Nanotechnologies PoE: Consumer Products Inventory. Retrieved [June, 2014], from ., [http://www.nanotechproject.org/cpi]
Maynard AD, Kuempel ED: Airborne nanostructured particles and occupational health. J Nanoparticle Res 2005, 7: 587–614. 10.1007/s11051-005-6770-9
Article
CAS
Google Scholar
Christensen FM, Johnston HJ, Stone V, Aitken RJ, Hankin S, Peters S, Aschberger K: Nano-silver - feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology 2010, 4: 284–295. 10.3109/17435391003690549
Article
CAS
PubMed
Google Scholar
Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG, Heugens EHW, Roszek B, Bisschops J, Gosens I, Meent D, Dekkers S, Jong WH, Zijverden M, Sips AJAM, Geertsma RE: Nano-silver - a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 2009, 3: 109–138. 10.1080/17435390902725914
Article
CAS
Google Scholar
Sotiriou GA, Pratsinis SE: Engineering nanosilver as an antibacterial, biosensor and bioimaging material. Curr Opin Chem Eng 2011, 1: 3–10. 10.1016/j.coche.2011.07.001
Article
PubMed Central
CAS
PubMed
Google Scholar
Sotiriou GA, Pratsinis SE: Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 2010, 44: 5649–5654. 10.1021/es101072s
Article
CAS
PubMed
Google Scholar
Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM: Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 2007, 12: 527–534. 10.1007/s00775-007-0208-z
Article
CAS
PubMed
Google Scholar
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ: The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16: 2346–2353. 10.1088/0957-4484/16/10/059
Article
CAS
PubMed
Google Scholar
Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ: Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 2012, 12: 4271–4275. 10.1021/nl301934w
Article
CAS
PubMed
Google Scholar
Sung JH, Ji JH, Song KS, Lee JH, Choi KH, Lee SH, Yu IJ: Acute inhalation toxicity of silver nanoparticles. Toxicol Ind Health 2011, 27: 149–154. 10.1177/0748233710382540
Article
CAS
PubMed
Google Scholar
Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ: Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague–Dawley rats. Inhal Toxicol 2007, 19: 857–871. 10.1080/08958370701432108
Article
CAS
PubMed
Google Scholar
Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, O’shaughnessy PT, Grassian VH, Thorne PS: Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 2011, 8: 5. 10.1186/1743-8977-8-5
Article
PubMed Central
CAS
PubMed
Google Scholar
Song KS, Sung JH, Ji JH, Lee JH, Lee JS, Ryu HR, Lee JK, Chung YH, Park HM, Shin BS, Chang HK, Kelman B, Yu IJ: Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotoxicology 2012, 7: 169–180. 10.3109/17435390.2011.648223
Article
PubMed
Google Scholar
Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, Kim TS, Chang HK, Lee EJ, Lee JH, Yu IJ: Lung function changes in Sprague–Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol 2008, 20: 567–574. 10.1080/08958370701874671
Article
CAS
PubMed
Google Scholar
Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Chang HK, Lee JH, Cho MH, Kelman BJ, Yu IJ: Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 2009, 108: 452–461. 10.1093/toxsci/kfn246
Article
CAS
PubMed
Google Scholar
Asgharian B, Price O, Miller F, Subramaniam R, Cassee FR, Freijer J, van Bree L, Winter-Sorkina R: Multiple-Path Particle Dosimetry Model (MPPD v 2.11): A Model for Human and Rat Airway Particle Dosimetry. In Hamner Institutes for Health Sciences Applied Research Associates (ARA), National Institute for Public Health and the Environment (RIVM), and Ministry of Housing, Spatial Planning and the Environment, Editor. Applied Research Associates (ARA), Raleigh, North Carolina, USA; 2009.
Google Scholar
ICRP: Human respiratory tract model for radiological protection. International Commission on Radiological Protection ICRP Publication 66 1994, 24: 1–3.
