Landrigan PJ, Fuller R, Acosta NJ, Adeyi O, Arnold R, Baldé AB, et al. The Lancet Commission on pollution and health. Lancet Elsevier. 2018;391:462–512.
Article
Google Scholar
Lelieveld J, Pozzer A, Pöschl U, Fnais M, Haines A, Münzel T. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc Res. 2020;116:1910–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Al-Kindi SG, Brook RD, Biswal S, Rajagopalan S. Environmental determinants of cardiovascular disease: lessons learned from air pollution. Nat Rev Cardiol. 2020;17:656–72.
Article
PubMed
PubMed Central
Google Scholar
Guan W-J, Zheng X-Y, Chung KF, Zhong N-S. Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. The Lancet. 2016;388:1939–51.
Article
Google Scholar
Huang S, Zhang X, Huang J, Lu X, Liu F, Gu D. Ambient air pollution and body weight status in adults: a systematic review and meta-analysis. Environ Pollut. 2020;265: 114999.
Article
CAS
PubMed
Google Scholar
Costa LG, Cole TB, Dao K, Chang Y-C, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther. 2020;210: 107523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu M-Y, Lo W-C, Chao C-T, Wu M-S, Chiang C-K. Association between air pollutants and development of chronic kidney disease: a systematic review and meta-analysis. Sci Total Environ. 2020;706: 135522.
Article
CAS
PubMed
Google Scholar
Orioli R, Solimini AG, Michelozzi P, Forastiere F, Davoli M, Cesaroni G. A cohort study on long-term exposure to air pollution and incidence of liver cirrhosis. Environ Epidemiol. 2020;4: e109.
Article
PubMed
PubMed Central
Google Scholar
Noorimotlagh Z, Azizi M, Pan H-F, Mami S, Mirzaee SA. Association between air pollution and Multiple Sclerosis: a systematic review. Environ Res. 2020;196:110386.
Article
PubMed
CAS
Google Scholar
Alsaber A, Pan J, Al-Herz A, Alkandary DS, Al-Hurban A, Setiya P, et al. Influence of ambient air pollution on rheumatoid arthritis disease activity score index. Int J Environ Res Public Health. 2020;17:416.
Article
CAS
PubMed Central
Google Scholar
Gilcrease GW, Padovan D, Heffler E, Peano C, Massaglia S, Roccatello D, et al. Is air pollution affecting the disease activity in patients with systemic lupus erythematosus? State of the art and a systematic literature review. Eur J Rheumatol. 2020;7:31–4.
Article
PubMed
PubMed Central
Google Scholar
Blaskievicz PH, Silva AMC, Fernandes V, Junior OBP, Shimoya-Bittencourt W, Ferreira SMB, et al. Atmospheric pollution exposure increases disease activity of systemic lupus erythematosus. Int J Environ Res Public Health. 2020;17:1984.
Article
CAS
PubMed Central
Google Scholar
Vignal C, Guilloteau E, Gower-Rousseau C, Body-Malapel M. Review article: Epidemiological and animal evidence for the role of air pollution in intestinal diseases. Sci Total Environ. 2021;757: 143718.
Article
CAS
PubMed
Google Scholar
Feng J, Cavallero S, Hsiai T, Li R. Impact of air pollution on intestinal redox lipidome and microbiome. Free Radic Biol Med. 2020;151:99–110.
Article
CAS
PubMed
Google Scholar
Kim JB, Prunicki M, Haddad F, Dant C, Sampath V, Patel R, et al. Cumulative lifetime burden of cardiovascular disease from early exposure to air pollution. J Am Heart Assoc. 2020;9:e014944.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rosa MJ, Hair GM, Just AC, Kloog I, Svensson K, Pizano-Zárate ML, et al. Identifying critical windows of prenatal particulate matter (PM2.5) exposure and early childhood blood pressure. Environ Res. 2020;182:109073.
Article
CAS
PubMed
Google Scholar
Deng Q, Lu C, Li Y, Sundell J, Dan N. Exposure to outdoor air pollution during trimesters of pregnancy and childhood asthma, allergic rhinitis, and eczema. Environ Res. 2016;150:119–27.
