Linic S, Aslam U, Boerigter C, Morabito M. Photochemical transformations on plasmonic metal nanoparticles. Nat Mater. 2015;14(6):567–76.
Article
CAS
PubMed
Google Scholar
Duan X, Li Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small. 2013;9(9–10):1521–32.
Article
CAS
PubMed
Google Scholar
Jillani S, Jelani M, Hassan NU, Ahmad S, Hafeez M. Synthesis, characterization and biological studies of copper oxide nanostructures. Mater Res Express. 2018;5(4):045006.
Article
CAS
Google Scholar
Bhaumik A, Haque A, Karnati P, Taufique MFN, Patel R, Ghosh K. Copper oxide based nanostructures for improved solar cell efficiency. Thin Solid Films. 2014;572:126–33.
Article
CAS
Google Scholar
Ben-Moshe T, Dror I, Berkowitz B. Oxidation of organic pollutants in aqueous solutions by nanosized copper oxide catalysts. Appl Catal B. 2009;85(3):207–11.
Article
CAS
Google Scholar
Gupta D, Meher SR, Illyaskutty N, Alex ZC. Facile synthesis of Cu2O and CuO nanoparticles and study of their structural, optical and electronic properties. J Alloys Compd. 2018;743:737–45.
Article
CAS
Google Scholar
van den Berghe PV, Klomp LW. New developments in the regulation of intestinal copper absorption. Nutr Rev. 2009;67(11):658–72.
Article
PubMed
Google Scholar
Lutsenko S, Petris MJ. Function and regulation of the mammalian copper-transporting ATPases: insights from biochemical and cell biological approaches. J Membr Biol. 2003;191(1):1–12.
Article
CAS
PubMed
Google Scholar
Kim BE, Nevitt T, Thiele DJ. Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol. 2008;4(3):176–85.
Article
CAS
PubMed
Google Scholar
Tapiero H, Townsend DM, Tew KD. Trace elements in human physiology and pathology. Copper. Biomed Pharmacother. 2003;57(9):386–98.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci. 2007;101(1):4–21.
Article
PubMed
CAS
Google Scholar
Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals (Basel). 2016;9(4):256.
Article
CAS
Google Scholar
Areecheewakul S, Adamcakova-Dodd A, Givens BE, Steines BR, Wang Y, Meyerholz DK, Parizek NJ, Altmaier R, Haque E, O’Shaughnessy PT, Salem AK, Thorne PS. Toxicity assessment of metal oxide nanomaterials using in vitro screening and murine acute inhalation studies. NanoImpact. 2020;18:100214.
Article
PubMed
PubMed Central
Google Scholar
Kuhlbusch TAJ, Asbach C, Fissan H, Göhler D, Stintz M. Nanoparticle exposure at nanotechnology workplaces: a review. Part Fibre Toxicol. 2011;8(1):22.
Article
PubMed
PubMed Central
Google Scholar
Debia M, Bakhiyi B, Ostiguy C, Verbeek JH, Brouwer DH, Murashov V. A systematic review of reported exposure to engineered nanomaterials. Ann Occup Hyg. 2016;60(8):916–35.
Article
CAS
PubMed
Google Scholar
Ahamed M, Akhtar MJ, Alhadlaq HA, Alrokayan SA. Assessment of the lung toxicity of copper oxide nanoparticles: current status. Nanomedicine (London). 2015;10(15):2365–77.
Article
CAS
Google Scholar
Gosens I, Cassee FR, Zanella M, Manodori L, Brunelli A, Costa AL, Bokkers BG, de Jong WH, Brown D, Hristozov D, Stone V. Organ burden and pulmonary toxicity of nano-sized copper (II) oxide particles after short-term inhalation exposure. Nanotoxicology. 2016;10(8):1084–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Park JW, Lee IC, Shin NR, Jeon CM, Kwon OK, Ko JW, Kim JC, Oh SR, Shin IS, Ahn KS. Copper oxide nanoparticles aggravate airway inflammation and mucus production in asthmatic mice via MAPK signaling. Nanotoxicology. 2016;10(4):445–52.
