Tsokos GC. Systemic lupus Erythematosus. N Engl J Med. 2011;365(22):2110–21. https://doi.org/10.1056/nejmra1100359.
Article
CAS
PubMed
Google Scholar
Carter EE, Barr SG, Clarke AE. The global burden of SLE: prevalence, health disparities and socioeconomic impact. Nat Rev Rheumatol. 2016;12(10):605–20. https://doi.org/10.1038/nrrheum.2016.137.
Article
PubMed
Google Scholar
Lisnevskaia L, Murphy G, Isenberg D. Systemic lupus erythematosus. Lancet. 2014;384(9957):1878–88. https://doi.org/10.1016/s0140-6736(14)60128-8.
Article
PubMed
Google Scholar
Parks CG, Santos ASE, Barbhaiya M, Costenbader KH. Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2017;31(3):306–20. https://doi.org/10.1016/j.berh.2017.09.005.
Article
PubMed
PubMed Central
Google Scholar
Ghodke-Puranik Y, Niewold TB. Immunogenetics of systemic lupus erythematosus: a comprehensive review. J Autoimmun. 2015;64:125–36. https://doi.org/10.1016/j.jaut.2015.08.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohan C, Putterman C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat Rev Nephrol. 2015;11(6):329–41. https://doi.org/10.1038/nrneph.2015.33.
Article
CAS
PubMed
Google Scholar
Ritz SA. Air pollution as a potential contributor to the 'epidemic' of autoimmune disease. Med Hypotheses. 2010;4(1):110–7. https://doi.org/10.1016/j.mehy.2009.07.033.
Article
CAS
Google Scholar
Barbhaiya M, Costenbader KH. Environmental exposures and the development of systemic lupus erythematosus. Curr Opin Rheumatol. 2016;28(5):497–505. https://doi.org/10.1097/BOR.0000000000000318.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leffers HCB, Lange T, Collins C, Ulff-Møller CJ, Jacobsen S. The study of interactions between genome and exposome in the development of systemic lupus erythematosus. Autoimmun Rev. 2019;18(4):382–92. https://doi.org/10.1016/j.autrev.2018.11.005.
Article
CAS
PubMed
Google Scholar
Zhao CN, Xu Z, Wu GC, Mao YM, Liu LN, Dan YL, et al. Emerging role of air pollution in autoimmune diseases. Autoimmun Rev. 2019;18(6):607–14. https://doi.org/10.1016/j.autrev.2018.12.010.
Article
CAS
PubMed
Google Scholar
Gilcrease GW, Padovan D, Heffler E, Peano C, Massaglia S, Roccatello D, et al. Is air pollution affecting the disease activity in patients with systemic lupus erythematosus? State of the art and a systematic literature review. Eur J Rheumatol. 2020;7(1):31–4. https://doi.org/10.5152/eurjrheum.2019.19141.
Article
PubMed
PubMed Central
Google Scholar
WHO (World Health Organization). Ambient air pollution: A global assessment of exposure and burden of disease. Geneva: World Health Organization; 2016.
Google Scholar
WHO (World Health Organization). Burden of disease from the joint effects of household and ambient Air pollution for 2016. 2018. https://www.who.int/phe/health_topics/outdoorair/databases/AP_jointeffect_BoD_results_March2014.pdf?ua=1. Accessed 08 September 2020.
Veras MM, Damaceno-Rodrigues NR, Silva RMG, Scoriza JN, Saldiva PHN, Caldini EG, Dolhnikoff M. Chronic exposure to fine particulate matter emitted by traffic affects reproductive and fetal outcomes in mice. Environ Res. 2009;109(5):536–43. https://doi.org/10.1016/j.envres.2009.03.006.
Article
CAS
PubMed
Google Scholar
Kelly FJ, Fussell JC. Air pollution and public health: emerging hazards and improved understanding of risk. Environ Geochem Health. 2015;37(4):631–49. https://doi.org/10.1007/s10653-015-9720-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thurston GD, Kipen H, Annesi-Maesano I, Balmes J, Brook RD, Cromar K, de Matteis S, Forastiere F, Forsberg B, Frampton MW, Grigg J, Heederik D, Kelly FJ, Kuenzli N, Laumbach R, Peters A, Rajagopalan ST, Rich D, Ritz B, Samet JM, Sandstrom T, Sigsgaard T, Sunyer J, Brunekreef B. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J. 2017;49(1):1600419. https://doi.org/10.1183/13993003.00419-2016.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vallero DA. Fundamentals of air pollution: part I: foundations of air pollution. 5th ed. Cambridge: Academic Press; 2014. https://doi.org/10.1016/C2012-0-01172-6.
