 110 nm citrate capped AgNP. Additionally, there was
no difference in BAL total protein concentration follow-
ing instillation of citrate vehicle or citrate capped AgNP.
The instillation of 20 nm or 110 nm PVP capped
AgNP also resulted in a smaller percentage of BAL mac-
rophages compared to vehicle control, with an increased
number of BAL epithelial cells. Instillation of 20 nm and
110 nm PVP capped AgNP resulted in increased BAL
protein concentration 1 day following exposure with no

% Macrophages % Neutrophils

% Eosinophils

% Lymphocytes % Epithelial Cells Protein (mg/mL)

1 Day
Citrate 960+0.7 0.1+0.1 0.1+0.1 0.10.1 38+07 02+0.1
20 nm AgNP 918+12° 14+13 04+03 11+03 53+05 04+0.1
110 nm AgNP 91.1+05° 06+06 08+04 03+0.1 70+03° 04+00
PVP 952+09 0.1+0.1 04+03 08+06 35+05 06+0.1
20 nm AgNP 923+09° 06+0.1 03+02 03+02 64+10 08+0.1°
110 nm AgNP 91.9+08° 0000 04+04 0.7+02 70+09 08+0.1°

7 Day
Citrate 888+4.7 04+02 0.1+0.1 1.1+06 96+43 02+00
20 nm AgNP 96.9 +0.9° 13+£10 02+02 09+04 0.7+0.1° 03+02
110 nm AgNP 968+ 14° 06+03 0.1+0.1 20+09 05+03° 02+0.1
PVP 953+ 10 06+03 0.1+0.1 15+06 25+ 1.1 02+00
20 nm AgNP 90.7 +39 36+27 02+02 31+23 25+09 02+00
110 nm AgNP 942+15 10£05 03+02 12+06 33+20 0.1 £0.0°¢

Calculated percentage of total cell BALF pellet and protein quantification. ®denotes significant (p < 0.05) versus vehicle, “denotes significance from other AgNP
particle size within a capping agent, calculated by one-way ANOVA with Tukey Post Hoc test Values expressed mean + SEM, n=4-8
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differences in percentage of neutrophils, eosinophils, or
lymphocytes.

Seven days following instillation of 20 nm of 110 nm
citrate capped AgNP percentage of BAL macrophages
had significantly increased compared to the citrate con-
trol, and percentage of recovered epithelial cells had
decreased compared to citrate control. Seven days fol-
lowing instillation of citrate capped AgNP resulted in
no differences in percentage of neutrophils, eosinophils,
lymphocytes or BAL total protein compared to vehicle
control. Instillation of 20 nm and 110 nm PVP capped
AgNP resulted in no changes in percentages of macro-
phages, neutrophils, eosinophils, or lymphocytes com-
pared to vehicle control 7 days following instillation.
Instillation of PVP capped 110 nm AgNP resulted in a
lower BAL protein concentration compared to PVP ve-
hicle PVP capped AgNP.

Serum cytokine concentrations following exposure to
Au-AGNP

Following intratracheal instillation of PVP or citrate
capped 20 or 110 nm AgNP serum was collected and
analyzed for concentrations of selected cytokines. The
results are summarized in Figs. 1 and 2 and Additional
file 1: Tables S1 and S2.

One day following IT instillation serum concentrations
of IL-2 were increased by approximately 2-fold in rats
instilled with 110 nm citrate capped AgNP compared to
vehicle control, whereas instillation of 20 nm AgNP elic-
ited a moderate, and non-statistically significant increase
in IL-2 (Fig. 1a). Additionally, although not statistically
significant, exposure to either sized citrate capped
AgNPs, appears to induce equivalent yet modest in-
creases in serum concentrations of: IL-6 (Fig. 1c), [L-18
(Fig. le), and G-CSF (Fig. 1g). Seven days following
AgNP all elevations in serum cytokines present at 1 day
were no longer evident and levels of IL-2 (Fig. 1b), IL-6
(Fig. 1d), IL-18 (Fig. 1f), and G-CSF (Fig. 1h) were
comparable or below the mean values for their vehicle
control. A list of all measured serum cytokines associ-
ated with the citrated capped AgNP instillation and their
mean concentrations can be found in Additional file 1:
Table S1.

Exposure to PVP capped AgNP also induced limited
changes in serum cytokine concentrations. Pulmonary
instillation of PVP capped 20 nm AgNP resulted in sig-
nificant elevations in IL-18 one day following exposure,
while exposure to 110 nm PVP capped AgNP did not
induce increases serum concentrations of IL-18 (Fig. 2e).
In contrast to the citrate capped AgNP data, 7 days post
exposure PVP capped AgNP did not have a reduction in
elevated cytokines at 7 days but an increase in mean
values across all cytokines. Seven days post exposure to
PVP capped 20 nm AgNP revealed increases in IL-2
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(Fig. 2b), IL-6 (Fig. 2d), and IL-18 (Fig. 2f) compared to
levels 1 day post exposure. Exposure to 110 nm AgNP
did not result in values in most serum cytokines at 1 or
7 days post instillation compared to vehicle, with the
exception of IL-6 that had higher value at 7 day post in-
stillation. A list of all measured serum cytokines and
their mean concentrations associated with the PVP
capped AgNP instillation can be found in Additional
file 1: Table S2.