Article
CAS
PubMed
Google Scholar
Pettibone JM, Adamcakova-Dodd A, Thorne PS, O’Shaughnessy PT, Weydert JA, Grassian VH. Inflammatory response of mice following inhalation exposure to iron and copper nanoparticles. Nanotoxicology. 2008;2(4):189–204.
Article
Google Scholar
Gosens I, Costa PM, Olsson M, Stone V, Costa AL, Brunelli A, Badetti E, Bonetto A, Bokkers BGH, de Jong WH, Williams A, Halappanavar S, Fadeel B, Cassee FR. Pulmonary toxicity and gene expression changes after short-term inhalation exposure to surface-modified copper oxide nanoparticles. NanoImpact. 2021;22: 100313.
Article
CAS
PubMed
Google Scholar
Kermanizadeh A, Balharry D, Wallin H, Loft S, Møller P. Nanomaterial translocation—the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs—a review. Crit Rev Toxicol. 2015;45(10):837–72.
Article
CAS
PubMed
Google Scholar
Pauluhn J. Derivation of occupational exposure levels (OELs) of low-toxicity isometric biopersistent particles: how can the kinetic lung overload paradigm be used for improved inhalation toxicity study design and OEL-derivation? Part Fibre Toxicol. 2014;11:72.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guo L, Feng K, Wang YC, Mei JJ, Ning RT, Zheng HW, Wang JJ, Worthen GS, Wang X, Song J, Li QH, Liu LD. Critical role of CXCL4 in the lung pathogenesis of influenza (H1N1) respiratory infection. Mucosal Immunol. 2017;10(6):1529–41.
Article
CAS
PubMed
Google Scholar
Metzemaekers M, Gouwy M, Proost P. Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol. 2020;17(5):433–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Martins A, Han J, Kim SO. The multifaceted effects of granulocyte colony-stimulating factor in immunomodulation and potential roles in intestinal immune homeostasis. IUBMB Life. 2010;62(8):611–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lang FM, Lee KMC, Teijaro JR, Becher B, Hamilton JA. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol. 2020;20(8):507–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shi Y, Liu CH, Roberts AI, Das J, Xu G, Ren G, Zhang Y, Zhang L, Yuan ZR, Tan HSW, Das G, Devadas S. Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don’t know. Cell Res. 2006;16(2):126–33.
Article
CAS
PubMed
Google Scholar
Lloyd C. Chemokines in allergic lung inflammation. Immunology. 2002;105(2):144–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Balamayooran G, Batra S, Fessler MB, Happel KI, Jeyaseelan S. Mechanisms of neutrophil accumulation in the lungs against bacteria. Am J Respir Cell Mol Biol. 2010;43(1):5–16.
Article
CAS
PubMed
Google Scholar
Moore ET, Rehkämper R, Kreissig M, Strekopytov K, Larner S. Determination of major and trace element variability in healthy human urine by ICP-QMS and specific gravity normalisation. RSC Adv. 2018;8(66):38022–35.
Article
Google Scholar
Lee I-C, Ko J-W, Park S-H, Lim J-O, Shin I-S, Moon C, Kim S-H, Heo J-D, Kim J-C. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int J Nanomed. 2016;11:2883–900.
CAS
Google Scholar
Kim JS, Adamcakova-Dodd A, O’Shaughnessy PT, Grassian VH, Thorne PS. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model. Part Fibre Toxicol. 2011;8(1):29.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adamcakova-Dodd A, Monick MM, Powers LS, Gibson-Corley KN, Thorne PS. Effects of prenatal inhalation exposure to copper nanoparticles on murine dams and offspring. Part Fibre Toxicol. 2015;12(1):30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Healy C, Munoz-Wolf N, Strydom J, Faherty L, Williams NC, Kenny S, Donnelly SC, Cloonan SM. Nutritional immunity: the impact of metals on lung immune cells and the airway microbiome during chronic respiratory disease. Respir Res. 2021;22(1):133.
