Nel A, Xia T, Madler L, Li N: Toxic potential of materials at the nanolevel. Science 2006,311(5761):622–627. 10.1126/science.1114397
Article
CAS
PubMed
Google Scholar
Project on emerging nanotechnologies [http://www.nanotechproject.org/cpi/]
Nowack B, Krug HF, Height M: 120 years of nanosilver history: implications for policy makers. Environ Sci Technol 2011,45(4):1177–1183. 10.1021/es103316q
Article
CAS
PubMed
Google Scholar
Ahamed M, AlSalhi MS, Siddiqui MKJ: Silver nanoparticle applications and human health. Clin Chim Acta 2010,411(23–24):1841–1848.
Article
CAS
PubMed
Google Scholar
Chen X, Schluesener HJ: Nanosilver: a nanoproduct in medical application. Toxicol Lett 2008,176(1):1–12. 10.1016/j.toxlet.2007.10.004
Article
CAS
PubMed
Google Scholar
Schrurs F, Lison D: Focusing the research efforts. Nat Nanotechnol 2012,7(9):546–548. 10.1038/nnano.2012.148
Article
CAS
PubMed
Google Scholar
Kim S, Ryu DY: Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol 2013,33(2):78–89. 10.1002/jat.2792
Article
PubMed
Google Scholar
Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N: Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 2011,201(1):27–33. 10.1016/j.toxlet.2010.12.001
Article
CAS
PubMed
Google Scholar
Samberg ME, Loboa EG, Oldenburg SJ, Monteiro-Riviere NA: Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine 2012,7(8):1197–1209. 10.2217/nnm.12.18
Article
PubMed Central
CAS
PubMed
Google Scholar
Kittler S, Greulich C, Diendorf J, Koller M, Epple M: Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mat 2010,22(16):4548–4554. 10.1021/cm100023p
Article
CAS
Google Scholar
Samberg ME, Orndorff PE, Monteiro-Riviere NA: Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology 2011,5(2):244–253. 10.3109/17435390.2010.525669
Article
CAS
PubMed
Google Scholar
Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H: Toxicity of silver nanoparticles - nanoparticle or silver ion? Toxicol Lett 2012,208(3):286–292. 10.1016/j.toxlet.2011.11.002
Article
CAS
PubMed
Google Scholar
Foldbjerg R, Irving ES, Hayashi Y, Sutherland DS, Thorsen K, Autrup H, Beer C: Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci 2012,130(1):145–157. 10.1093/toxsci/kfs225
Article
CAS
PubMed
Google Scholar
Cronholm P, Karlsson HL, Hedberg J, Lowe TA, Winnberg L, Elihn K, Wallinder IO, Moller L: Intracellular uptake and toxicity of Ag and CuO nanoparticles: a comparison between nanoparticles and their corresponding metal ions. Small 2013,9(7):970–982. 10.1002/smll.201201069
Article
CAS
PubMed
Google Scholar
Liu W, Wu Y, Wang C, Li HC, Wang T, Liao CY, Cui L, Zhou QF, Yan B, Jiang GB: Impact of silver nanoparticles on human cells: effect of particle size. Nanotoxicology 2010,4(3):319–330. 10.3109/17435390.2010.483745
Article
CAS
PubMed
Google Scholar
Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW: Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A 2012,100(4):1033–1043.
Article
PubMed
Google Scholar
Khlebtsov BN, Khlebtsov NG: On the measurement of gold nanoparticle sizes by the dynamic light scattering method. Colloid J 2011,73(1):118–127. 10.1134/S1061933X11010078
Article
CAS
Google Scholar
El Badawy AM, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM: Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 2010,44(4):1260–1266. 10.1021/es902240k
Article
CAS
PubMed
Google Scholar
Tomaszewska E, Soliwoda K, Kadziola K, Tkacz-Szczesna B, Celichowski G, Cichomski M, Szmaja W, Grobelny J: Detection limits of DLS and UV–vis spectroscopy in characterization of polydisperse nanoparticles colloids. J Nanomaterials 2013, 2013: 10.
Article
Google Scholar
Skoglund S, Lowe TA, Hedberg J, Blomberg E, Wallinder IO, Wold S, Lundin M: Effect of laundry surfactants on surface charge and colloidal stability of silver nanoparticles. Langmuir 2013,29(28):8882–8891. 10.1021/la4012873
Article
CAS
PubMed
Google Scholar
Han X, Gelein R, Corson N, Wade-Mercer P, Jiang J, Biswas P, Finkelstein JN, Elder A, Oberdorster G: Validation of an LDH assay for assessing nanoparticle toxicity. Toxicology 2011,287(1–3):99–104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Holder AL, Marr LC: Toxicity of silver nanoparticles at the air-liquid interface. Biomed Res Int 2013,328934(10):24.