Lung and heart protein oxidation

One day following instillation of 20 nm citrate capped
AgNP there was a modest, but non-statistically signifi-
cant increase in total lung protein oxidation compared
to vehicle control as determined by OxyBlot™ assay
whereas, exposure to 110 nm citrate capped AgNP re-
sulted in a modest decrease in lung protein oxidation
(Fig. 3a and b). Instillation of PVP capped 20 nm AgNP
also resulted in a modest increase in lung protein oxida-
tion compared to PVP vehicle, 110 nm PVP capped
AgNP appeared to have no impact on overall lung pro-
tein oxidation (Fig. 3¢ and d).

One day following instillation of 20 nm citrate capped
AgNP also resulted in a minor increase in total heart
protein oxidation, and exposure to 110 nm AgNP re-
sulted in a modest reduction of heart protein oxidation
compared to citrate control (Fig. 4a and b). Exposure to
PVP capped 20 nm AgNP resulted in a decrease in total
heart protein concentration compared to vehicle control
and 110 nm PVP capped AgNP had no impact of heart
protein oxidation (Fig. 4c and d).

Au-AgNP Induced alterations in vascular responses

One day or 7 days following IT exposure to AgNP or ve-
hicle LAD coronary artery and aorta were harvested and
subjected to cumulative concentration additions of the
constrictors serotonin (5-HT) or phenylephrine (PE),
followed by the endothelial dependent vasodilator acetyl-
choline (ACh) or Nitric oxide generator sodium nitro-
prusside (SNP).

One day following IT instillation, exposure to citrate
capped 20 nm AgNP resulted in moderate and statisti-
cally significant, leftward shift in the concentration re-
sponse curve to 5-HT for the coronary artery compared
to naive, but not the vehicle control or 110 nm AgNP
(Fig. 5a). Exposure to PVP capped AgNP 1 day post IT
instillation did not result in a shift in the concentration
response compared to vehicle or naive controls (Fig. 7b).
Exposure to 110 nm PVP capped AgNP resulted in a
statistically significant reduction in calculated ECs
value. However instillation of all other AgNP or vehicle
control, 1 day post IT exposure, resulted in no changes
in maximal stress generation, calculated ECs,, or Hill
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Fig. 1 Serum Cytokine Concentrations Following IT instillation of Citrate Capped AgNP. Graphs presenenting mean serum concentration of

selected cytokines 1 day (panels a, ¢, e and g) and 7 days (panels b, d, f and h) after IT instillation. Cytokines IL-2 (a) IL-6 (c) IL-18 (d) and G-CSF
(e) were modestly elevated compared to citrate vehicle 1 day following IT instillation. At 7 days following instillation cytokine concentration was
not elevated above vehicle. (a) denotes statistical significance from vehicle. p < 0.05 by one-way ANOVA, Data are reported as mean + SEM with n=4
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slope values in response to 5-HT in the coronary artery
(Table 3).

One day post exposure to both citrate capped 20 and
110 nm AgNP resulted in a statistically significant
leftward shift in concentration response curve to phenyl-
ephrine in aortic segments compared to vehicle or naive
controls (Fig. 5c). Despite the shift in concentration re-
sponse curve however, there were no significant changes

in aortic mean maximal stress generation, calculated
ECs, or Hill slope values in response to PE (Table 4).
Instillation of PVP capped AgNP did not alter concen-
tration response curves to either 5-HT or PE in coronary
artery or aorta segments, respectively, 1 day following
exposure (Fig. 5b and d).

Seven days following IT instillation of 20 nm citrate
and 110 nm PVP capped AgNP resulted in a leftward
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Fig. 2 Serum Cytokine Concentrations Following IT instillation of PVP Capped AgNP. Graphs presenting mean serum concentration of selected
cytokines 1 day (panels a, ¢, e and g) and 7 days (panels b, d, f and h) after IT instillation. Cytokines IL-2 (@) IL-6 (c) IL.-18 (d) and G-CSF (e) were
modestly elevated compared to citrate vehicle 1 day following IT instillation. At 7 days following instillation cytokine concentration was not ele-
vated above vehicle. (b) denotes statistical significance from vehicle, (c) denotes significance from other AgNP particle size within a capping agent.
p <0.05 by one-way ANOVA, Data are reported as mean + SEM with n=4-8
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shift in concentration response curve to 5-HT in coron-
ary arteries (Fig. 6a and b). Interestingly, 7 days post IT
instillation of citrate and PVP capped AgNP aortic
segments exhibited a rightward shift in concentration
response curves in response to PE (Fig. 6¢c and d).
Exposure to AgNP or vehicle resulted in increases in
mean calculated EC5, of aorta segments and decreases in
maximal stress generation from both coronary (Table 3)

and aorta segments (Table 4). No overall significant
changes in Hill slope values with 5-HT or PE stimula-
tions were observed at 1 or 7 days in either coronary or
aorta segments (Tables 3 and 4).

