Skip to main content

A new approach to design safe CNTs with an understanding of redox potential



Carbon nanotubes (CNTs) are being increasingly industrialized and applied for various products. As of today, although several toxicological evaluations of CNTs have been conducted, designing safer CNTs is not practiced because reaction kinetics of CNTs with bioactive species is not fully understood.


The authors propose a kinetic mechanism to establish designing safe CNTs as a new goal. According to a literature search on the behavior of CNTs and the effects of impurities, it is found that chemical reactions on CNT surface are attributed to redox reactions involving metal impurities and carbon structures at the CNT surface.


A new goal is proposed to design safer CNTs using the redox potential hypothesis. The value of this hypothesis must be practically investigated and proven through the further experiments.


Designing safe Carbon Nanotubes (CNTs) is an important goal but requires elucidation of mechanisms that drive biological responses to CNTs. Importance of physicochemical properties is often suggested in articles, but the relative importance of specific properties has not been defined explicitly. Two critical points concerning CNT safety evaluations are: bioactivity of CNTs and impurities, and the fiber paradigm. The latter not only applies to CNTs but also other nanowires and micro fibers. Thus, we would like to discuss the former, bioactivity, that is, chemical reactions on the CNT surface. Recent investigations suggest that there exists an intrinsic mechanism of redox potential with CNTs and its metal impurities [15]. It must be noted that redox means both oxidation and reduction.


Redox reactions of CNTs are attributed to metal impurities and the structure of carbon lattice. First, metal impurities are brought by synthesizing catalysts that are transition metals, such as Fe, Ni, Co. Mo, and so on. Among them, iron will be discussed as a typical model. A good method to remove metal impurities from CNTs is a wash in concentrated nitric acid at 350°C [6]. A strong acid wash may alter the surface of carbon nanotubes, modifying surface reactivity. Thus, it is best to avoid strong acid washing that would damage CNTs. Interestingly, Guo et al. [1] reported that Fe2O3 and FeC encapsulated by carbons cannot be mobilized nor be bioavailable to an acid wash. Furthermore, Liu et al. [7] discussed that it was not necessary to remove metal impurities from CNTs as long as those metals were enclosed and not bioavailable. Thus, it is possible to manage iron impurities by an appropriate acid wash, and bioactivity will be reduced as long as remaining impurities are not bioavailable.

To various degrees, transition metal impurities are usually oxidative to peroxides while metal oxides are relatively stable. It is known that Fe (II) or Fe2+ ion generates OH radicals (OH•), a form of reactive oxygen species (ROS), by the Fenton reaction, and that ROS induce inflammation of tissues. As Fe3+ generated by the oxidation is again reduced to Fe2+ with peroxide, iron can continue to cause oxidant-induced inflammation in living tissues. In contrast, Fe (III) oxide (Fe2O3) and carbide (FeC) do not generate ROS, because Fe (III) cannot be an electron donor except upon treatment with a strong reduction agent. Fe (II) is supplied not only externally as metal impurities but also internally in a living body. Since Fe (II) essentially catalyzes peroxide generating OH•, redox (reduction) reactions are required to eliminate the radicals. A question is what redox potential do CNTs exhibit.

Redox potential determines the reaction tendency of chemicals in a system. CNTs inevitably have dangling bonds at which unpaired electrons can be easily exchanged with the other species. If those dangling bonds donate electrons to OH•, CNTs become ROS quenchers. According to recent findings [811], CNTs scavenge ROS so that those dangling bonds work as electron donors. In other words, CNTs can potentially reduce OH•. If this redox potential hypothesis is true for CNTs, they may decrease oxidant-induced inflammation of tissues. One should be able to stoichiometrically predict oxidant stress once redox potential of CNTs in a reaction system is determined. This hypothesis might apply for the other nanomaterials as well. Furthermore, a systematic protocol based on chemical reaction kinetics can be applied to develop predictive in vitro assays of redox potential for various types of CNTs. Accumulating those redox reaction data, guidance to design safer CNTs can be developed. In conclusion, redox potential might be a useful tool to estimate ROS generation and bioactivity with CNTs. To utilize it, we have to investigate redox potentials of biological systems further and identify the role of oxidant stress in the toxicity of CNTs.