Google Scholar
Menon MP, Wright CE: A radiotracer probe to study metal interaction with human lactate dehydrogenase isoenzymes. J Protein Chem 1989,8(6):757–766. 10.1007/BF01024900
Article
CAS
PubMed
Google Scholar
Karlsson M, Kurz T, Brunk UT, Nilsson SE, Frennesson CI: What does the commonly used DCF test for oxidative stress really show? Biochem J 2010,428(2):183–190. 10.1042/BJ20100208
Article
CAS
PubMed
Google Scholar
Stebounova L, Guio E, Grassian V: Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanoparticle Res 2011,13(1):233–244. 10.1007/s11051-010-0022-3
Article
CAS
Google Scholar
Chernousova S, Epple M: Silver as antibacterial agent: ion, nanoparticle, and metal. Angew Chem Int Ed Engl 2013,52(6):1636–1653. 10.1002/anie.201205923
Article
CAS
PubMed
Google Scholar
Behra R, Sigg L, Clift MJ, Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B: Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 2013,10(87):6.
Article
Google Scholar
Lee J, Ahn K, Kim S, Jeon K, Lee J, Yu I: Continuous 3-day exposure assessment of workplace manufacturing silver nanoparticles. J Nanoparticle Res 2012,14(9):1–10.
Article
Google Scholar
Wang X, Ji Z, Chang CH, Zhang H, Wang M, Liao YP, Lin S, Meng H, Li R, Sun B, et al.: Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 2013,27(10):201301597.
Google Scholar
Carlson C, Hussain SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ: Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B 2008,112(43):13608–13619. 10.1021/jp712087m
Article
CAS
PubMed
Google Scholar
George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T, et al.: Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 2012,6(5):3745–3759. 10.1021/nn204671v
Article
PubMed Central
CAS
PubMed
Google Scholar
Li N, Xia T, Nel AE: The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 2008,44(9):1689–1699. 10.1016/j.freeradbiomed.2008.01.028
Article
PubMed Central
CAS
PubMed
Google Scholar
Karlsson HL: The comet assay in nanotoxicology research. Anal Bioanal Chem 2010,398(2):651–666. 10.1007/s00216-010-3977-0
Article
CAS
PubMed
Google Scholar
Kain J, Karlsson HL, Moller L: DNA damage induced by micro- and nanoparticles-interaction with FPG influences the detection of DNA oxidation in the comet assay. Mutagenesis 2012,27(4):491–500. 10.1093/mutage/ges010
Article
CAS
PubMed
Google Scholar
AshaRani PV, Sethu S, Lim H, Balaji G, Valiyaveettil S, Hande MP: Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr 2012,3(1):2. 10.1186/2041-9414-3-2
Article
PubMed Central
CAS
PubMed
Google Scholar
Kim HR, Kim MJ, Lee SY, Oh SM, Chung KH: Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res 2011,726(2):129–135. 10.1016/j.mrgentox.2011.08.008
Article
CAS
PubMed
Google Scholar
Asharani PV, Hande MP, Valiyaveettil S: Anti-proliferative activity of silver nanoparticles. BMC Cell Biol 2009,10(65):1471–2121.
Google Scholar
Lu W, Senapati D, Wang S, Tovmachenko O, Singh AK, Yu H, Ray PC: Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem Phys Lett 2010,487(1–3):92–96.
Article
CAS
Google Scholar
Verma NK, Conroy J, Lyons PE, Coleman J, O’Sullivan MP, Kornfeld H, Kelleher D, Volkov Y: Autophagy induction by silver nanowires: a new aspect in the biocompatibility assessment of nanocomposite thin films. Toxicol Appl Pharmacol 2012,264(3):451–461. 10.1016/j.taap.2012.08.023
Article
CAS
PubMed
Google Scholar
Yu SJ, Chao JB, Sun J, Yin YG, Liu JF, Jiang GB: Quantification of the uptake of silver nanoparticles and ions to HepG2 cells. Environ Sci Technol 2013,47(7):3268–3274.