Endothelial dependent relaxation responses were eval-
uated by cumulative additions of acetylcholine (ACh).
One day post IT exposure to 110 nm citrate capped
AgNP resulted in a statistically significant leftward shift
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Fig. 3 Total Lung Protein Oxidation. Representative Oxyblot™ of citrate capped AgNP exposed lung tissue (a). Semiquantitative densitomitry of
citrate capped AgNP Oxyblot™ exposed lung tissue (b). Representative Oxyblot™ of PVP capped AgNP exposed lung tissue (c). Semiquantitative
densitomitry of PVP capped AgNP Oxyblot™ exposed lung tissue (d). Statistical significance p < 0.05 by one-way ANOVA, Data are reported as

in the ACh concentration response curve of coronary ar-
teries (Fig. 7a). Conversely, following IT exposure to cit-
rate capped 110 nm AgNP there was a rightward shift in
the concentration response curve to ACh in aortic rings
(Fig. 7c). Intratracheal instillation of PVP AgNP did not
result in significant changes to the response profiles
(Fig. 7b and d) nor to the remaining stress following
maximal concentration of ACh, calculated ECsy, or Hill
slope values for coronary arteries (Tables 3 and 5) or
aortic rings (Tables 4 and 5) 1 day following exposure.
Seven days post IT exposure changes in response to
ACh associated with Citrate capped AgNP in coronary ar-
teries had resolved (Fig. 8a). However, exposure to 20 nm
and 110 nm PVP capped AgNP resulted in a leftward shift
in the concentration response curve to ACh and right-
ward shift to the concentration response curve to PVP
vehicle following exposure in coronary arteries (Fig. 8b). No
differences in calculated ECsy, or Hill slope values were
observed at 7 days following exposure when compared to
naive coronary arteries (Table 3) or aortic rings (Table 4).
Aorta and coronary artery segments from animals ex-
posed to AgNP or vehicle were treated with cumulative

addition of SNP to assess an endothelial independent ni-
tric oxide (NO) dependent relaxation. IT exposure to
both citrate and PVP capped AgNP resulted in alter-
ations in cumulative concentration responses to SNP in
coronary arteries, 1 day following instillation (Fig. 9a
and b). The 110 nm capped AgNP were capable of
inducing the largest leftward shift in the concentration
response curve followed by the 20 nm AgNP; however
both were shifted leftward compared to vehicle or naive
in coronary arteries (Fig. 9a and b). Additionally, IT
instillation of PVP vehicle was capable of inducing a
small leftward shift in the concentration response to
SNP in coronary arteries itself (Fig. 9b). The left shift in
relaxation response profiles was accompanied by a
reduction in calculated ECs, values for aortic rings
(Table 4). However, no differences in ECso, Hill slope
values or mean remaining stress following maximal con-
centration were observed in coronary artery segments
1 day following exposure (Table 3).

The sensitization effect to SNP on normalized relax-
ation response was only observed at 1 day post exposure
post instillation of citrate capped AgNP in aortic rings
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Fig. 4 Total Heart Protein Oxidation. Representative Oxyblot™ of citrate capped AgNP exposed heart tissue (a). Semiquantitative densitomitry of citrate

capped AgNP Oxyblot™ exposed heart tissue (b). Representative Oxyblot™ of PVP capped AgNP exposed heart tissue (c). Semiquantitative densitomitry of
PVP capped AgNP Oxyblot™ exposed heart tissue (d). Statistical significance p < 0.05 by one-way ANOVA, Data are reported as mean + SEM with n=3-4

(Fig. 9c and d). This is despite a significant decrease in
calculated ECs, values of aortic rings (Table 4). However,
Hill slope values, (Table 4) or remaining stress following
cumulative addition of SNP (Table 5) were not different.
Seven days following exposure to AgNP only exposure
to citrate 20 nm AgNP exhibited sensitized relaxation
responses to SNP in coronary arteries. However, IT
instillation of both citrate and PVP vehicle were able to
induce a marked leftward shift in relaxation responses to
SNP in coronary arteries (Fig. 10a and b). Coronary seg-
ments from AgNP or vehicle exposed rats demonstrated
a moderate decrease in calculated ECsy value, with no
differences in Hill slope value (Table 3), or remaining
stress following maximal addition of SNP (Table 5).
Aortic rings demonstrated impaired endothelial inde-
pendent NO dependent relaxation 7 days post IT instil-
lation of AgNP or vehicle compared to naive controls
(Fig. 10c and d). As observed in coronary arteries expos-
ure to the vehicle had a marked effect on SNP stress
withdrawal in aortic rings at 7 days post exposure. Post
exposure aortic rings exhibited increased ECs, values
but no differences in Hill slope value (Table 4), and a

greater remaining amount of stress following maximal
SNP addition as compared to naive (Table 5).