Article
PubMed
PubMed Central
Google Scholar
Holan V, Javorkova E, Vrbova K, Vecera Z, Mikuska P, Coufalik P, Kulich P, Skoupy R, Machala M, Zajicova A, Rossner P. A murine model of the effects of inhaled CuO nanoparticles on cells of innate and adaptive immunity - a kinetic study of a continuous three-month exposure. Nanotoxicology. 2019;13(7):952–63.
Article
CAS
PubMed
Google Scholar
Poh TY, Ali NATBM, MacAogáin M, Kathawala MH, Setyawati MI, Ng KW, Chotirmall SH. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Particle Fibre Toxicol. 2018;15(1):46.
Article
CAS
Google Scholar
Tang M, Li S, Wei L, Hou Z, Qu J, Li L. Do engineered nanomaterials affect immune responses by interacting with gut microbiota? Front Immunol. 2021;12:525.
Article
Google Scholar
Ghio AJ, Carter JD, Richards JH, Richer LD, Grissom CK, Elstad MR. Iron and iron-related proteins in the lower respiratory tract of patients with acute respiratory distress syndrome. Crit Care Med. 2003;31(2):395–400.
Article
CAS
PubMed
Google Scholar
Zhang V, Nemeth E, Kim A. Iron in lung pathology. Pharmaceuticals (Basel, Switzerland). 2019;12(1):30.
Article
CAS
Google Scholar
Shah SA, Amison RT, Cleary SJ, Pitchford SC, Page CP. The inflammatory response to red blood cell constituents in the lung: a role for platelets. In: A51 critical care: she blinded me with science—insights from experimental and animal studies in ards and sepsis, pp A1837–A1837.
Nishikawa T, Lee ISM, Shiraishi N, Ishikawa T, Ohta Y, Nishikimi M. Identification of S100b protein as copper-binding protein and its suppression of copper-induced cell damage. J Biol Chem. 1997;272(37):23037–41.
Article
CAS
PubMed
Google Scholar
Sharma S, Toppo A, Rath B, Harbhajanka A, Lalita Jyotsna P. Hemolytic anemia as a presenting feature of wilson’s disease: a case report. Indian J Hematol Blood Transf. 2010;26(3):101–2.
Article
Google Scholar
Attri S, Sharma N, Jahagirdar S, Thapa BR, Prasad R. Erythrocyte metabolism and antioxidant status of patients with Wilson disease with hemolytic anemia. Pediatr Res. 2006;59(4):593–7.
Article
CAS
PubMed
Google Scholar
Manzler AD, Schreiner AW. Copper-induced acute hemolytic anemia. Ann Intern Med. 1970;73(3):409–12.
Article
CAS
PubMed
Google Scholar
Mercadante CJ, Herrera C, Pettiglio MA, Foster ML, Johnson LC, Dorman DC, Bartnikas TB. The effect of high dose oral manganese exposure on copper, iron and zinc levels in rats. Biometals. 2016;29(3):417–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang Y, Zheng W, Long L, Zhao W, Li X, Mo X, Lu J, Fu X, Li W, Liu S, Long Q, Huang J, Pira E. Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: Search for biomarkers of manganese exposure. Neurotoxicology. 2007;28(1):126–35.
Article
CAS
PubMed
Google Scholar
Ehrnstorfer IA, Geertsma ER, Pardon E, Steyaert J, Dutzler R. Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat Struct Mol Biol. 2014;21(11):990–6.
Article
CAS
PubMed
Google Scholar
Xu H, Jin J, DeFelice LJ, Andrews NC, Clapham DE. A spontaneous, recurrent mutation in divalent metal transporter-1 exposes a calcium entry pathway. PLoS Biol. 2004;2(3):E50–E50.