Article
CAS
PubMed
Google Scholar
Lu C, Norbäck D, Li Y, Deng Q. Early-life exposure to air pollution and childhood allergic diseases: an update on the link and its implications. Expert Rev Clin Immunol. 2020;16:813–27.
Article
CAS
PubMed
Google Scholar
Elten M, Benchimol EI, Fell DB, Kuenzig ME, Smith G, Chen H, et al. Ambient air pollution and the risk of pediatric-onset inflammatory bowel disease: a population-based cohort study. Environ Int. 2020;138: 105676.
Article
CAS
PubMed
Google Scholar
Liu W, Zhou Y, Yong L, Qin Y, Yu L, Li R, et al. Effects of PM2.5 exposure during gestation on maternal gut microbiota and pregnancy outcomes. Chemosphere. 2020;247:125879.
Article
CAS
PubMed
Google Scholar
Shi Z, Vu T, Kotthaus S, Harrison RM, Grimmond S, Yue S, et al. Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing).” Atmosp Chem Phys Copernicus GmbH. 2019;19:7519–46.
Article
CAS
Google Scholar
Johnson AC. Analysis of Air Pollution Trends in Beijing, China. 2020
Beaumont M, Paës C, Mussard E, Knudsen C, Cauquil L, Aymard P, et al. Gut microbiota derived metabolites contribute to intestinal barrier maturation at the suckling-to-weaning transition. Gut Microbes. 2020;11:1268–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Navis M, Martins Garcia T, Renes IB, Vermeulen JL, Meisner S, Wildenberg ME, et al. Mouse fetal intestinal organoids: new model to study epithelial maturation from suckling to weaning. EMBO Rep. 2019;20:e46221.
Article
PubMed
CAS
Google Scholar
Sureda EA, Weström B, Pierzynowski SG, Prykhodko O. Maturation of the intestinal epithelial barrier in neonatal rats coincides with decreased FcRn expression, replacement of vacuolated enterocytes and changed blimp-1 expression. PLoS ONE. 2016;11:e0164775.
Article
CAS
Google Scholar
Garcia TM, Navis M, Wildenberg ME, van Elburg RM, Muncan V. Recapitulating suckling-to-weaning transition in vitro using fetal intestinal organoids. JoVE J Vis Exp. 2019;15:e60470.
Google Scholar
Muncan V, Heijmans J, Krasinski SD, Büller NV, Wildenberg ME, Meisner S, et al. Blimp1 regulates the transition of neonatal to adult intestinal epithelium. Nat Commun. 2011;2:452.
Article
PubMed
CAS
Google Scholar
Harper J, Mould A, Andrews RM, Bikoff EK, Robertson EJ. The transcriptional repressor Blimp1/Prdm1 regulates postnatal reprogramming of intestinal enterocytes. Proc Natl Acad Sci U S A. 2011;108:10585–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Beumer J, Artegiani B, Post Y, Reimann F, Gribble F, Nguyen TN, et al. Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient. Nat Cell Biol. 2018;20:909–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coll P, Cazaunau M, Boczkowski J, Zysman M, Doussin J-F, Gratien A, et al. Pollurisk: an innovative experimental platform to investigate health impacts of air quality. Naples, Italy; 2018 [cited 2021 Feb 23]. p. 557–65. Available from: http://library.witpress.com/viewpaper.asp?pcode=AIR18-052-1.
Noah TK, Donahue B, Shroyer NF. Intestinal development and differentiation. Exp Cell Res. 2011;317:2702–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sumigray KD, Terwilliger M, Lechler T. Morphogenesis and compartmentalization of the intestinal crypt. Dev Cell. 2018;45:183-197.e5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Naik S, Larsen SB, Gomez NC, Alaverdyan K, Sendoel A, Yuan S, et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature. 2017;550:475–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ge Y, Gong M, Colliou N, Zadeh M, Li J, Jones DP, et al. Neonatal intestinal immune regulation by the commensal bacterium, P. UF1. Mucosal Immunol. 2019;12:434–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Aidy S, Van Baarlen P, Derrien M, Lindenbergh-Kortleve DJ, Hooiveld G, Levenez F, et al. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 2012;5:567–79.