Au-AgNP expands cardiac i/r injury following it instillation
One or 7 days following IT exposure of AgNP or vehicle
instillation rats underwent a surgically induced cardiac
ischemia reperfusion (I/R) injury, in a protocol that
included a 20 min ischemia period followed by 120 min
of reperfusion, and were then analyzed for the extent of
myocardial infarction. There was no effect of vehicle
capping agents on the cardiac I/R injury 1 or 7 days post
instillation (Fig. 11). One day post IT instillation both
sizes of the citrate and PVP capped AgNP induced ex-
pansion of cardiac I/R injury compared to naive control
(Fig. 11a and b). Exposure to 20 nm AgNP induced ex-
pansion of cardiac I/R injury at 1 day post instillation in
both capping groups compared to both vehicle and
naive. However, for the 110 nm particles only the PVP
capped AgNP was significantly expanded compared to
vehicle 1 day post instillation (Fig. 11b).

Seven days following IT instillation of AgNP or vehicle
both PVP and citrate capped AgNP continued to elicit
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Fig. 5 Isolated Vessel Myography Constrictor Responses 1 Day post Exposure. Graphs presenting the normalized stress responses from aorta and
coronary artery segments 1 day following IT exposure including: coronary responses to citrate capped AgNP (a) coronary responses to PVP
capped AgNP (b) aortic responses to citrate capped AgNP (c) and aortic responses to PVP capped AgNP (d). Statistical significance (p < 0.05)
between: naive and 20 nm AgNP indicated by (b), vehicle and 20 nm AgNP by (d), vehicle and 110 nm AgNP (e), calculated by two-way ANOVA
with Tukey post hoc test. Lines represent the nonliner fit to the mean data. Data are reported as mean + SEM with n=3-8

J
Table 3 Calculated pharmacological values for coronary artery ring constrictor and relaxation response
Treatment ECso (M) Hill slope
Group 5-HT ACh SNP 5-HT ACh SNP
Naive 87.7+267 103.3+287 200+43 1.3+£0.1 1.8+02 1.1£01
1 Day Post IT Exposure
Citrate 1059+ 17.1 756+74 31.0£53 1.3+£0.1 1.7£0.1 12£0.1
20 nm AgNP 602 +84 1328 +56.8 220£34 1.5+£0.1 1501 1.1£0.1
110 nm AgNP 755+£16.3 1476+510 281 +48 14+0.1 16+0.1 1.1£01
PVP 795115 115.7 £ 305 209+34 14+£0.1 1.7+02 12£0.1
20 nm AgNP 95.1£20.1 953+3.0 189+32 14+0.1 15+00 12+0.1
110 nm AgNP 700+102¢ 1476+51.0 23.0+24 1.3+£0.1 1.8+02 1.1+£01
7 Day Post IT Exposure
Citrate 799.6£3959 574+12 67.1£339 12+£04 15+00 1.0£0.1
20 nm AgNP 2642 +749 11294290 557+82 1.1+£0.2 1602 1.1+£0.1
110 nm AgNP 9546+ 80.8 983+ 11.6 593+125 1.1+£02 19+0.1 13+03
PVP 2377 £61.1 892+£259 488+36 1.1£0.2 1603 12£0.1
20 nm AgNP 1408+313 1175+263 410+36 12+£0.2 1501 1.0£0.1
110 nm AgNP 306.0 +70.3¢ 1102 +394 50.7+133 1.1+02 16+02 12+0.1

The calculated mean ECso and Hill slope, responses of LAD coronary artery segment to serotonin (5-HT), acetylcholine (ACh), and sodium nitroprusside (SNP) 1 day
and 7 days following 200 ul instillation of Citrate or PVP vehicle or 200 pg 20 or 110 nm AgNP. Values expressed mean + SEM. “denotes significant versus Naive
(p <0.05) calculated by one-way ANOVA with Tukey Post Hoc test, n=3-8
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Table 4 Calculated pharmacological values for aortic ring constrictor and relaxation response

Treatment ECso (NM) Hill slope

Group PE ACh SNP PE ACh SNP
Naive 5659+ 1298 1274+194 104.1+£253 1.7+02 1.8+03 21+04

1 Day Post IT Exposure
Citrate 5019+ 1254 1088 +£47.0 743 +£295 18+02 14+03 18+02
20 nm AgNP 3114 +58.1 97.79+ 179 286+80 1.7+0.1 1.5+0.1 18+02
110 nm AgNP 5585+1222 5845+18.1 209+42 1.7+£02 1.8+£0.5 1.8+03
PvP 4502 +£60.3 101.9+20.7 448 +487 1.5+00 1.7+0.1 1.7+0.1
20 nm AgNP 59301618 1216+319 405+106° 19+04 1.6£0.1 1.8+£02
110 nm AgNP 490.8 +156.2 119.3+20.1 209 +42° 1.7+£02 1.7£04 19+04

