American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorder. 5th ed; 2013. p. 24–9.
Book
Google Scholar
Baxter AJ, Brugha TS, Erskine HE, Scheurer RW, Vos T, Scott JG. The epidemiology and global burden of autism spectrum disorders. Psychol Med. 2015;45(3):601–13. https://doi.org/10.1017/s003329171400172x.
Article
CAS
PubMed
Google Scholar
French LRBA, Hyde KL, Fombonne E. Epidemiology of autism Spectrum disorders. Neurosci Autism Spectr Disord. 2013;43:3–24.
Article
Google Scholar
Blumberg SJ, Bramlett MD, Kogan MD, Schieve LA, Jones JR, Lu MC. Changes in prevalence of parent-reported autism spectrum disorder in school-aged U.S. children: 2007 to 2011–2012. Natl Health Stat Report. 2013;65:1–11 1 p following.
Google Scholar
Wallace S, Fein D, Rosanoff M, Dawson G, Hossain S, Brennan L, et al. A global public health strategy for autism spectrum disorders. Autism Res. 2012;5(3):211–7. https://doi.org/10.1002/aur.1236.
Article
PubMed
Google Scholar
Grønborg TK, Schendel DE, Parner ET. Recurrence of autism Spectrum disorders in full- and half-siblings and trends over time: a population-based cohort study. JAMA Pediatr. 2013;167(10):947–53. https://doi.org/10.1001/jamapediatrics.2013.2259 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4610344/.
Article
PubMed
PubMed Central
Google Scholar
Kim YS, Leventhal BL. Genetic epidemiology and insights into interactive genetic and environmental effects in autism spectrum disorders. Biol Psychiatry. 2015;77(1):66–74. https://doi.org/10.1016/j.biopsych.2014.11.001.
Article
CAS
PubMed
Google Scholar
Rossignol DA, Genuis SJ, Frye RE. Environmental toxicants and autism spectrum disorders: a systematic review. Transl Psychiatry. 2014;4:e360. https://doi.org/10.1038/tp.2014.4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li K, Li L, Cui B, Gai Z, Li Q, Wang S, et al. Early postnatal exposure to airborne fine particulate matter induces autism-like phenotypes in male rats. Toxicol Sci. 2018;162(1):189–99. https://doi.org/10.1093/toxsci/kfx240.
Article
CAS
PubMed
Google Scholar
Costa LG, Chang YC, Cole TB. Developmental neurotoxicity of traffic-related air pollution: focus on autism. Curr Environ Health Rep. 2017;4(2):156–65. https://doi.org/10.1007/s40572-017-0135-2.
Article
PubMed
PubMed Central
Google Scholar
Becerra TA, Wilhelm M, Olsen J, Cockburn M, Ritz B. Ambient air pollution and autism in Los Angeles county, California. Environ Health Perspect. 2013;121(3):380–6. https://doi.org/10.1289/ehp.1205827.
Article
CAS
PubMed
Google Scholar
Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(Suppl 3):511–33. https://doi.org/10.1289/ehp.00108s3511.
Article
PubMed
PubMed Central
Google Scholar
Rodier PM, Ingram JL, Tisdale B, Nelson S, Romano J. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol. 1996;370(2):247–61. https://doi.org/10.1002/(sici)1096-9861(19960624)370:2<247::aid-cne8>3.0.co;2-2.
Article
CAS
PubMed
Google Scholar
Chang Y-C, Cole TB, Costa LG. Prenatal and early-life diesel exhaust exposure causes autism-like behavioral changes in mice. Part Fibre Toxicol. 2018;15(1):18. https://doi.org/10.1186/s12989-018-0254-4 https://doi.org/10.1186/s12989-018-0254-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thirtamara Rajamani K, Doherty-Lyons S, Bolden C, Willis D, Hoffman C, Zelikoff J, et al. Prenatal and early-life exposure to high-level diesel exhaust particles leads to increased locomotor activity and repetitive behaviors in mice. Autism Res. 2013;6(4):248–57. https://doi.org/10.1002/aur.1287.
Article
PubMed
Google Scholar
Ortega R, Bresson C, Darolles C, Gautier C, Roudeau S, Perrin L, et al. Low-solubility particles and a Trojan-horse type mechanism of toxicity: the case of cobalt oxide on human lung cells. Part Fibre Toxicol. 2014;11:14. https://doi.org/10.1186/1743-8977-11-14 https://www.ncbi.nlm.nih.gov/pubmed/24669904.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peters A. Ea. translocation and potential neurological effects of fine and ultrafine particles a criticalupdate. Part Fibre Toxicol. 2006;3:13.