Article
PubMed
PubMed Central
Google Scholar
Li S, Zhao Q, Zhang K, Sun W, Jia X, Yang Y, Yin J, Tang C, Zhang J. Se deficiency induces renal pathological changes by regulating selenoprotein expression, disrupting redox balance, and activating inflammation. Metallomics. 2020;12(10):1576–84.
Article
CAS
PubMed
Google Scholar
Lai H, Nie T, Zhang Y, Chen Y, Tao J, Lin T, Ge T, Li F, Li H. Selenium deficiency-induced damage and altered expression of mitochondrial biogenesis markers in the kidneys of mice. Biol Trace Elem Res. 2021;199(1):185–96.
Article
CAS
PubMed
Google Scholar
Liu Y, Gao Y, Zhang L, Wang T, Wang J, Jiao F, Li W, Liu Y, Li Y, Li B, Chai Z, Wu G, Chen C. Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol. 2009;9(11):6335–43.
Article
CAS
PubMed
Google Scholar
Bai R, Zhang L, Liu Y, Li B, Wang L, Wang P, Autrup H, Beer C, Chen C. Integrated analytical techniques with high sensitivity for studying brain translocation and potential impairment induced by intranasally instilled copper nanoparticles. Toxicol Lett. 2014;226(1):70–80.
Article
CAS
PubMed
Google Scholar
Nyarko-Danquah I, Pajarillo E, Digman A, Soliman KFA, Aschner M, Lee E. Manganese accumulation in the brain via various transporters and its neurotoxicity mechanisms. Molecules. 2020;25(24):5880.
Article
CAS
PubMed Central
Google Scholar
Sawicki K, Czajka M, Matysiak-Kucharek M, Fal B, Drop B, Męczyńska-Wielgosz S, Sikorska K, Kruszewski M, Kapka-Skrzypczak L. Toxicity of metallic nanoparticles in the central nervous system. Nanotechnol Rev. 2019;8(1):175–200.
Article
CAS
Google Scholar
Osaki S, Johnson DA, Frieden E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J Biol Chem. 1966;241(12):2746–51.
Article
CAS
PubMed
Google Scholar
Chapman AP, Mocatta T, Shiva S, Seidel A, Chen B, Khalilova I, Paumann-Page ME, Jameson GL, Winterbourn C, Kettle AJ. Ceruloplasmin is an endogenous inhibitor of myeloperoxidase. J Biol Chem. 2013;288(9):6465–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu X, Gu Y, Ma W, Gao P, Liu M, Xiao P, Wang H, Chen J, Li T. Biomarkers for pulmonary inflammation and fibrosis and lung ventilation function in Chinese occupational refractory ceramic fibers-exposed workers. Int J Environ Res Public Health. 2018;15(1):42.
Article
CAS
Google Scholar
Vasilyev VB. Interactions of caeruloplasmin with other proteins participating in inflammation. Biochem Soc Trans. 2010;38(4):947–51.
Article
CAS
PubMed
Google Scholar
Davidoff GN, Votaw ML, Coon WW, Hultquist DE, Filter BJ, Wexler SA. Elevations in serum copper, erythrocytic copper, and ceruloplasmin concentrations in smokers. Am J Clin Pathol. 1978;70(5):790–2.
Article
CAS
PubMed
Google Scholar
Magálová T, Beno I, Brtková A, Mekinová D, Volkovová K, Staruchová M, Tatara M. Levels of Cu, Zn, Se and their relation to levels of ceruloplasmin and the activity of antioxidative enzymes. Bratisl Lek Listy. 1997;98(1):8–11.
PubMed
Google Scholar
Boz A, Evliyaoğlu O, Yildirim M, Erkan N, Karaca B. The value of serum zinc, copper, ceruloplasmin levels in patients with gastrointestinal tract cancers. Turk J Gastroenterol. 2005;16(2):81–4.