7 Day Post IT Exposure
Citrate 4976+£118 106.1+579 264 +6.6° 1.8+£02 1.8+£0.2 1.7+£02
20 nm AgNP 256.2 +58.0 634+74 451+1.07 1.6£0.1 1.6£0.1 16+£02
110 nm AgNP 5404+ 180 84.2+263 66.3+293 1.6£0.1 1.6+£0.1 18+0.1
PvP 2150+ 150 196.6 +£82.2 40.1+188 1.1+0.1 1.5+04 1.7+04
20 nm AgNP 1229+ 14.19 1200+132 666+ 149 1.1£01 1.1£0.2 15+£02
110 nm AgNP 260.3 +50.0 662+17.7 664+ 106 1.1+£00 20+03 15+04

The calculated mean ECsq, and Hill slope, responses of aorta segment to phenylephrine (PE), acetylcholine (ACh), and sodium nitroprusside (SNP) 1 day and 7 days
post 200 pl instillation of Citrate or PVP vehicle or 200 pg 20 or 110 nm AgNP. Values expressed mean + SEM. “denotes significant versus Naive (p < 0.05)

calculated by one-way ANOVA with Tukey Post Hoc test, n =3-8

expansion of the cardiac I/R injury. Both citrate and
PVP capped 20 nm AgNP induced greater expansion of
cardiac I/R injury compared to vehicle or naive (Fig. 11c
and d). PVP capped 110 nm AgNP was also capable of
expanding cardiac I/R injury compared to vehicle and
naive, but citrate capped 110 nm AgNP only expanded
cardiac I/R injury compared to vehicle. Additionally, at
7 days post IT exposure to citrate capped 20 nm AgNP
induced greater expansion of cardiac I/R injury that cit-
rate capped 110 nm AgNP.

Discussion

The rapidly expanding uses of ENMs have raised ques-
tions regarding their safety following exposure to such
materials. To date, there is little consensus regarding the
safety of engineered nanomaterials, the mechanisms by
which they may induce a toxic response, or how these
mechanisms may be influenced by particle size or modi-
fications such as addition of capping agents. There is
current literature evidence that pulmonary exposure to
PM and ENMs can alter to progression of or to
cardiovascular disease (CVD) and dysfunction through
multiple pathways, including inflammation [15, 33, 36],
autonomic dysfunction [25, 37, 38], oxidative stress
[39-41] or mitochondrial dysfunction [42, 43]. We
evaluated the impact of a pulmonary exposure to 2 dif-
ferent sized silver nanoparticles (AgNP) with different
capping agents on pulmonary BAL cells and protein,
serum cytokine (as a surrogate for systemic inflamma-
tion), protein oxidation in lung and heart, vascular

function, and myocardial ischemia reperfusion (I/R) in-
jury. Using a dose of 200 pg of AgNP which was se-
lected by the NCNHIR consortium as a high exposure
range and proof of concept dose in line with similar
dosing used by other consortium investigators [29] cap-
able of potential toxicological effects but not mortality
or morbidity of the animals. This dose may not reflect a
viable paradigm of human exposure, however this dos-
age is estimated to be approximately 720 times that of
the limit for human exposure [31]. We hypothesized
that intratracheal (IT) instillation of AgNP would result
expansion of I/R injury, possibly mediated through a
circulating inflammation signal and resulting in vascu-
lar dysfunction which is sensitive to particle size as well
as capping agent. This hypothesis was based on the
interpretation of effects of previously investigated
ENMs including but not limited to: fullerenes [23],
Multiwall Carbon Nanotubes (MWCNTs) [24] and
most recently another species of AgNP [27].

In order to assess the inflammatory response, we eval-
uated BAL immune cells and total protein levels, serum
levels of several cytokines and chemokines that are
known to be associated with either particulate matter
(PM) exposure or cardiovascular disease, as well as
examining protein oxidation of lung and heart tissue.
Exposure to AgNP had very little impact on increasing
numbers of neutrophils, lymphocytes or eosinophils,
only decreases in total percentages of macrophages were
impacted at 1 day, leading to a rise in total percentage of
recovered epithelial cells. However, in the absence of
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Fig. 6 Isolated Vessel Myography Constrictor Responses 7 Days post Exposure. Graphs presenting the normalized stress responses of aorta and
coronary artery segments 7 days following IT exposure including: coronary responses to citrate capped AgNP (a) coronary responses to PVP
capped AgNP (b) aortic responses to citrate capped AgNP (c) and aortic responses to PVP capped AgNP (d). Statistical significance (p < 0.05)
between: naive and vehicle indicated by (a), naive and 20 nm AgNP indicated by (b), naive and 110 nm AgNP indicated by (c), vehicle and
20 nm AgNP, vehicle and 110 nm AgNP (e), 20 nm AgNP and 110 nm AgNP by (f), calculated by two-way ANOVA with Tukey post hoc test
Lines represent the nonliner fit to the mean data. Data are reported as mean + SEM with n=3-4
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major changes in BAL total protein it is likely these
epithelial cells reflect BAL technique rather than AgNP
associated epithelial damage or increase in lung perme-
ability. It is interesting to note that despite utilization of
the same particles and a roughly equivalent dose our
investigation demonstrated lower percentages of inflam-
matory cells at 1 and 7 days than other investigations
(11, 12].