Carvalho TC, Peters JI, Williams RO 3rd: Influence of particle size on regional lung deposition–what evidence is there? Int J Pharm 2011, 406: 1–10. 10.1016/j.ijpharm.2010.12.040
Article
CAS
PubMed
Google Scholar
Cassee FR, Muijser H, Duistermaat E, Freijer JJ, Geerse KB, Marijnissen JC, Arts JH: Particle size-dependent total mass deposition in lungs determines inhalation toxicity of cadmium chloride aerosols in rats. Application of a multiple path dosimetry model. Arch Toxicol 2002, 76: 277–286. 10.1007/s00204-002-0344-8
Article
CAS
PubMed
Google Scholar
Braakhuis HM, Park MV, Gosens I, De Jong WH, Cassee FR: Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol 2014, 11: 18. 10.1186/1743-8977-11-18
Article
PubMed Central
PubMed
Google Scholar
Geiser M, Kreyling WG: Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 2010, 7: 2. 10.1186/1743-8977-7-2
Article
PubMed Central
PubMed
Google Scholar
Oberdorster G: Dosimetric principles for extrapolating results of rat inhalation studies to humans, using an inhaled Ni compound as an example. Health Phys 1989,57(Suppl 1):213–220. 10.1097/00004032-198907001-00027
Article
CAS
PubMed
Google Scholar
Oberdorster G, Ferin J, Lehnert BE: Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 1994, 102(Suppl 5):173–179.
Article
PubMed Central
PubMed
Google Scholar
Geraets L, Oomen AG, Schroeter JD, Coleman VA, Cassee FR: Tissue distribution of inhaled micro- and nano-sized cerium oxide particles in rats: results from a 28-day exposure study. Toxicol Sci 2012, 127: 463–473. 10.1093/toxsci/kfs113
Article
CAS
PubMed
Google Scholar
Phalen RF, Mendez LB, Oldham MJ: New developments in aerosol dosimetry. Inhal Toxicol 2010,22(Suppl 2):6–14. 10.3109/08958378.2010.516031
Article
CAS
PubMed
Google Scholar
Oberdorster G, Pott F: Extrapolation from rat studies with environmental tobacco smoke (ETS) to humans: comparison of particle mass deposition and of clearance behavior of ETS compounds. Toxicol Lett 1987, 35: 107–112. 10.1016/0378-4274(87)90093-2
Article
CAS
PubMed
Google Scholar
Oberdorster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, Elder AC: Acute pulmonary effects of ultrafine particles in rats and mice. Res Rep Health Eff Inst 2000, 96: 5–74. disc 75–86
PubMed
Google Scholar
Bakand S, Hayes A, Dechsakulthorn F: Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol 2012, 24: 125–135. 10.3109/08958378.2010.642021
Article
CAS
PubMed
Google Scholar
Muhlfeld C, Gehr P, Rothen-Rutishauser B: Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly 2008, 138: 387–391.
PubMed
Google Scholar
Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W: The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 2008, 38: 371–376. 10.1165/rcmb.2007-0138OC
Article
CAS
PubMed
Google Scholar
Ma R, Levard C, Marinakos SM, Cheng Y, Liu J, Michel FM, Brown GE, Lowry GV: Size-controlled dissolution of organic-coated silver nanoparticles. Environ Sci Technol 2012, 46: 752–759. 10.1021/es201686j
Article
CAS
PubMed
Google Scholar
Leo BF, Chen S, Kyo Y, Herpoldt KL, Terrill NJ, Dunlop IE, McPhail DS, Shaffer MS, Schwander S, Gow A, Zhang J, Chung KF, Tetley TD, Porter AE, Ryan MP: The stability of silver nanoparticles in a model of pulmonary surfactant. Environ Sci Technol 2013, 47: 11232–11240. 10.1021/es403377p
Article
CAS
PubMed
Google Scholar
Stebounova LV, Guio E, Grassian VH: Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution. J Nanopar Res 2011, 13: 12.