Book
Google Scholar
Pope CA III, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med. 2009;360(4):376–86. https://doi.org/10.1056/NEJMsa0805646.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pope CA III, Coleman N, Pond ZA, Burnett RT. Fine particulate air pollution and human mortality: 25+ years of cohort studies. Environ Res. 2020;183:108924. https://doi.org/10.1016/j.envres.2019.108924.
Article
CAS
PubMed
Google Scholar
Pope CA III, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56(6):709–42. https://doi.org/10.1080/10473289.2006.10464485.
Article
CAS
PubMed
Google Scholar
Losacco C, Perillo A. Particulate matter air pollution and respiratory impact on humans and animals. Environ Sci Pollut Res. 2018;25(34):33901–10. https://doi.org/10.1007/s11356-018-3344-9.
Article
Google Scholar
Anders HJ, Fogo AB. Immunopathology of lupus nephritis. Semin Immunopathol. 2014;36(4):443–59. https://doi.org/10.1007/s00281-013-0413-5.
Article
PubMed
Google Scholar
Tsokos GC, Lo MS, Reis PC, Sullivan KE. New insights into the immunopathogenesis of systemic lupus erythematosus. Nat Rev Rheumatol. 2016;12(12):716–30. https://doi.org/10.1038/nrrheum.2016.186.
Article
CAS
PubMed
Google Scholar
Flores-Mendoza G, Sansón SP, Rodríguez-Castro S, Crispín JC, Rosetti F. Mechanisms of tissue injury in lupus nephritis. Trends Mol Med. 2018;24(4):364–78. https://doi.org/10.1016/j.molmed.2018.02.003.
Article
CAS
PubMed
Google Scholar
Cooper GS, Gilbert KM, Greidinger EL, James JA, Pfau JC, Reinlib L, Richardson BC, Rose NR. Recent advances and opportunities in research on lupus: environmental influences and mechanisms of disease. Environ Health Perspect. 2008;116(6):695–702. https://doi.org/10.1289/ehp.11092.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farhat SC, Silva CA, Orione MA, Campos LM, Sallum AM, Braga AL. Air pollution in autoimmune rheumatic diseases: a review. Autoimmun Rev. 2011;11(1):14–21. https://doi.org/10.1016/j.autrev.2011.06.008.
Article
CAS
PubMed
Google Scholar
Lanata CM, Nititham J, Taylor K, Nayak R, Barcellos L, Chung SA, Galanter J, Criswell LA. Residential proximity to highways, DNA methylation and systemic lupus erythematosus. Lupus Sci Med. 2016;3(1):A1–A80. https://doi.org/10.1136/lupus-2016-000179.126.
Article
Google Scholar
Sioutas C, Koutrakis P, Burton RM. A technique to expose animals to concentrated fine ambient aerosols. Environ Health Perspect. 1995;103(2):172–7. https://doi.org/10.2307/3432274.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Domenico M, Benevenuto SGM, Tomasini PP, Yariwake VY, Alves NO, Rahmeier FL, et al. Concentrated ambient fine particulate matter (PM2.5) exposure induce brain damage in pre and postnatal exposed mice. Neurotoxicology. 2020;79:127–41. https://doi.org/10.1016/j.neuro.2020.05.004.
Article
CAS
PubMed
Google Scholar
EPA (Environmental Protection Agency). Exposure Assessment Tools by Routes – Inhalation. 2020. https://www.epa.gov/expobox/exposure-assessment-tools-routes-inhalation. Accessed 24 September 2020.
Brito JM, Macchione M, Yoshizaki K, Toledo-Arruda AC, Saraiva-Romanholo BM, Andrade MD, et al. Acute cardiopulmonary effects induced by the inhalation of concentrated ambient particles during seasonal variation in the city of Sao Paulo. J Appl Physiol (1985). 2014;117(5):492–9. https://doi.org/10.1152/japplphysiol.00156.2014.