Collected serum samples revealed no observed tem-
poral relationship between IT instillation of AgNP and
circulating levels of cytokines. Although, cardiovascular
disease and dysfunction are associated with increases
in inflammatory cytokines such as IL-6 [44, 45] and IL-
18 [46, 47] the large extent of cardiac I/R injury re-
ported here does not correlate with the small changes
in circulating cytokines. Although not directly related
to cardiac I/R injury, IL-2 may mediate organ specific
pro-inflammatory response through control of T-cell
differentiation and control of Th2 cytokine production
[48, 49]. The lack of correlation between circulating
cytokines and the extent of I/R injury we report here
suggests that the observed cytokine response is not likely

the primary underlying mechanism for driving the
expansion of cardiac injury. Increases in serum IL-2, IL-6,
and IL-18 that were only observed in rats exposed to
20 nm AgNP, may indicate the influence of particle size
and capping agent. Overall, we found that exposure to
PVP or citrate capped 20 nm or 110 nm AgNP had
minimal impact on lung and heart protein oxidation
suggesting that the source of inflammation by not be re-
lated to metal induced oxidative stress, as previously
observed in other studies [40, 43, 50, 51]. It is interesting
that there lack of reports examining general protein oxida-
tion in response to silver exposures in cardiac tissues. We
also recognize the potential importance of lipid oxidation
that may occur and the close to ties to the oxidant/
antioxidant balance that was not examined in this study
but likely underlie the reports of oxidative stress following
exposure. Our findings may support an alternative
hypothesis for the general effect of a pulmonary
exposure to EM, one in which the EM may not
directly induce an significant initial inflammatory re-
sponse but exacerbate an inflammatory response to a
secondary insult, such as been described following
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Fig. 7 Isolated Vessel Myography ACh Responses 1 Day post Exposure. Graphs presenting the normalized stress responses of aorta and coronary
artery segments 1 day following IT exposure including: coronary responses to citrate capped AgNP (a) coronary responses to PVP capped AgNP
(b) aortic responses to citrate capped AgNP (c) and aortic responses to PVP capped AgNP (d). Statistical significance between naive and 110 nm
AgNP (p < 0.05) indicated by (c), vehicle and 20 nm AgNP indicated by (d), calculated by two-way ANOVA with Tukey post hoc test. Lines represent

Table 5 Calculated vascular stress values for coronary arteries and aortic rings

Treatment Coronary Artery Aorta
Group Maximal Stress Generation Remaining Stress Maximal Stress Generation Remaining Stress
(MmN/mm?) (mN/mm?) (mN/mm?) (mN/mm?)
5-HT ACh SNP 5-HT ACh SNP
Naive 40£05 0.1£0.1 00+£0.1 40x05 0.1+£0.1 00+£0.1
1 Day Post IT Exposure
Citrate 35+£04 12+09 00+0.1 35+04 12+09 00£0.1
20 nm AgNP 43+05 03+02 00+£0.1 43+05 03+£02 00+£0.1
110 nm AgNP 3204 08+0.5 00£0.1 3204 08+0.5 00£0.
PVP 34£03 04+03 0.1£0. 34+03 04+03 0.1£0.
20 nm AgNP 27+£04 03£02 00+£0.1 27+£04 03+02 00+£0.1
110 nm AgNP 30+£05 04+0.1 00+£0.1 30+£05 04+0.1 00+0.1
7 Day Post IT Exposure
Citrate 24+09 04+£04 -0.1+0.1 24+09 00£0.1 06+0.2
20 nm AgNP 36+04 -01+04 0.1+£05 36+04 03+0.1 04+0.2
110 nm AgNP 28+08 0.1+0.1 -02+0.1 28+08 03+03 00£0.
PVP 1.7+07 0.1+£00 -03+0.1 1.7£0.7 05+04 05+02
20 nm AgNP 16+£05 06+05 -04+0.1 16+05 06+06 04+0.1
110 nm AgNP 30£06 01402 -0.1£02 30£06 05+03 02+£03