Article
CAS
PubMed
Google Scholar
Zhang W, Yao Y, Sullivan N, Chen Y: Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ Sci Technol 2011,45(10):4422–4428. 10.1021/es104205a
Article
CAS
PubMed
Google Scholar
Gebauer JS, Malissek M, Simon S, Knauer SK, Maskos M, Stauber RH, Peukert W, Treuel L: Impact of the nanoparticle-protein corona on colloidal stability and protein structure. Langmuir 2012,28(25):9673–9679. 10.1021/la301104a
Article
CAS
PubMed
Google Scholar
Monteiro-Riviere NA, Samberg ME, Oldenburg SJ, Riviere JE: Protein binding modulates the cellular uptake of silver nanoparticles into human cells: implications for in vitro to in vivo extrapolations? Toxicol Lett 2013,220(3):286–293. 10.1016/j.toxlet.2013.04.022
Article
PubMed Central
CAS
PubMed
Google Scholar
Cho EC, Zhang Q, Xia Y: The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 2011,6(6):385–391. 10.1038/nnano.2011.58
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang H, Wu L, Reinhard BM: Scavenger receptor mediated endocytosis of silver nanoparticles into J774A.1 macrophages is heterogeneous. ACS Nano 2012,6(8):7122–7132. 10.1021/nn302186n
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang LW, Monteiro-Riviere NA: Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol Sci 2009,110(1):138–155. 10.1093/toxsci/kfp087
Article
CAS
PubMed
Google Scholar
Liu J, Sonshine DA, Shervani S, Hurt RH: Controlled release of biologically active silver from nanosilver surfaces. ACS Nano 2010,4(11):6903–6913. 10.1021/nn102272n
Article
PubMed Central
CAS
PubMed
Google Scholar
Liu J, Wang Z, Liu FD, Kane AB, Hurt RH: Chemical transformations of nanosilver in biological environments. ACS Nano 2012,6(11):9887–9899. 10.1021/nn303449n
Article
PubMed Central
CAS
PubMed
Google Scholar
Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ: Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 2012,12(8):4271–4275. 10.1021/nl301934w
Article
CAS
PubMed
Google Scholar
Yang X, Gondikas AP, Marinakos SM, Auffan M, Liu J, Hsu-Kim H, Meyer JN: Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans. Environ Sci Technol 2012,46(2):1119–1127. 10.1021/es202417t
Article
CAS
PubMed
Google Scholar
Shi J, Karlsson HL, Johansson K, Gogvadze V, Xiao L, Li J, Burks T, Garcia-Bennett A, Uheida A, Muhammed M, et al.: Microsomal glutathione transferase 1 protects against toxicity induced by silica nanoparticles but not by zinc oxide nanoparticles. ACS Nano 2012,6(3):1925–1938. 10.1021/nn2021056
Article
PubMed Central
CAS
PubMed
Google Scholar
Ruckert P, Bates SR, Fisher AB: Role of clathrin- and actin-dependent endocytotic pathways in lung phospholipid uptake. Am J Physiol Lung Cell Mol Physiol 2003,284(6):28.
Article
Google Scholar
Skretting G, Torgersen ML, van Deurs B, Sandvig K: Endocytic mechanisms responsible for uptake of GPI-linked diphtheria toxin receptor. J Cell Sci 1999,112(Pt 22):3899–3909.
CAS
PubMed
Google Scholar
Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M, Alexander T, Touret N, Hahn KM, Grinstein S: Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J Cell Biol 2010,188(4):547–563. 10.1083/jcb.200908086
Article
PubMed Central
CAS
PubMed
Google Scholar
Clague MJ, Thorpe C, Jones AT: Phosphatidylinositol 3-kinase regulation of fluid phase endocytosis. FEBS Lett 1995,367(3):272–274. 10.1016/0014-5793(95)00576-U
Article
CAS
PubMed
Google Scholar
Chen X, Zhong Z, Xu Z, Chen L, Wang Y: 2′,7′-Dichlorodihydrofluorescein as a fluorescent probe for reactive oxygen species measurement: forty years of application and controversy. Free Radic Res 2010,44(6):587–604. 10.3109/10715761003709802
Article
CAS
PubMed
Google Scholar
Mah LJ, El-Osta A, Karagiannis TC: gammaH2AX: a sensitive molecular marker of DNA damage and repair. Leukemia 2010,24(4):679–686. 10.1038/leu.2010.6
Article
CAS
PubMed
Google Scholar
Hedberg Y, Gustafsson J, Karlsson HL, Moller L, Odnevall Wallinder I: Bioaccessibility, bioavailability and toxicity of commercially relevant iron- and chromium-based particles: in vitro studies with an inhalation perspective. Part Fibre Toxicol 2010,7(23):1743–8977.
Google Scholar
de Meringo A, Morscheidt C, Thelohan S, Tiesler H: In vitro assessment of biodurability: acellular systems. Environ Health Perspect 1994, 5: 47–53.
Article
Google Scholar