Article
PubMed
PubMed Central
Google Scholar
Muhlfeld C, et al. Interactions of nanoparticles with pulmonary structures and cellular responses. AmJ Physiol Lung Cell Mol Physiol. 2008;294:L817–29.
Article
CAS
Google Scholar
Simkhovich BZ. Ea. air pollution and cardiovascular injury epidemiology, toxicology, and mechanisms. J Am Coll Cardiol. 2008;52:719–26.
Article
CAS
PubMed
Google Scholar
Ma JYMJ. The dual effect of the particulate and organic components of diesel exhaust particles on the alteration of pulmonary immune/inflammatory responses and metabolic enzymes. Environ Sci Health Part C Environ Carcinog Ecotoxicol Rev. 2002;20:117–47.
Article
Google Scholar
Colin-Barenque LFT. Oxidative stress and metals. In: Fortoul T, editor. Metals and toxicological implications in Health. Kerala: Research Signpost; 2007. p. 15–25.
Google Scholar
KA J. The relevance of metals in the pathophysiology of neurodegeneration,pathological considerations. Int Rev Neurobiol. 2013;110:1–47.
Article
Google Scholar
MohanKumar SMCA, Block M, Veronesi B. Particulate matter, oxidative stress and neurotoxicity. Neurotoxicology. 2008;29(3):479–88.
Article
CAS
PubMed
Google Scholar
Grice DE, Buxbaum JD. The genetics of autism spectrum disorders. NeuroMolecular Med. 2006;8(4):451–60. https://doi.org/10.1385/NMM:8:4:451 https://doi.org/10.1385/NMM:8:4:451.
Article
CAS
PubMed
Google Scholar
María Elena González-Fraguela M-LDH, Vera H, Maragoto C, Noris E, Blanco L, Galvizu R. Maria Robinson oxidative stress markers in children with autism Spectrum disorders. Br J Med Med Res. 2013;3(2):307–17.
Article
Google Scholar
Arons MH, Thynne CJ, Grabrucker AM, Li D, Schoen M, Cheyne JE, et al. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. J Neurosci. 2012;32(43):14966–78. https://doi.org/10.1523/jneurosci.2215-12.2012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnson ZV, Young LJ. Oxytocin and vasopressin neural networks: Implications for social behavioral diversity and translational neuroscience. Neurosci Biobehav Rev. 2017;76:87–98. https://doi.org/10.1016/j.neubiorev.2017.01.034.
Article
CAS
PubMed
PubMed Central
Google Scholar
Modi ME, Young LJ. The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies. Horm Behav. 2012;61(3):340–50. https://doi.org/10.1016/j.yhbeh.2011.12.010.
Article
CAS
PubMed
Google Scholar
Freeman SM, Palumbo MC, Lawrence RH, Smith AL, Goodman MM, Bales KL. Effect of age and autism spectrum disorder on oxytocin receptor density in the human basal forebrain and midbrain. Translational Psychiat. 2018;81:257. https://doi.org/10.1038/s41398-018-0315-3.
Article
CAS
Google Scholar
Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R. Traffic related air pollution, particulate matter, and autism. JAMA psychiatry. 2013;70(1):71–7. https://doi.org/10.1001/jamapsychiatry.2013.266 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019010/.
Article
PubMed
PubMed Central
Google Scholar
Yamaguchi H, Hara Y, Ago Y, Takano E, Hasebe S, Nakazawa T, et al. Environmental enrichment attenuates behavioral abnormalities in valproic acid-exposed autism model mice. Behav Brain Res. 2017;333:67–73. https://doi.org/10.1016/j.bbr.2017.06.035.
Article
CAS
PubMed
Google Scholar
Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol. 2018;299:217–27. https://doi.org/10.1016/j.expneurol.2017.04.017.