The calculated mean maximum stress generated to serotonin (5-HT) or phenylephrine (PE) in coronary arteries and aortic rings respectively. Calculated remaining

stress values following acetylcholine (ACh) or sodium nitroprusside (SNP) withdrawal. Values expressed mean + SEM n =3-8
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Fig. 8 Isolated Vessel Myography ACh Responses 7 Days post Exposure. Graphs presenting the normalized stress responses of aorta and coronary
artery segments 7 days following IT exposure including: coronary responses to citrate capped AgNP (a) coronary responses to PVP capped AgNP
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inoculation with lipopolysaccharide (LPS) [52] or immune
sensitization in asthma models associated with both vas-
cular dysfunction and expansion of myocardial infarction
[53]. Previous studies investigating the EMN exposure
and pulmonary fibrosis in rats demonstrated that expos-
ure to nanomaterials alone were insufficient to induce
fibrosis. However, inoculation with LPS following
MWCNT exposure was able to induce greater fibrotic
changes than LPS or MWCNT alone (25). Our data may
provide evidence for the ability for AgNP to exacerbate
inflammatory responses within I/R injury and ultimately
expand myocardial I/R injury. Although we were unable
to demonstrate a strong inflammatory response (through
serum cytokine levels) following instillation of AgND,
analysis of cytokines localized to tissues of interest, such
as myocardium or the vasculature could be a more
enlightening target of investigation.

Overall, the limited changes in circulating cytokine
concentrations post exposure to AgNP may result in
priming of elements of the immune system for a second-
ary insult response and correlate with capping agents
and particle size. Instillation of 20 nm PVP capped
AgNP induced a greater rise in concentrations of select
cytokines (ie., IL-2, IL-6, IL-18) compared to citrate

capped AgNP or their vehicle controls; while PVP and
citrate capped AgNP 110 nm particles resulted in no sig-
nificant differences from vehicle controls and in general
the cardiac I/R injury was slightly greater and prolonged.
These results allow us to suggest that a combination
capping agent and particle size may be an important fac-
tor when evaluating the toxicity associated with expos-
ure to AgNP [54].

The differential response to various particle sizes and
capping agents on particles may be related to the
content of protein coronas formed on the particles and
reflect differing biological interactions [55]. The forma-
tion of unique protein coronas based on the capping
material has been reported to influence the inflamma-
tory response to AgNP by modulating the way nano-
materials interact with cells or tissues [56—58]. One
study of gold nanoparticles revealed different capping
agents have the ability to elicit differential effects on
both in vitro and in vivo toxicity [59]. The results of
this study allow us to suggest that different capping
agents may have the ability to change the manner in
which capped AgNP may impact toxicity [58, 60, 61] or
contribute to the observed vehicle effects in our model
of a cardiovascular injury response.
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Fig. 9 Isolated Vessel Myography SNP Responses 1 Day post Exposure. Graphs presenting the normalized stress responses of aorta and coronary
artery segments 1 day following IT exposure including: coronary responses to citrate capped AgNP (a) coronary responses to PVP capped AgNP
(b) aortic responses to citrate capped AgNP (c) and aortic responses to PVP capped AgNP (d). Statistical significance (p < 0.05) between: naive

and vehicle indicated by (a), naive and 20 nm AgNP indicated by (b), naive and 110 nm AgNP indicated by (), vehicle and 20 nm AgNP, vehicle

and 20 nm AgNP by (d), vehicle and 110 nm AgNP (e), 20 nm AgNP and 110 nm AgNP by (f), calculated by two-way ANOVA with Tukey post
hoc test. Lines represent the nonliner fit to the mean values. Data are reported as mean + SEM with n = 3-8

An additional aspect of the toxicological impact of
AgNP on the cardiovascular system evaluated by this
study was the duration of effect. In this study we ob-
served changes in serum cytokines, vascular reactivity,
and I/R injury that varied between particle size and
capping agents as well as days post instillation. These
observations may suggest a time-dependent aspect of
particle size-capping interactions.

It should be noted that the impact of AgNP seems
highly dependent upon the vascular bed examined, as
well as being influenced by the duration of time follow-
ing exposure, whereby the smaller diameter coronary
vessels seem more susceptible to changes associated with
exposure to AgNP at earlier time points than the aorta.
This observation in itself is not unexpected and has been
reported in a variety of studies following exposure to
other materials [26, 62, 63]. Despite the smaller 20 nm
particle seeming to have a stronger impact on inducing
an inflammatory response or overall expansion of
cardiac I/R injury, the larger 110 nm particle seems to
impart the greatest influence of vascular reactivity.
Whether or not moderate changes in vascular reactivity
are driven by inflammation or may in fact drive expan-
sion of cardiac I/R injury remain unresolved. It should

also be noted that we observed vascular changes associ-
ated with IT instillation of both PVP and Citrate vehi-
cles. This vehicle effect suggests that the capping agent
may strongly influence observed endpoints. However,
this study adds to a body of evidence that exposure to
nanoscale particles can influence normal vascular func-
tion [23, 27, 64—66].