Article
Google Scholar
Kent RD, Vikesland PJ: Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy. Environ Sci Technol 2012, 46: 6977–6984. 10.1021/es203475a
Article
CAS
PubMed
Google Scholar
Zook JM, Long SE, Cleveland D, Geronimo CL, MacCuspie RI: Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV-visible absorbance. Anal Bioanal Chem 2011, 401: 1993–2002. 10.1007/s00216-011-5266-y
Article
CAS
PubMed
Google Scholar
Pratsinis A, Hervella P, Leroux JC, Pratsinis SE, Sotiriou GA: Toxicity of silver nanoparticles in macrophages. Small 2013, 9: 2576–2584. 10.1002/smll.201202120
Article
CAS
PubMed
Google Scholar
Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H: Toxicity of silver nanoparticles - nanoparticle or silver ion? Toxicol Lett 2012, 208: 286–292. 10.1016/j.toxlet.2011.11.002
Article
CAS
PubMed
Google Scholar
Wang X, Ji Z, Chang CH, Zhang H, Wang M, Liao YP, Lin S, Meng H, Li R, Sun B, Winkle LV, Pinkerton KE, Zink JI, Xia T, Nel AE: Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 2014, 10: 385–398. 10.1002/smll.201301597
Article
PubMed Central
CAS
PubMed
Google Scholar
Singh S, Kumar A, Karakoti A, Seal S, Self WT: Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Mol Biosyst 2010, 6: 1813–1820. 10.1039/c0mb00014k
Article
PubMed Central
CAS
PubMed
Google Scholar
Herzog F, Clift MJ, Piccapietra F, Behra R, Schmid O, Petri-Fink A, Rothen-Rutishauser B: Exposure of silver-nanoparticles and silver-ions to lung cells in vitro at the air-liquid interface. Part Fibre Toxicol 2013, 10: 11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lubick N: Nanosilver toxicity: ions, nanoparticles–or both? Environ Sci Technol 2008, 42: 8617. 10.1021/es8026314
Article
CAS
PubMed
Google Scholar
Park EJ, Yi J, Kim Y, Choi K, Park K: Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro 2010, 24: 872–878. 10.1016/j.tiv.2009.12.001
Article
CAS
PubMed
Google Scholar
Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ: Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 2007, 41: 4158–4163. 10.1021/es062629t
Article
CAS
PubMed
Google Scholar
Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H: Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect 2006, 114: 328–333. 10.1289/ehp.8266
Article
PubMed Central
PubMed
Google Scholar
Horie M, Fukui H, Endoh S, Maru J, Miyauchi A, Shichiri M, Fujita K, Niki E, Hagihara Y, Yoshida Y, Morimoto Y, Iwahashi H: Comparison of acute oxidative stress on rat lung induced by nano and fine-scale, soluble and insoluble metal oxide particles: NiO and TiO2. Inhal Toxicol 2012, 24: 391–400. 10.3109/08958378.2012.682321
Article
CAS
PubMed
Google Scholar
Duffin R, Tran L, Brown D, Stone V, Donaldson K: Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro : highlighting the role of particle surface area and surface reactivity. Inhal Toxicol 2007, 19: 849–856.
Article
CAS
PubMed
Google Scholar
Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J: Comparative pulmonary toxicity study of nano-TiO(2) particles of different sizes and agglomerations in rats: different short- and long-term post-instillation results. Toxicology 2009, 264: 110–118. 10.1016/j.tox.2009.08.002
Article
CAS
PubMed
Google Scholar
Ho M, Wu KY, Chein HM, Chen LC, Cheng TJ: Pulmonary toxicity of inhaled nanoscale and fine zinc oxide particles: mass and surface area as an exposure metric. Inhal Toxicol 2011, 23: 947–956. 10.3109/08958378.2011.629235
Article
CAS
PubMed
Google Scholar
Zhu MT, Feng WY, Wang B, Wang TC, Gu YQ, Wang M, Wang Y, Ouyang H, Zhao YL, Chai ZF: Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats. Toxicology 2008, 247: 102–111. 10.1016/j.tox.2008.02.011
Article
CAS
PubMed
Google Scholar
Pauluhn J: Pulmonary toxicity and fate of agglomerated 10 and 40 nm aluminum oxyhydroxides following 4-week inhalation exposure of rats: toxic effects are determined by agglomerated, not primary particle size. Toxicol Sci 2009, 109: 152–167. 10.1093/toxsci/kfp046
Article
CAS
PubMed
Google Scholar
Roursgaard M, Poulsen SS, Poulsen LK, Hammer M, Jensen KA, Utsunomiya S, Ewing RC, Balic-Zunic T, Nielsen GD, Larsen ST: Time-response relationship of nano and micro particle induced lung inflammation. Quartz as reference compound. Hum Exp Toxicol 2010, 29: 915–933. 10.1177/0960327110363329
Article
CAS
PubMed
Google Scholar
Gosens I, Mathijssen LE, Bokkers BG, Muijser H, Cassee FR: Comparative hazard identification of nano- and micro-sized cerium oxide particles based on 28-day inhalation studies in rats. Nanotoxicology 2013, 8: 643–653. 10.3109/17435390.2013.815814
Article
PubMed
Google Scholar
Krystek P, Braakhuis HM, Park MVDZ, Jong WH: Inductively Coupled Plasma-Mass Spectrometry in Biodistribution Studies of (Engineered) Nanoparticles. In Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd; 2013.
Google Scholar
Krystek P: A review on approaches to biodistribution studies about gold and silver engineered nanoparticles by inductively couples plasma mass spectrometry. Microchem J 2012, 105: 39–43. 10.1016/j.microc.2012.02.008
Article
CAS
Google Scholar