Article
CAS
PubMed
Google Scholar
Campolongo M, Kazlauskas N, Falasco G, Urrutia L, Salgueiro N, Hocht C, et al. Sociability deficits after prenatal exposure to valproic acid are rescued by early social enrichment. Mol Autism. 2018;9:36. https://doi.org/10.1186/s13229-018-0221-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Win-Shwe TT, Nway NC, Imai M, Lwin TT, Mar O, Watanabe H. Social behavior, neuroimmune markers and glutamic acid decarboxylase levels in a rat model of valproic acid-induced autism. J Toxicol Sci. 2018;43(11):631–43. https://doi.org/10.2131/jts.43.631.
Article
PubMed
Google Scholar
Peralta F, Fuentealba C, Fiedler J, Aliaga E. Prenatal valproate treatment produces autistic-like behavior and increases metabotropic glutamate receptor 1A-immunoreactivity in the hippocampus of juvenile rats. Mol Med Rep. 2016;14:2807–14. https://doi.org/10.3892/mmr.2016.5529.
Article
CAS
PubMed
Google Scholar
Kaidanovich-Beilin O, Lipina T, Vukobradovic I, Roder J, Woodgett JR. Assessment of social interaction behaviors. J Vis Exp. 2011;48. https://doi.org/10.3791/2473.
Roullet FI, Crawley JN. Mouse models of autism: testing hypotheses about molecular mechanisms. Curr Top Behav Neurosci. 2011;7:187–212. https://doi.org/10.1007/7854_2010_113 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3396120/.
Article
PubMed
PubMed Central
Google Scholar
Grabrucker S, Boeckers TM, Grabrucker AM. Gender dependent evaluation of autism like behavior in mice exposed to prenatal zinc deficiency. Front Behav Neurosci. 2016;10:37. https://doi.org/10.3389/fnbeh.2016.00037 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4776245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Perlroth NH, Castelo Branco CW. Current knowledge of environmental exposure in children during the sensitive developmental periods. J Pediatr (Rio J). 2017;93(1):17–27. https://doi.org/10.1016/j.jped.2016.07.002 http://www.sciencedirect.com/science/article/pii/S0021755716302352.
Article
Google Scholar
Lamichhane DK, Leem JH, Lee JY, Kim HC. A meta-analysis of exposure to particulate matter and adverse birth outcomes. Environ Health Toxicol. 2015;30:e2015011. https://doi.org/10.5620/eht.e2015011.
Article
PubMed
PubMed Central
Google Scholar
Stapleton PA. Gestational nanomaterial exposures: microvascular implications during pregnancy, fetal development and adulthood. J Physiol. 2016;594(8):2161–73. https://doi.org/10.1113/JP270581 https://www.ncbi.nlm.nih.gov/pubmed/26332609.
Article
CAS
PubMed
Google Scholar
Nachman RM, Mao G, Zhang X, Hong X, Chen Z, Soria CS, et al. Intrauterine Inflammation and Maternal Exposure to Ambient PM2.5 during Preconception and Specific Periods of Pregnancy: The Boston Birth Cohort. Environ Health Perspect. 2016;124(10):1608–15. https://doi.org/10.1289/ehp243.
Article
CAS
PubMed
PubMed Central
Google Scholar
Valentino SA, Tarrade A, Aioun J, Mourier E, Richard C, Dahirel M, et al. Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits. Part Fibre Toxicol. 2016;13(1):39. https://doi.org/10.1186/s12989-016-0151-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hougaard KS, Campagnolo L, Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D, Valentino S, et al. A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol. 2015;56:118–40. https://doi.org/10.1016/j.reprotox.2015.05.015.
Article
CAS
PubMed
Google Scholar
Muoth C, Aengenheister L, Kucki M, Wick P, Buerki-Thurnherr T. Nanoparticle transport across the placental barrier: pushing the field forward! Nanomedicine (London, England). 2016;11(8):941–57. https://doi.org/10.2217/nnm-2015-0012.
Article
CAS
Google Scholar
Bové H, Bongaerts E, Slenders E, Bijnens EM, Saenen ND, Gyselaers W, et al. Ambient black carbon particles reach the fetal side of human placenta. Nat Commun. 2019;10(1):3866. https://doi.org/10.1038/s41467-019-11654-3 https://doi.org/10.1038/s41467-019-11654-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vadillo-Ortega F, Osornio-Vargas A, Buxton MA, Sanchez BN, Rojas-Bracho L, Viveros-Alcaraz M, et al. Air pollution, inflammation and preterm birth: a potential mechanistic link. Med Hypotheses. 2014;82(2):219–24. https://doi.org/10.1016/j.mehy.2013.11.042.