PubMed
Google Scholar
Saha A, Karnik A, Sathawara N, Kulkarni P, Singh V. Ceruloplasmin as a marker of occupational copper exposure. J Eposure Sci Environ Epidemiol. 2008;18(3):332–7.
Article
CAS
Google Scholar
Olivares M, Méndez MA, Astudillo PA, Pizarro F. Present situation of biomarkers for copper status. Am J Clin Nutr. 2008;88(3):859S-862S.
Article
CAS
PubMed
Google Scholar
Bailey SA, Zidell RH, Perry RW. Relationships between organ weight and body/brain weight in the rat: what is the best analytical endpoint? Toxicol Pathol. 2004;32(4):448–66.
Article
PubMed
Google Scholar
Michael B, Yano B, Sellers RS, Perry R, Morton D, Roome N, Johnson JK, Schafer K, Pitsch S. Evaluation of organ weights for rodent and non-rodent toxicity studies: a review of regulatory guidelines and a survey of current practices. Toxicol Pathol. 2007;35(5):742–50.
Article
PubMed
Google Scholar
Wahlström E, Ollerstam A, Sundius L, Zhang H. Use of lung weight as biomarker for assessment of lung toxicity in rat inhalation studies. Toxicol Pathol. 2013;41(6):902–12.
Article
PubMed
CAS
Google Scholar
Adamcakova-Dodd A, Stebounova LV, Kim JS, Vorrink SU, Ault AP, O’Shaughnessy PT, Grassian VH, Thorne PS. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part Fibre Toxicol. 2014;11:15–15.
Article
PubMed
PubMed Central
CAS
Google Scholar
Miller FJ, Asgharian B, Schroeter JD, Price O. Improvements and additions to the multiple path particle dosimetry model. J Aerosol Sci. 2016;99:14–26.
Article
CAS
Google Scholar
Meyerholz DK, Beck AP. Principles and approaches for reproducible scoring of tissue stains in research. Lab Investig. 2018;98(7):844–55.
Article
PubMed
Google Scholar
Jones DR, Jarrett JM, Tevis DS, Franklin M, Mullinix NJ, Wallon KL, Derrick Quarles C, Caldwell KL, Jones RL. Analysis of whole human blood for Pb, Cd, Hg, Se, and Mn by ICP-DRC-MS for biomonitoring and acute exposures. Talanta. 2017;162:114–22.
Article
CAS
PubMed
Google Scholar
Link DD, Walter PJ, Kingston HM. Development and validation of the new EPA microwave-assisted leach method 3051A. Environ Sci Technol. 1998;32(22):3628–32.
Article
CAS
Google Scholar
Haque E, Moran ME, Thorne PS. Retrospective blood lead assessment from archived clotted erythrocyte fraction in a cohort of lead-exposed mother-child dyads. Sci Total Environ. 2021;754:142166.
Article
CAS
PubMed
Google Scholar
Caldwell KL, Cheng PY, Vance KA, Makhmudov A, Jarrett JM, Caudill SP, Ho DP, Jones RL. LAMP: a CDC program to ensure the quality of blood-lead laboratory measurements. J Public Health Manag Pract. 2019;25(Suppl 1):S23–30.
Article
PubMed
Google Scholar
Weindruch R, Sohal RS. Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med. 1997;337(14):986–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mandal R, Loeffler AG, Salamat S, Fritsch MK. Organ weight changes associated with body mass index determined from a medical autopsy population. Am J Forensic Med Pathol. 2012;33(4):256.
Article
Google Scholar
Estimation of relative bioavailability of lead soil and soil-like materials using in vivo and in vitro methods; May 2007.
Midander K, Wallinder IO, Leygraf C. In vitro studies of copper release from powder particles in synthetic biological media. Environ Pollut. 2007;145(1):51–9.
Article
CAS
PubMed
Google Scholar
Boisa N, Elom N, Dean JR, Deary ME, Bird G, Entwistle JA. Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil. Environ Int. 2014;70:132–42.
Article
CAS
PubMed
Google Scholar