Attademo L, Bernardini F. Air pollution as risk factor for mental disorders: in search for a possible link with Alzheimer’s disease and schizophrenia. J Alzheimers Dis. 2020;76(3):825–30. https://doi.org/10.3233/jad-200289.
Article
PubMed
Google Scholar
Babadjouni RM, Hodis DM, Radwanski R, Durazo R, Patel A, Liu Q, et al. Clinical effects of air pollution on the central nervous system; a review. J Clin Neurosci. 2017;43:16–24. https://doi.org/10.1016/j.jocn.2017.04.028.
Article
CAS
PubMed
PubMed Central
Google Scholar
Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther. 2020;210:107523. https://doi.org/10.1016/j.pharmthera.2020.107523.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chun H, Leung C, Wen SW, McDonald J, Shin HH. Maternal exposure to air pollution and risk of autism in children: a systematic review and meta-analysis. Environ Pollut. 2020;256:113307. https://doi.org/10.1016/j.envpol.2019.113307.
Article
CAS
PubMed
Google Scholar
McGuinn LA, Windham GC, Kalkbrenner AE, Bradley C, Di Q, Croen LA, et al. Early life exposure to air pollution and autism spectrum disorder: findings from a multisite case-control study. Epidemiology. 2020;31(1):103–14. https://doi.org/10.1097/ede.0000000000001109.
Article
PubMed
PubMed Central
Google Scholar
Oudin A, Frondelius K, Haglund N, Källén K, Forsberg B, Gustafsson P, et al. Prenatal exposure to air pollution as a potential risk factor for autism and ADHD. Environ Int. 2019;133:105149. https://doi.org/10.1016/j.envint.2019.105149.
Article
CAS
PubMed
Google Scholar
Volk HE, Lurmann F, Penfold B, Hertz-Picciotto I, McConnell R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiat. 2013;70(1):71–7. https://doi.org/10.1001/jamapsychiatry.2013.266.
Article
Google Scholar
Antonsen S, Mok PLH, Webb RT, Mortensen PB, McGrath JJ, Agerbo E, et al. Exposure to air pollution during childhood and risk of developing schizophrenia: a national cohort study. Lancet Planet Health. 2020;4(2):e64–73. https://doi.org/10.1016/s2542-5196(20)30004-8.
Article
PubMed
Google Scholar
Worthington MA, Petkova E, Freudenreich O, Cather C, Holt D, Bello I, et al. Air pollution and hippocampal atrophy in first episode schizophrenia. Schizophr Res. 2020;218:63–9. https://doi.org/10.1016/j.schres.2020.03.001.
Article
PubMed
Google Scholar
Clancy B, Finlay BL, Darlington RB, Anand KJ. Extrapolating brain development from experimental species to humans. Neurotoxicology. 2007;28(5):931–7. https://doi.org/10.1016/j.neuro.2007.01.014.
Article
PubMed
Google Scholar
Clancy B, Kersh B, Hyde J, Darlington RB, Anand KJ, Finlay BL. Web-based method for translating neurodevelopment from laboratory species to humans. Neuroinformatics. 2007;5(1):79–94.
Article
Google Scholar
Allen JL, Conrad K, Oberdorster G, Johnston CJ, Sleezer B, Cory-Slechta DA. Developmental exposure to concentrated ambient particles and preference for immediate reward in mice. Environ Health Perspect. 2013;121(1):32–8. https://doi.org/10.1289/ehp.1205505.
Article
CAS
PubMed
Google Scholar
Allen JL, Klocke C, Morris-Schaffer K, Conrad K, Sobolewski M, Cory-Slechta DA. Cognitive effects of air pollution exposures and potential mechanistic underpinnings. Curr Environ Health Rep. 2017;4(2):180–91. https://doi.org/10.1007/s40572-017-0134-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen JL, Liu X, Pelkowski S, Palmer B, Conrad K, Oberdorster G, et al. Early postnatal exposure to ultrafine particulate matter air pollution: persistent ventriculomegaly, neurochemical disruption, and glial activation preferentially in male mice. Environ Health Perspect. 2014;122(9):939–45. https://doi.org/10.1289/ehp.1307984.