Article
CAS
Google Scholar
Yoshizaki K, Fuziwara CS, Brito JM, Santos TM, Kimura ET, Correia AT, et al. The effects of urban particulate matter on the nasal epithelium by gender: an experimental study in mice. Environ Pollut. 2016;213:359–69. https://doi.org/10.1016/j.envpol.2016.02.044.
Article
CAS
PubMed
Google Scholar
Miranda RM, Andrade MF, Fornaro A, Astolfo R, Andre PA, Saldiva P. Urban air pollution: a representative survey of PM (2.5) mass concentrations in six Brazilian cities. Air Qual Atmos Health. 2012;5(1):63–77. https://doi.org/10.1007/s11869-010-0124-1.
Article
CAS
PubMed
Google Scholar
Khosho FK, Kaufmann RC, Amankwah KS. A simple and efficient method for obtaining urine samples from rats. Lab Anim Sci. 1985;35(5):513–4.
CAS
PubMed
Google Scholar
Nyengaard JR. Stereologic methods and their application in kidney research. J Am Soc Nephrol. 1999;10(5):1100–23.
CAS
PubMed
Google Scholar
Weening JJ, D’Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, et al. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol. 2004;15(2):241–50. https://doi.org/10.1111/j.1523-1755.2004.00443.x.
Article
PubMed
Google Scholar
Lane PH, Steffes MW, Mauer SM. Estimation of glomerular volume: a comparison of four methods. Kidney Int. 1992;41(4):1085–9. https://doi.org/10.1038/ki.1992.165.
Article
CAS
PubMed
Google Scholar
Montes GS, Junqueira LC. The use of the Picrosirius-polarization method for the study of the biopathology of collagen. Mem Inst Oswaldo Cruz. 1991;86(Suppl 3):1–11. https://doi.org/10.1590/s0074-02761991000700002.
Article
PubMed
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Machi JF, Dias DS, Freitas SC, Moraes OA, Silva MB, Cruz PL, et al. Impact of aging on cardiac function in a female rat model of menopause: role of autonomic control, inflammation, and oxidative stress. Clin Interv Aging. 2016;11:341–50. https://doi.org/10.2147/CIA.S88441.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969;27(3):502–22. https://doi.org/10.1016/0003-2697(69)90064-5.
Article
CAS
PubMed
Google Scholar
Pick E, Keisari Y. A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture. J Immunol Methods. 1980;38(1–2):161–70. https://doi.org/10.1016/0022-1759(80)90340-3.
Article
CAS
PubMed
Google Scholar
Benzie IF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15–27. https://doi.org/10.1016/s0076-6879(99)99005-5.
Article
CAS
PubMed
Google Scholar
Alves AGF, Giacomin MFA, Braga ALF, Sallum AME, Pereira LAA, Farhat LC, et al. Influence of air pollution on airway inflammation and disease activity in childhood-systemic lupus erythematosus. Clin Rheumatol. 2018;37(3):683–90. https://doi.org/10.1007/s10067-017-3893-1.
Article
PubMed
Google Scholar
Jung C, Chung W, Chen W, Lee R, Hwang B. Long-term exposure to traffic-related air pollution and systemic lupus erythematosus in Taiwan: a cohort study. Sci Total Environ. 2019;668:342–9. https://doi.org/10.1016/j.scitotenv.2019.03.018.
Article
CAS
PubMed
Google Scholar
Zhao C, Mei Y, Wu G, Mao Y, Wu Q, Dan Y, Pan H. Effect of air pollution on hospital admissions for systemic lupus erythematosus in Bengbu, China: a time series study. Lupus. 2019;28(13):1541–8. https://doi.org/10.1177/0961203319882503.
Article
CAS
PubMed
Google Scholar
Goulart MFG, Alves AGF, Farhat J, Braga ALF, Pereira LAA, Lichtenfels AJFC, et al. Influence of air pollution on renal activity in patients with childhood-onset systemic lupus erythematosus. Pediatr Nephrol. 2020;35(7):1247–55. https://doi.org/10.1007/s00467-020-04517-3.