Article
CAS
PubMed
Google Scholar
Al-Gubory KH. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reprod BioMed Online. 2014;29(1):17–31. https://doi.org/10.1016/j.rbmo.2014.03.002.
Article
CAS
PubMed
Google Scholar
Lager S, Powell TL. Regulation of nutrient transport across the placenta. J Pregnancy. 2012;2012:179827. https://doi.org/10.1155/2012/179827.
Article
CAS
PubMed
PubMed Central
Google Scholar
Motesaddi Zarandi S, Shahsavani A, Khodagholi F, Fakhri Y. Co-exposure to ambient PM2.5 plus gaseous pollutants increases amyloid β1–42 accumulation in the hippocampus of male and female rats. Toxin Rev. 2019:1–10. https://doi.org/10.1080/15569543.2019.1611604 https://doi.org/10.1080/15569543.2019.1611604.
Jedrychowski WA, Perera FP, Camann D, Spengler J, Butscher M, Mroz E, et al. Prenatal exposure to polycyclic aromatic hydrocarbons and cognitive dysfunction in children. Environ Sci Pollut Res Int. 2015;22(5):3631–9. https://doi.org/10.1007/s11356-014-3627-8 https://www.ncbi.nlm.nih.gov/pubmed/25253062.
Article
CAS
PubMed
Google Scholar
Zhang Y, Ji X, Ku T, Li G, Sang N. Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: A study based on myocardial toxicity. Environ Pollut. 2016;216:380–90. https://doi.org/10.1016/j.envpol.2016.05.072 http://www.sciencedirect.com/science/article/pii/S0269749116304602.
Article
CAS
PubMed
Google Scholar
Fortoul T, Rodriguez-Lara V, Gonzalez-Villalva A, Rojas-Lemus M, Colin-Barenque L, Bizarro-Nevares P, García-Peláez I, Ustarroz-Cano M, López-Zepeda S, Cervantes-Yépez S, López-Valdez N, Meléndez-García N, Espinosa-Zurutuza M, Cano-Gutierrez G, Cano-Rodríguez MC. Health Effects of Metals in Particulate Matter. In: Current Air Quality Issues, vol. 571; 2015. p. 608. https://doi.org/10.5772/59749.
Chapter
Google Scholar
Flores-Pajot M-C, Ofner M, Do MT, Lavigne E, Villeneuve PJ. Childhood autism spectrum disorders and exposure to nitrogen dioxide, and particulate matter air pollution: A review and meta-analysis. Environ Res. 2016;151:763–76. https://doi.org/10.1016/j.envres.2016.07.030 http://www.sciencedirect.com/science/article/pii/S0013935116303176.
Article
CAS
PubMed
Google Scholar
Pasciuto E, Borrie SC, Kanellopoulos AK, Santos AR, Cappuyns E, D'Andrea L, et al. Autism Spectrum disorders: translating human deficits into mouse behavior. Neurobiol Learn Mem. 2015;124:71–87. https://doi.org/10.1016/j.nlm.2015.07.013.
Article
CAS
PubMed
Google Scholar
Servadio M, Vanderschuren LJ, Trezza V. Modeling autism-relevant behavioral phenotypes in rats and mice: Do ‘autistic’ rodents exist? Behav Pharmacol. 2015;26(6):522–40. https://doi.org/10.1097/fbp.0000000000000163.
Article
CAS
PubMed
Google Scholar
Moy SS, Nadler JJ, Young NB, Perez A, Holloway LP, Barbaro RP, et al. Mouse behavioral tasks relevant to autism: phenotypes of 10 inbred strains. Behav Brain Res. 2007;176(1):4–20. https://doi.org/10.1016/j.bbr.2006.07.030.
Article
PubMed
Google Scholar
Church JS, Tijerina PB, Emerson FJ, Coburn MA, Blum JL, Zelikoff JT, et al. Perinatal exposure to concentrated ambient particulates results in autism-like behavioral deficits in adult mice. Neurotoxicology. 2018;65:231–40. https://doi.org/10.1016/j.neuro.2017.10.007 http://www.sciencedirect.com/science/article/pii/S0161813X17302115.