A fundamental question regarding the toxicity of
AgNP is whether or not differences in particle number
or mass dosing influences our toxicological end points.
Given the different sizes of AgNP but an equivalent
mass delivered in these studies it is reasonable to assume
that there are higher numbers of particles in a fixed
200 pL sample of 20 nm AgNP than 110 nm AgNP.
However, we demonstrated that there is no significant
difference in I/R injury 24 h following IT instillation of
all AgNP thus at 24 h it seems that particle number may
not be strongly associated with the extent of I/R injury.
Furthermore, 7 days following IT exposure a differential
response is seen between the citrate and PVP capped
AgNP of the same size, suggestive of influence of cap-
ping agent on the cardiac I/R injury response and not
presumed differences in particle number. It is possible
that the cardiac I/R endpoint may simply be insensitive
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Fig. 10 Isolated Vessel Myography SNP Responses 7 Days post Exposure. Graphs presenting the normalized stress responses of aorta and
coronary artery segments 7 days following IT exposure including: coronary responses to citrate capped AgNP (a) coronary responses to PVP
capped AgNP (b) aortic responses to citrate capped AgNP (c) and aortic responses to PVP capped AgNP (d). Statistical significance (p < 0.05)
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two-way ANOVA with Tukey post hoc test. Lines represent the nonliner fit to the mean values. Data are reported as mean + SEM with n=3-4
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to particle number induced toxicity. Results from the
cytokine concentrations may indicate that surface area of
AgNP along with capping agent play the more prominent
roles in inducing cardiovascular toxicity. Particles envel-
oped by a protein corona which is influenced by capping
agent have demonstrated differential granulation influen-
cing potentially modulating cytokine release and in turn
evolving immunological responses [61]. The capping
agents of AgNP may further modulate the way particles
interact with aforementioned biological interfaces leading
to increased toxicity [59]. The influence of capping agent
on cardiovascular toxicity may result from differences in
surface charge, which can impact particle adsorption
affinity for cellular surfaces [67] as well as cellular uptake
[68]. Additionally, ionic dissolution in vivo may be a
source of toxicity, although dissolution rate of silver was
not measured in this study in vitro studies have examined
the contribution of ion dissolution to overall toxicology
[29, 30]. We have previously investigated the role of silver
ion and found that within a range of ionic dissolution con-
gruent with in vitro studies, it is unlikely that free silver
ions play a large role in the cardiovascular toxicity ob-
served in this current study [27]. The contribution of the
species of silver nanomaterial to cardiovascular injury has
yet to be fully evaluated, despite pure silver core species

being capable of inducing expansion of cardiac ischemia-
reperfusion injury [27] the magnitude of the injury was
less than reported herewith gold core silver particles,
raising questions of core stability contributing to in vivo
ion dissolution or particle charge.

Although it does not appear citrate or PVP capped
110 nm AgNP has a strong influence on systemic inflam-
matory response or protein oxidation, there is a strong ef-
fect on the expansion of I/R injury. We suggest that AgNP
mediated systemic inflammation is not the only mechan-
ism contributing to expansion of I/R injury. A potential al-
ternative mechanism of AgNP toxicity include induction
of vascular dysfunction [20, 37, 69] which leads to an ex-
pansion of I/R injury following IT exposure to AgNP.

Conclusions

The ubiquitous use of engineered nanomaterials makes
understanding the potential toxicological outcomes of
exposure to such materials a chief public health concern.
We investigated the unique cardiovascular toxicity asso-
ciated with pulmonary exposure to AgNP. In order to
evaluate the cardiovascular toxicity endpoints following
pulmonary instillation of AgNP we evaluated vascular
responses in the aorta and coronary artery, as well as
investigated the impact of AgNP on cardiac I/R injury.
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Fig. 11 Cardiac Ischemia/Reperfusion Injury Following IT instillation of AgNP. Graphs of cardiac I/R injury in male SD rats exposed by [T instillation
of 200 ul of citrate or PVP vehicle or 200 ug AgNP for 1 (panels a and b) or 7 days (panels ¢ and d). Cardiac I/R injury was induced by occlusion
of the LAD for 20 min of ischemia and 2 h of reperfusion. Ischemia-reperfusion injury was expanded 1 day following IT exposure to AgNP
compared to vehicle or naive (a). Expansion of I/R injury persists 7 days following IT instillation (b). (a) denotes significance, (p < 0.05) calculated by
one-way ANOVA with Tukey post hoc test, versus naive, (b) denotes significant vs vehicle, (c) denotes significant vs capping agent.
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In an attempt to elucidate mechanisms of AgNP toxicity
we also evaluated the serum inflammatory profile, which
we hypothesized particle size and capping agents may
drive processes leading to expansion of cardiac I/R
injury. Our data reveals that IT instillation of AgNP
results in expansion of cardiac I/R injury 1 day and
7 days post IT when compared to I/R injury from naive
and vehicle controls. Instillation of AgNP did not elicit a
strong inflammatory response as measured by circulat-
ing serum cytokines, but I/R injury following IT instilla-
tion did result in a greater inflammatory response in PVP
capped 20 nm AgNP compared to vehicle controls. The
cardiovascular toxicity of AgNP seems to be complex,
dependent on several factors including particle size and
capping agent. The determination of the persistence of

cardiac I/R injury beyond the 7 day time point may be im-
portant in understanding the potential public health im-
pact of pulmonary exposures to AgNP.
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