Article
PubMed
CAS
Google Scholar
Köhler A, Delbauve S, Smout J, Torres D, Flamand V. Very early-life exposure to microbiota-induced TNF drives the maturation of neonatal pre-cDC1. Gut. 2021;70:511–21.
Article
PubMed
CAS
Google Scholar
Razzaghian HR, Sharafian Z, Sharma AA, Boyce GK, Lee K, Da Silva R, et al. Neonatal T Helper 17 Responses Are Skewed Towards an Immunoregulatory Interleukin-22 Phenotype. Front Immunol [Internet]. 2021 [cited 2021 Jun 17];12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8126652/.
Mirpuri J. The emerging role of group 3 innate lymphoid cells in the neonate: interaction with the maternal and neonatal microbiome. Oxf Open Immunol [Internet]. 2021 [cited 2021 Jun 17];2. Available from: https://doi.org/10.1093/oxfimm/iqab009.
Chen Y-S, Chen I-B, Pham G, Shao T-Y, Bangar H, Way SS, et al. IL-17–producing γδ T cells protect against Clostridium difficile infection. J Clin Invest. 2020;130:2377–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weström B, Arévalo Sureda E, Pierzynowska K, Pierzynowski SG, Pérez-Cano F-J. The Immature Gut Barrier and Its Importance in Establishing Immunity in Newborn Mammals. Front Immunol [Internet]. Frontiers; 2020 [cited 2021 Jun 17];11. Available from: https://www.frontiersin.org/articles/https://doi.org/10.3389/fimmu.2020.01153/full.
Akdis CA. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 2021;21:1–13.
Article
CAS
Google Scholar
Sarkar A, Yoo JY, Valeria Ozorio Dutra S, Morgan KH, Groer M. The association between early-life gut microbiota and long-term health and diseases. J Clin Med. 2021;10:459.
Article
PubMed
PubMed Central
Google Scholar
Stojanov S, Berlec A, Štrukelj B. The influence of probiotics on the firmicutes/bacteroidetes ratio in the treatment of obesity and inflammatory bowel disease. Microorganisms. 2020;8:1715.
Article
CAS
PubMed Central
Google Scholar
Low A, Soh M, Miyake S, Seedorf H. Host-age prediction from fecal microbiome composition in laboratory mice. bioRxiv. Cold Spring Harbor Laboratory; 2020;2020.12.04.412734.
Dou X, Gao N, Yan D, Shan A. Sodium butyrate alleviates mouse colitis by regulating gut microbiota dysbiosis. Animals. 2020;10:1154.
Article
PubMed Central
Google Scholar
Chen Q, Wang Y, Jiao F, Shi C, Pei M, Wang L, et al. Betaine inhibits Toll-like receptor 4 responses and restores intestinal microbiota in acute liver failure mice. Sci Rep. 2020;10:21850.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiodini RJ, Dowd SE, Chamberlin WM, Galandiuk S, Davis B, Glassing A. Microbial population differentials between mucosal and submucosal intestinal tissues in advanced crohn’s disease of the ileum. PLoS ONE. 2015;10:e0134382.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oezguen N, Yalcinkaya N, Kücükali CI, Dahdouli M, Hollister EB, Luna RA, et al. Microbiota stratification identifies disease-specific alterations in neuro-Behcet’s disease and multiple sclerosis. Clin Exp Rheumatol. 2019;37:S58-66.
Google Scholar
Munyaka PM, Rabbi MF, Khafipour E, Ghia J-E. Acute dextran sulfate sodium (DSS)-induced colitis promotes gut microbial dysbiosis in mice. J Basic Microbiol. 2016;56:986–98.
Article
CAS
PubMed
Google Scholar
Kuhn KA, Schulz HM, Regner EH, Severs EL, Hendrickson JD, Mehta G, et al. Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol. 2018;11:357–68.