Article
CAS
PubMed
Google Scholar
Ma M, Li S, Jin H, Zhang Y, Xu J, Chen D, et al. Characteristics and oxidative stress on rats and traffic policemen of ambient fine particulate matter from Shenyang. Sci Total Environ. 2015;526:110–5. https://doi.org/10.1016/j.scitotenv.2015.04.075.
Article
CAS
PubMed
Google Scholar
Chauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology. 2006;13(3):171–81. https://doi.org/10.1016/j.pathophys.2006.05.007.
Article
CAS
PubMed
Google Scholar
Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med. 2001;30(11):1191–212.
Article
CAS
PubMed
Google Scholar
Al-Abrash AS, Al-Quobaili FA, Al-Akhras GN. Catalase evaluation in different human diseases associated with oxidative stress. Saudi Med J. 2000;21(9):826–30.
CAS
PubMed
Google Scholar
James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004;80(6):1611–7. https://doi.org/10.1093/ajcn/80.6.1611.
Article
CAS
PubMed
Google Scholar
Zoroglu SS, Armutcu F, Ozen S, Gurel A, Sivasli E, Yetkin O, et al. Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. Eur Arch Psychiatry Clin Neurosci. 2004;254(3):143–7. https://doi.org/10.1007/s00406-004-0456-7.
Article
PubMed
Google Scholar
Amaral DG, Bauman MD, Schumann CM. The amygdala and autism: implications from non-human primate studies. Genes Brain Behav. 2003;2(5):295–302.
Article
CAS
PubMed
Google Scholar
Winston JS, Strange BA, O'Doherty J, Dolan RJ. Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nat Neurosci. 2002;5(3):277–83. https://doi.org/10.1038/nn816.
Article
CAS
PubMed
Google Scholar
Hutsler JJ, Zhang H. Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders. Brain Res. 2010;1309:83–94. https://doi.org/10.1016/j.brainres.2009.09.120.
Article
CAS
PubMed
Google Scholar
Courchesne E, Mouton PR, Calhoun ME, Semendeferi K, Ahrens-Barbeau C, Hallet MJ, et al. Neuron number and size in prefrontal cortex of children with autism. JAMA. 2011;306(18):2001–10. https://doi.org/10.1001/jama.2011.1.638.
Article
CAS
PubMed
Google Scholar
Bauman M, Kemper TL. Histoanatomic observations of the brain in early infantile autism. Neurology. 1985;35(6):866–74. https://doi.org/10.1212/wnl.35.6.866.
Article
CAS
PubMed
Google Scholar
Chaddad A, Desrosiers C, Hassan L, Tanougast C. Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder. BMC Neurosci. 2017;18(1):52. https://doi.org/10.1186/s12868-017-0373-0.
Article
PubMed
PubMed Central
Google Scholar
de Wied D, Diamant M, Fodor M. Central nervous system effects of the neurohypophyseal hormones and related peptides. Front Neuroendocrinol. 1993;14(4):251–302. https://doi.org/10.1006/frne.1993.1009.
Article
PubMed
Google Scholar
Bertelsen F, Folloni D, Moller A, Landau AM, Scheel-Kruger J, Winterdahl M. Suppressed play behaviour and decreased oxytocin receptor binding in the amygdala after prenatal exposure to low-dose valproic acid. Behav Pharmacol. 2017;28(6):450–7. https://doi.org/10.1097/fbp.0000000000000316.
Article
CAS
PubMed
Google Scholar
Loke SY, Tanaka K, Ong WY. Comprehensive gene expression analyses of the rat prefrontal cortex after oxysterol treatment. J Neurochem. 2013;124(6):770–81. https://doi.org/10.1111/jnc.12142.
Article
CAS
PubMed
Google Scholar
Denda S, Takei K, Kumamoto J, Goto M, Tsutsumi M, Denda M. Oxytocin is expressed in epidermal keratinocytes and released upon stimulation with adenosine 5′-[gamma-thio] triphosphate in vitro. Exp Dermatol. 2012;21(7):535–7. https://doi.org/10.1111/j.1600-0625.2012.01507.x.
Article
CAS
PubMed
Google Scholar
Deing V, Roggenkamp D, Kühnl J, Gruschka A, Stäb F, Wenck H, et al. Oxytocin modulates proliferation and stress responses of human skin cells: implications for atopic dermatitis. Exp Dermatol. 2013;22(6):399–405. https://doi.org/10.1111/exd.12155 https://onlinelibrary.wiley.com/doi/abs/10.1111/exd.12155.