Article
PubMed
Google Scholar
Pierdominici M, Maselli A, Cecchetti S, Tinari A, Mastrofrancesco A, Alfè M, Gargiulo V, Beatrice C, di Blasio G, Carpinelli G, Ortona E, Giovannetti A, Fiorito S. Diesel exhaust particle exposure in vitro impacts T lymphocyte phenotype and function. Part Fibre Toxicol. 2014;11(1):74. https://doi.org/10.1186/s12989-014-0074-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
O’Driscoll CA, Owens LA, Gallo ME, Hoffmann EJ, Afrazi A, Han M, Fechner JH, Schauer JJ, Bradfield CA, Mezrich JD. Differential effects of diesel exhaust particles on T cell differentiation and autoimmune disease. Part Fibre Toxicol. 2018;15(1):35. https://doi.org/10.1186/s12989-018-0271-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richard ML, Gilkeson G. Mouse models of lupus: what they tell us and what they don’t. Lupus Sci Med. 2018;5(1):e000199. https://doi.org/10.1136/lupus-2016-000199.
Article
PubMed
PubMed Central
Google Scholar
Li W, Titov AA, Morel L. An update on lupus animal models. Curr Opin Rheumatol. 2017;29(5):434–41. https://doi.org/10.1097/BOR.0000000000000412.
Article
PubMed
PubMed Central
Google Scholar
Bates MA, Brandenberger C, Langohr I, Kumagai K, Harkema JR, Holian A, Pestka JJ. Silica triggers inflammation and ectopic lymphoid neogenesis in the lungs in parallel with accelerated onset of systemic autoimmunity and glomerulonephritis in the lupus-prone NZBWF1 mouse. PLoS One. 2015;10(5):e0125481. https://doi.org/10.1371/journal.pone.0125481.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabe M, Schaefer F. Non-transgenic mouse models of kidney disease. Nephron. 2016;133(1):53–61. https://doi.org/10.1159/000445171.
Article
CAS
PubMed
Google Scholar
Hahn BH, Kono D. Dubois' lupus erythematosus and related syndromes: animal models of SLE. 8th ed (pp. 190–236). Philadelphia: Saunders; 2013. https://doi.org/10.1016/C2010-0-66018-4.
Book
Google Scholar
Hill TD, Jorgenson AK, Ore P, Balistreri KS, Clark B. Air quality and life expectancy in the United States: an analysis of the moderating effect of income inequality. SSM Popul Health. 2018;7:100346. https://doi.org/10.1016/j.ssmph.2018.100346.
Article
PubMed
PubMed Central
Google Scholar
Yin P, Brauer M, Cohen AJ, Wang H, Li J, Burnett RT, Stanaway JD, Causey K, Larson S, Godwin W, Frostad J, Marks A, Wang L, Zhou M, Murray CJL. The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990-2017: an analysis for the global burden of disease study 2017. Lancet Planet Health. 2019;4(9):e386–98. https://doi.org/10.1016/S2542-5196(20)30161-3.
Article
Google Scholar
Lelieveld J, Pozzer A, Pöschl U, Fnais M, Haines A, Münzel T. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc Res. 2020;116(11):1910–7. https://doi.org/10.1093/cvr/cvaa025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown JM, Archer AJ, Pfau JC, Holian A. Silica accelerated systemic autoimmune disease in lupus-prone New Zealand mixed mice. Clin Exp Immunol. 2003;131(3):415–21. https://doi.org/10.1046/j.1365-2249.2003.02094.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hassani M, Brown JM, Morandi MT, Holian A. Particulate matter immunomodulatory effects on autoantibody development in New Zealand mixed mice. J Immunotoxicol. 2004;1(2):95–102. https://doi.org/10.1080/15476910490505644.