Article
CAS
PubMed
Google Scholar
Coyne MJ, Béchon N, Matano LM, McEneany VL, Chatzidaki-Livanis M, Comstock LE. A family of anti-Bacteroidales peptide toxins wide-spread in the human gut microbiota. Nat Commun. 2019;10:3460.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zitomersky NL, Atkinson BJ, Franklin SW, Mitchell PD, Snapper SB, Comstock LE, et al. Characterization of adherent bacteroidales from intestinal biopsies of children and young adults with inflammatory bowel disease. PLoS ONE. 2013;8:e63686.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolton JL, Smith SH, Huff NC, Gilmour MI, Foster WM, Auten RL, et al. Prenatal air pollution exposure induces neuroinflammation and predisposes offspring to weight gain in adulthood in a sex-specific manner. FASEB J. 2012;26:4743–54.
Article
CAS
PubMed
Google Scholar
Thaver S, Foa L, Richards SM, Lyons AB, Zosky GR. In utero exposure to diesel exhaust particles, but not silica, alters post-natal immune development and function. Chemosphere. 2021;268: 129314.
Article
CAS
PubMed
Google Scholar
Clougherty JE. A growing role for gender analysis in air pollution epidemiology. Environ Health Perspect Environ Health Persp. 2010;118:167–76.
Article
CAS
Google Scholar
Shukla A, Bunkar N, Kumar R, Bhargava A, Tiwari R, Chaudhury K, et al. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. Sci Total Environ. 2019;656:760–77.
Article
CAS
PubMed
Google Scholar
Tsamou M, Vrijens K, Madhloum N, Lefebvre W, Vanpoucke C, Nawrot TS. Air pollution-induced placental epigenetic alterations in early life: a candidate miRNA approach. Epigenetics. 2018;13:135–46.
Article
PubMed
PubMed Central
Google Scholar
Vrijens K, Trippas A-J, Lefebvre W, Vanpoucke C, Penders J, Janssen BG, et al. Association of prenatal exposure to ambient air pollution with circulating histone levels in maternal cord blood. JAMA Netw Open. 2020;3:e205156–e205156.
Article
PubMed
PubMed Central
Google Scholar
Meakin AS, Cuffe JS, Darby JR, Morrison JL, Clifton VL. Let’s talk about placental sex, baby: understanding mechanisms that drive female-and male-specific fetal growth and developmental outcomes. Int J Mol Sci. 2021;22:6386.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Ciaula A, Baj J, Garruti G, Celano G, De Angelis M, Wang HH, et al. Liver steatosis, gut-liver axis, microbiome and environmental factors. A never-ending bidirectional cross-talk. J Clin Med. 2020;9:2648.
Article
CAS
PubMed Central
Google Scholar
Bolton JL, Marinero S, Hassanzadeh T, Natesan D, Le D, Belliveau C, et al. Gestational Exposure to Air Pollution Alters Cortical Volume, Microglial Morphology, and Microglia-Neuron Interactions in a Sex-Specific Manner. Front Synaptic Neurosci [Internet]. 2017 [cited 2022 Jan 28];9. Available from: https://www.frontiersin.org/article/https://doi.org/10.3389/fnsyn.2017.00010.
Mayer EA, Nance K, Chen S. The Gut-Brain axis. Annu Rev Med. 2021;73:439–53.
Article
PubMed
CAS
Google Scholar
Kim D, Chen Z, Zhou L-F, Huang S-X. Air pollutants and early origins of respiratory diseases. Chronic Dis Transl Med. 2018;4:75–94.
PubMed
PubMed Central
Google Scholar
Ma Y, Yang X, Chatterjee V, Wu MH, Yuan SY. The gut-lung axis in systemic inflammation. role of mesenteric lymph as a conduit. Am J Respir Cell Mol Biol. 2021;64:19–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen D, Liao H, Yang Y, Chen L, Zhao D, Ding D. Simulated impacts of vertical distributions of black carbon aerosol on meteorology and PM 2.5 concentrations in Beijing during severe haze events. Atmosp Chem Phys Copernicus GmbH. 2022;22:1825–44.
Article
CAS
Google Scholar
Lustig M, Feng Q, Payan Y, Gefen A, Benayahu D. Noninvasive continuous monitoring of adipocyte differentiation: from macro to micro scales. Microsc Microanal. 2019;25:119–28.
Article
CAS
PubMed
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome. 2018;6:226.
Article
PubMed
PubMed Central
Google Scholar
Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.
Article
PubMed
PubMed Central
Google Scholar