Article
CAS
PubMed
Google Scholar
Stock S, Uvnas-Moberg K. Increased plasma levels of oxytocin in response to afferent electrical stimulation of the sciatic and vagal nerves and in response to touch and pinch in anaesthetized rats. Acta Physiol Scand. 1988;132(1):29–34. https://doi.org/10.1111/j.1748-1716.1988.tb08294.x.
Article
CAS
PubMed
Google Scholar
Iseri SO, Sener G, Saglam B, Gedik N, Ercan F, Yegen BC. Oxytocin protects against sepsis-induced multiple organ damage: role of neutrophils. J Surg Res. 2005;126(1):73–81. https://doi.org/10.1016/j.jss.2005.01.021.
Article
CAS
PubMed
Google Scholar
Simsek Y, Celik O, Karaer A, Yilmaz E, Gul M, Ozerol E, et al. Elevated cardiac oxidative stress in newborn rats from mothers treated with atosiban. Arch Gynecol Obstet. 2012;285(3):655–61. https://doi.org/10.1007/s00404-011-2069-5.
Article
CAS
PubMed
Google Scholar
Landgraf R, Neumann ID. Vasopressin and oxytocin release within the brain: a dynamic concept of multiple and variable modes of neuropeptide communication. Front Neuroendocrinol. 2004;25(3–4):150–76. https://doi.org/10.1016/j.yfrne.2004.05.001.
Article
CAS
PubMed
Google Scholar
Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, et al. Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci. 2005;25(49):11489–93. https://doi.org/10.1523/jneurosci.3984-05.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kosfeld M, Heinrichs M, Zak PJ, Fischbacher U, Fehr E. Oxytocin increases trust in humans. Nature. 2005;435(7042):673–6. https://doi.org/10.1038/nature03701 https://doi.org/10.1038/nature03701.
Article
CAS
PubMed
Google Scholar
Kosaka H, Munesue T, Ishitobi M, Asano M, Omori M, Sato M, et al. Long-term oxytocin administration improves social behaviors in a girl with autistic disorder. BMC Psychiatry. 2012;12(1):110. https://doi.org/10.1186/1471-244X-12-110 https://doi.org/10.1186/1471-244X-12-110.
Article
PubMed
PubMed Central
Google Scholar
Lee HJ, Caldwell HK, Macbeth AH, Tolu SG, Young WS 3rd. A conditional knockout mouse line of the oxytocin receptor. Endocrinology. 2008;149(7):3256–63. https://doi.org/10.1210/en.2007-1710.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pobbe RL, Pearson BL, Blanchard DC, Blanchard RJ. Oxytocin receptor and Mecp2 308/Y knockout mice exhibit altered expression of autism-related social behaviors. Physiol Behav. 2012;107(5):641–8. https://doi.org/10.1016/j.physbeh.2012.02.024.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raz R, Roberts AL, Lyall K, Hart JE, Just AC, Laden F, et al. Autism spectrum disorder and particulate matter air pollution before, during, and after pregnancy: a nested case-control analysis within the Nurses' health study II cohort. Environ Health Perspect. 2015;123(3):264–70. https://doi.org/10.1289/ehp.1408133 https://www.ncbi.nlm.nih.gov/pubmed/25522338.
Article
CAS
PubMed
Google Scholar
Talbott EO, Arena VC, Rager JR, Clougherty JE, Michanowicz DR, Sharma RK, et al. Fine particulate matter and the risk of autism spectrum disorder. Environ Res. 2015;140:414–20. https://doi.org/10.1016/j.envres.2015.04.021.
Article
CAS
PubMed
Google Scholar
Rodier PM, Ingram JL, Tisdale B, Croog VJ. Linking etiologies in humans and animal models: Studies of autism. Reprod Toxicol. 1997;11(2):417–22. https://doi.org/10.1016/S0890-6238(97)80001-U http://www.sciencedirect.com/science/article/pii/S089062389780001U.
Article
CAS
PubMed
Google Scholar
Snow WM, Hartle K, Ivanco TL. Altered morphology of motor cortex neurons in the VPA rat model of autism. Dev Psychobiol. 2008;50(7):633–9.