Article
PubMed
Google Scholar
Aringer M, Costenbader K, Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, Smolen JS, Wofsy D, Boumpas DT, Kamen DL, Jayne D, Cervera R, Costedoat-Chalumeau N, Diamond B, Gladman DD, Hahn B, Hiepe F, Jacobsen S, Khanna D, Lerstrøm K, Massarotti E, McCune J, Ruiz-Irastorza G, Sanchez-Guerrero J, Schneider M, Urowitz M, Bertsias G, Hoyer BF, Leuchten N, Tani C, Tedeschi SK, Touma Z, Schmajuk G, Anic B, Assan F, Chan TM, Clarke AE, Crow MK, Czirják L, Doria A, Graninger W, Halda-Kiss B, Hasni S, Izmirly PM, Jung M, Kumánovics G, Mariette X, Padjen I, Pego-Reigosa JM, Romero-Diaz J, Rúa-Figueroa Fernández Í, Seror R, Stummvoll GH, Tanaka Y, Tektonidou MG, Vasconcelos C, Vital EM, Wallace DJ, Yavuz S, Meroni PL, Fritzler MJ, Naden R, Dörner T, Johnson SR. 2019 European league against rheumatism/American College of Rheumatology Classification Criteria for systemic lupus Erythematosus. Arthritis Rheumatol. 2019;71(9):1400–12. https://doi.org/10.1002/art.40930.
Article
PubMed
PubMed Central
Google Scholar
Bardana EJ Jr, Harbeck RJ, Hoffman AA, Pirofsky B, Carr RI. The prognostic and therapeutic implications of DNA: anti-DNA immune complexes in systemic lupus erythematosus (SLE). Am J Med. 1975;59(4):515–22. https://doi.org/10.1016/0002-9343(75)90259-4.
Article
PubMed
Google Scholar
Sohrabian A, Parodis I, Carlströmer-Berthén N, Frodlund M, Jönsen A, Zickert, et al. Increased levels of anti-dsDNA antibodies in immune complexes before treatment with belimumab associate with clinical response in patients with systemic lupus erythematosus. Arthritis Res Ther. 2019;21(1):259. https://doi.org/10.1186/s13075-019-2056-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bates MA, Akbari P, Gilley KN, Wagner JG, Li N, Kopec AK, Wierenga KA, Jackson-Humbles D, Brandenberger C, Holian A, Benninghoff AD, Harkema JR, Pestka JJ. Dietary docosahexaenoic acid prevents silica-induced development of pulmonary ectopic germinal centers and glomerulonephritis in the lupus-prone NZBWF1 mouse. Front Immunol. 2018;9:2002. https://doi.org/10.3389/fimmu.2018.02002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Okamura M, Kanayama Y, Amatsu K, Negoro N, Kohda S, Takeda T, Inoue T. Significance of enzyme linked immunosorbent assay (ELISA) for antibodies to double stranded and single stranded DNA in patients with lupus nephritis: correlation with severity of renal histology. Ann Rheum Dis. 1993;52(1):14–20. https://doi.org/10.1136/ard.52.1.14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goilav B, Putterman C. The role of anti-DNA antibodies in the development of lupus nephritis: a complementary, or alternative, viewpoint? Semin Nephrol. 2015;35(5):439–43. https://doi.org/10.1016/j.semnephrol.2015.08.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fayyaz A, Igoe A, Kurien BT, Danda D, James JA, Stafford HA, Scofield RH. Haematological manifestations of lupus. Lupus Sci Med. 2015;2(1):e000078. https://doi.org/10.1136/lupus-2014-000078.
Article
PubMed
PubMed Central
Google Scholar
Ma L, Zeng A, Chen B, Chen Y, Zhou R. Neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in patients with systemic lupus erythematosus and their correlation with activity: a meta-analysis. Int Immunopharmacol. 2019;76:105949. https://doi.org/10.1016/j.intimp.2019.105949.
Article
CAS
PubMed
Google Scholar
Nishino M, Ashiku SK, Kocher ON, Thurer RL, Boiselle PM, Hatabu H. The thymus: a comprehensive review. Radiographics. 2016;26(2):335–48. https://doi.org/10.1148/rg.262045213.
Article
Google Scholar
Zhang Q, Xiang L, Zaman MH, Dong W, He G, Deng GM. Predominant role of immunoglobulin G in the pathogenesis of splenomegaly in murine lupus. Front Immunol. 2020;10:3020. https://doi.org/10.3389/fimmu.2019.03020.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guariento A, Silva MFC, Tassetano PSF, Rocha SMS, Campos LMA, Valente M, Silva CA. Liver and spleen biometrics in childhood-onset systemic lupus erythematosus patients. Rev Bras Reumatol. 2015;55(4):341–51. https://doi.org/10.1016/j.rbr.2014.12.010.