It is hypothesized that radical generation and degeneration (quenching) can be determined by redox potential in a reaction system with CNTs and impurities. A goal to design safer CNTs is proposed based on the redox potential. It must be practically investigated and proven through the further experiments.



Carbon nanotubes


Reactive oxygen species.


  1. 1.

    Guo L, Morris DG, Liu X, Vaslet C, Hurt RH, Kane AB: Iron bioavailability and redox activity in diverse carbon nanotube. Chem Mater 2007, 19: 3472–3478. 10.1021/cm062691p

    CAS  Article  Google Scholar 

  2. 2.

    Ge C, Lao F, Li W, Li Y, Chen C, Qiu Y, Mao X, Li B, Chai Z, Zhao Y: Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy. Anal Chem 2008, 80: 9426–9434. 10.1021/ac801469b

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Pumera M, Miyahara Y: What amount of metallic impurities in carbon nanotubes is small enough not to dominate their redox properties? Nanoscale 2009, 1: 260–265. 10.1039/b9nr00071b

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Ge C, Li Y, Yin J-J, Liu Y, Wang L, Zhao Y, Chen C: The contributions of metal impurities and tube structure to the toxicity of carbon nanotube materials. NPG Asia Materials 2012, 4: 1–10. 10.1038/am.2012.1

    Article  Google Scholar 

  5. 5.

    Liu Y, Zhao Y, Sun B, Chen C: Understanding the toxicity of carbon Nanotubes. Acc Chem Res 2013,46(3):702–713. 10.1021/ar300028m

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Mohanapriya S, Lakshminarayana V: Simultaneous purification and spectrophotometric determination of nickel present in as-prepared single-walled carbon nanotubes (SWCNT). Advanced Mater 2007, 19: 2790–2796. 10.1002/adma.200602696

    Article  Google Scholar 

  7. 7.

    Liu X, Guo L, Morris D, Kane AB, Hurt RH: Targeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes. Carbon 2008, 46: 489–500. 10.1016/j.carbon.2007.12.018

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  8. 8.

    Fenoglio I, Tomatis M, Lison D, Muller J, Fonseca A, Nagy JB, Fubini B: Reactivity of carbon nanotubes: free radical generation or scavenging activities? Free Rad Biol Med 2006, 40: 1227–1233. 10.1016/j.freeradbiomed.2005.11.010

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Fenoglio I, Greco G, Tomatis M, Muller J, Raymundo-Piñero E, Béguin F, Fonseca A, Nagy JB, Lison D, Fubini B: Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem Res Toxicol 2008, 21: 1690–1697. 10.1021/tx800100s

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Murray AR, Kisin E, Leonard SS, Young SH, Kommineni C, Kagan VE, Castranova V, Shvedova AA: Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotues. Toxicology 2009, 257: 161–171. 10.1016/j.tox.2008.12.023

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Tsuruoka S, Takeuchi K, Koyama K, Noguchi T, Endo M, Tristan F, Terrones M, Saito N, Usui Y, Porter DW, Castranova V: ROS evaluation for a series of CNTs and their derivatives using an ESR method with DMPO. J Phys Conf Ser 2013, 429: 01209.

    Article  Google Scholar 

Download references


This work was supported by the Exotic Nanocarbon Project, Japan Regional Innovation Strategy Program by the Excellence, JST (Japan Science and Technology Agency) (ST).


The findings and conclusions in this article are those of the authors and do not necessarily represent the view of the National Institute for Occupational Safety and Health.

Author information



Corresponding author

Correspondence to Shuji Tsuruoka.

Additional information

Authors’ contributions

All authors equally participated to conduct a literature search and laboratory studies and to draft this text. All authors read and approved the final manuscript.

Flemming R Cassee and Vincent Castranova contributed equally to this work.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Tsuruoka, S., Cassee, F.R. & Castranova, V. A new approach to design safe CNTs with an understanding of redox potential. Part Fibre Toxicol 10, 44 (2013).

Download citation


  • Reactive Oxygen Species
  • Carbon Nanotubes
  • Redox Potential
  • Redox Reaction
  • Reactive Oxygen Species Generation