CORRECTION Open Access

Correction to: Inhaled gold nanoparticles cause cerebral edema and upregulate endothelial aquaporin 1 expression, involving caveolin 1 dependent repression of extracellular regulated protein kinase activity

Ching-Yi Chen^{1,2,3†}, Po-Lin Liao^{3,4†}, Chi-Hao Tsai⁴, Yen-Ju Chan^{1,2}, Yu-Wen Cheng³, Ling-Ling Hwang^{1,2}, Kuan-Hung Lin⁵, Ting-Ling Yen⁶ and Ching-Hao Li^{1,2*}

Correction to: Part Fibre Toxicol https://doi.org/10.1186/s12989-019-0324-2

It was highlighted that the original article [1] contained the wrong Fig. 1. This Correction article shows the correct Fig. 1. The original article has been updated.

Author details

¹Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan. ²Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan. ³School of Pharmacy, Taipei Medical University, Taipei, Taiwan. ⁴Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan. ⁵Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan. ⁶Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan.

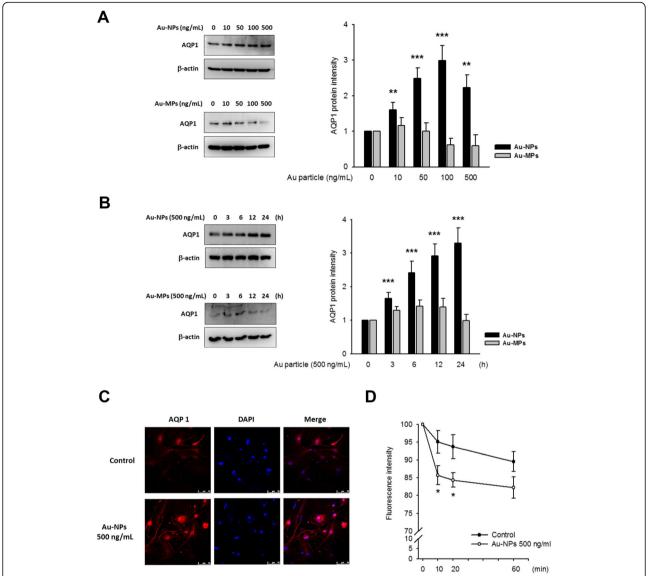
Published online: 18 November 2019

Reference

 Chen, et al. Part Fibre Toxicol. 2019;16:37. https://doi.org/10.1186/ s12989-019-0324-2.

The original article can be found online at https://doi.org/10.1186/s12989-019-0324-2

Full list of author information is available at the end of the article



^{*} Correspondence: bros22@tmu.edu.tw

[†]Ching-Yi Chen and Po-Lin Liao contributed equally to this work.

¹Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan

²Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan

Fig. 1 Au-NPs induced aquaporin-1 (AQP1) protein expression in bEnd.3 cells. **a/b** The bEnd.3 cells (an immortalized mouse cerebral endothelial cell line) were exposed to Au-NPs (or Au-MPs) and the expression level of AQP1 was detected by western blots. Representative images showed an increase of AQP1 protein level in Au-NP-treated groups, whereas AQP1 protein level remained unaffected in Au-MP-treated groups. **a** concentration-dependent treatment; cells were incubated with 10, 50, 100 and 500 ng/mL Au-NPs for 24 h. **b** time-dependent treatment; cells were incubated with 500 ng/mL Au-NPs for 3, 6, 12, and 24 h. (* p < 0.05, ** p < 0.01, and *** p < 0.001 indicates statistically significant difference from the control group; N = 11). **c** Representative images of immunofluorescent staining, the Au-NP-induced AQP1 and the nucleus was manifested by red and blue fluorescence, respectively. A gain of red fluorescence in cell membrane and cytosol was observed in Au-NP-treated bEnd.3 cells (500 ng/mL; 24 h), as compared to control. **d** Transendothelial permeability assay was performed as described in Materials and Methods. Au-NP treatment (500 ng/mL; 24 h) made bEnd.3 cell more permeable to water. (* p < 0.05, indicates statistically significant difference from the control group; N = 12)