Article
Google Scholar
Craig EA, Yan Z, Zhao QJ. The relationship between chemical-induced kidney weight increases and kidney histopathology in rats. J Appl Toxicol. 2015;35(7):729–36. https://doi.org/10.1002/jat.3036.
Article
CAS
PubMed
Google Scholar
Fang X, Zaman MH, Guo X, Ding H, Xie C, Zhang X, Deng GM. Role of hepatic deposited immunoglobulin G in the pathogenesis of liver damage in systemic lupus erythematosus. Front Immunol. 2018;9:1457. https://doi.org/10.3389/fimmu.2018.01457.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sato Y, Boor P, Fukuma S, Klinkhammer BM, Haga H, Ogawa O, Floege J, Yanagita M. Developmental stages of tertiary lymphoid tissue reflect local injury and inflammation in mouse and human kidneys. Kidney Int. 2020;98(2):448–63. https://doi.org/10.1016/j.kint.2020.02.023.
Article
CAS
PubMed
Google Scholar
Denic A, Alexander MP, Kaushik V, Lerman LO, Lieske JC, Stegall MD, Larson JJ, Kremers WK, Vrtiska TJ, Chakkera HA, Poggio ED, Rule AD. Detection and clinical patterns of nephron hypertrophy and nephrosclerosis among apparently healthy adults. Am J Kidney Dis. 2016;68(1):58–67. https://doi.org/10.1053/j.ajkd.2015.12.029.
Article
PubMed
PubMed Central
Google Scholar
Elsherbiny HE, Alexander MP, Kremers WK, Park WD, Poggio ED, Prieto M, Lieske JC, Rule AD. Nephron hypertrophy and glomerulosclerosis and their association with kidney function and risk factors among living kidney donors. Clin J Am Soc Nephrol. 2014;9(11):1892–902. https://doi.org/10.2215/CJN.02560314.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kriz W, Lehir M. Pathways to nephron loss starting from glomerular diseases—insights from animal models. Kidney Int. 2005;67(2):404–19. https://doi.org/10.1111/j.1523-1755.2005.67097.x.
Article
PubMed
Google Scholar
Schnaper HW. The tubulointerstitial pathophysiology of progressive kidney disease. Adv Chronic Kidney Dis. 2017;24(2):107–16. https://doi.org/10.1053/j.ackd.2016.11.011.
Article
PubMed
PubMed Central
Google Scholar
Bernatsky S, Fournier M, Pineau CA, Clarke AE, Vinet E, Smargiassi A. Associations between ambient fine particulate levels and disease activity in patients with systemic lupus erythematosus (SLE). Environ Health Perspect. 2011;119(1):45–9. https://doi.org/10.1289/ehp.1002123.
Article
CAS
PubMed
Google Scholar
Xu X, Wang G, Chen N, Lu T, Nie S, Xu G, Zhang P, Luo Y, Wang Y, Wang X, Schwartz J, Geng J, Hou FF. Long-term exposure to air pollution and increased risk of membranous nephropathy in China. J Am Soc Nephrol. 2016;27(12):3739–46. https://doi.org/10.1681/ASN.2016010093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu X, Nie S, Ding H, Hou FF. Environmental pollution and kidney diseases. Nat Rev Nephrol. 2018;14(5):313–24. https://doi.org/10.1038/nrneph.2018.11.
Article
CAS
PubMed
Google Scholar
Nemmar A, Karaca T, Beegam S, Yuvaraju P, Yasin J, Hamadi NK, Ali BH. Prolonged pulmonary exposure to diesel exhaust particles exacerbates renal oxidative stress, inflammation and DNA damage in mice with adenine-induced chronic renal failure. Cell Physiol Biochem. 2016;38(5):1703–13. https://doi.org/10.1159/000443109.
Article
CAS
PubMed
Google Scholar
Busso IT, Mateos AC, Juncos LI, Canals N, Carreras HA. Kidney damage induced by sub-chronic fine particulate matter exposure. Environ Int. 2018;121(Pt1):635–42. https://doi.org/10.1016/j.envint.2018.10.007.
Article
CAS
Google Scholar