Article
PubMed
Google Scholar
Guxens M, Ghassabian A, Gong T, Garcia-Esteban R, Porta D, Giorgis-Allemand L, et al. Air pollution exposure during pregnancy and childhood autistic traits in four European population-based cohort studies: the ESCAPE project. Environ Health Perspect. 2016;124(1):133–40. https://doi.org/10.1289/ehp.1408483.
Article
CAS
PubMed
Google Scholar
Volk HE, Hertz-Picciotto I, Delwiche L, Lurmann F, McConnell R. Residential proximity to freeways and autism in the CHARGE study. Environ Health Perspect. 2011;119(6):873–7. https://doi.org/10.1289/ehp.1002835.
Article
PubMed
Google Scholar
Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol. 2013;106(107):1–16. https://doi.org/10.1016/j.pneurobio.2013.04,001.
Article
PubMed
Google Scholar
US EPA: Method 5 - particulate matter (PM). Edited by air emission measurement center (EMC) UE, Available Online: https://www.epa.gov/emc/method-5-particulate-matterpm2017
Ashrafi K, Fallah R, Hadei M, Yarahmadi M, Shahsavani A. Source apportionment of Total suspended particles (TSP) by positive matrix factorization (PMF) and chemical mass balance (CMB) modeling in Ahvaz, Iran. Arch Environ Contam Toxicol. 2018;75. https://doi.org/10.1007/s00244-017-0500-z.
Article
CAS
PubMed
Google Scholar
Perez N, Pey J, Querol X, Alastuey A, Lopez J, Viana M. Partitioning of major and trace components in PM10-PM2.5-PM1 at an urban site in Southern Europe. Atmos Environ. 2008;42:1677–91. https://doi.org/10.1016/j.atmosenv.2007.11.034.
Article
CAS
Google Scholar
Katherine M, Ku RKW, Silverman JL, Berman RF, Bauman MD. Behavioral Phenotyping of Juvenile Long-Evans and Sprague-Dawley Rats: Implications for Preclinical Models of Autism Spectrum Disorders. PLoS One. 2016;11(16):150–8. https://doi.org/10.1371/journal.pone.0158150.
Article
CAS
Google Scholar
Bayir H, Kochanek PM, Kagan VE. Oxidative stress in immature brain after traumatic brain injury. Dev Neurosci. 2006;28(4–5):420–31. https://doi.org/10.1159/000094168.
Article
CAS
PubMed
Google Scholar
Blomgren K, Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med. 2006;40(3):388–97. https://doi.org/10.1016/j.freeradbiomed.2005.08.040.
Article
CAS
PubMed
Google Scholar
Blomgren K, Leist M, Groc L. Pathological apoptosis in the developing brain. Apoptosis. 2007;12(5):993–1010. https://doi.org/10.1007/s10495-007-0754-4.
Article
PubMed
Google Scholar
Blomgren K, Zhu C, Hallin U, Hagberg H. Mitochondria and ischemic reperfusion damage in the adult and in the developing brain. Biochem Biophys Res Commun. 2003;304(3):551–9. https://doi.org/10.1016/s0006-291x(03)00628-4.
Article
CAS
PubMed
Google Scholar
Ikonomidou C, Kaindl AM. Neuronal death and oxidative stress in the developing brain. Antioxid Redox Signal. 2011;14(8):1535–50. https://doi.org/10.1089/ars.2010.3581.
Article
CAS
PubMed
Google Scholar
Chen CY, Noble-Haeusslein LJ, Ferriero D, Semple BD. Traumatic injury to the immature frontal lobe: a new murine model of long-term motor impairment in the absence of psychosocial or cognitive deficits. Dev Neurosci. 2013;35(6):474–90. https://doi.org/10.1159/000355874 https://www.karger.com/DOI/10.1159/000355874.
Article
CAS
PubMed
Google Scholar
Wiggins RC. Myelination: a critical stage in development. Neurotoxicology. 1986;7(2):103–20.
CAS
PubMed
Google Scholar
Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82(1):70–7. https://doi.org/10.1016/0003-9861(59)90090-6 http://www.sciencedirect.com/science/article/pii/0003986159900906.
Article
CAS
PubMed
Google Scholar
Goth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991;196(2–3):143–51. https://doi.org/10.1016/0009-8981(91)90067-m.
Article
CAS
PubMed
Google Scholar
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. https://doi.org/10.1006/abio.1976.9999.
Article
CAS
PubMed
Google Scholar