Article
PubMed
PubMed Central
Google Scholar
Allen JL, Oberdorster G, Morris-Schaffer K, Wong C, Klocke C, Sobolewski M, et al. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology. 2015. https://doi.org/10.1016/j.neuro.2015.12.014.
Article
PubMed
PubMed Central
Google Scholar
Sobolewski M, Anderson T, Conrad K, Marvin E, Klocke C, Morris-Schaffer K, et al. Developmental exposures to ultrafine particle air pollution reduces early testosterone levels and adult male social novelty preference: risk for children’s sex-biased neurobehavioral disorders. Neurotoxicology. 2018;68:203–11. https://doi.org/10.1016/j.neuro.2018.08.009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klocke C, Allen JL, Sobolewski M, Blum JL, Zelikoff JT, Cory-Slechta DA. Exposure to fine and ultrafine particulate matter during gestation alters postnatal oligodendrocyte maturation, proliferation capacity, and myelination. Neurotoxicology. 2018;65:196–206. https://doi.org/10.1016/j.neuro.2017.10.004.
Article
CAS
PubMed
Google Scholar
Klocke C, Allen JL, Sobolewski M, Mayer-Pröschel M, Blum JL, Lauterstein D, et al. Neuropathological consequences of gestational exposure to concentrated ambient fine and ultrafine particles in the mouse. Toxicol Sci. 2017;156(2):492–508. https://doi.org/10.1093/toxsci/kfx010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Klocke C, Sherina V, Graham UM, Gunderson J, Allen JL, Sobolewski M, et al. Enhanced cerebellar myelination with concomitant iron elevation and ultrastructural irregularities following prenatal exposure to ambient particulate matter in the mouse. Inhal Toxicol. 2018;30(9–10):381–96. https://doi.org/10.1080/08958378.2018.1533053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richards R, Greimel E, Kliemann D, Koerte IK, Schulte-Körne G, Reuter M, et al. Increased hippocampal shape asymmetry and volumetric ventricular asymmetry in autism spectrum disorder. Neuroimage Clin. 2020;26:102207. https://doi.org/10.1016/j.nicl.2020.102207.
Article
PubMed
PubMed Central
Google Scholar
Turner AH, Greenspan KS, van Erp TGM. Pallidum and lateral ventricle volume enlargement in autism spectrum disorder. Psychiatry Res Neuroimaging. 2016;252:40–5. https://doi.org/10.1016/j.pscychresns.2016.04.003.
Article
PubMed
PubMed Central
Google Scholar
Cuesta MJ, Lecumberri P, Cabada T, Moreno-Izco L, Ribeiro M, Lopez-Ilundain JM, et al. Basal ganglia and ventricle volume in first-episode psychosis. A family and clinical study. Psychiatry Res Neuroimaging. 2017;269:90–6. https://doi.org/10.1016/j.pscychresns.2017.09.010.
Article
PubMed
Google Scholar
Verkhlyutov VM, Gapienko GV, Ushakov VL, Portnova GV, Verkhlyutova IA, Anisimov NV, et al. MRI morphometry of the cerebral ventricles in patients with attention deficit hyperactivity disorder. Neurosci Behav Physiol. 2010;40(3):295–303. https://doi.org/10.1007/s11055-010-9256-x.
Article
CAS
PubMed
Google Scholar
Milovanovic N, Damjanovic A, Puskas L, Milovanovic S, Barisic J, Malis M, et al. Reliability of the bicaudate parameter in the revealing of the enlarged lateral Ventricles in schizophrenia patients. Psychiatr Danub. 2018;30(2):150–6. https://doi.org/10.24869/psyd.2018.150.
Article
CAS
PubMed
Google Scholar
Blackmon K, Ben-Avi E, Wang X, Pardoe HR, Di Martino A, Halgren E, et al. Periventricular white matter abnormalities and restricted repetitive behavior in autism spectrum disorder. NeuroImage Clin. 2016;10:36–45. https://doi.org/10.1016/j.nicl.2015.10.017.
Article
PubMed
Google Scholar
Yang M, Gao S, Zhang X. Cognitive deficits and white matter abnormalities in never-treated first-episode schizophrenia. Transl Psychiatry. 2020;10(1):368. https://doi.org/10.1038/s41398-020-01049-0.
Article
PubMed
PubMed Central
Google Scholar
Wu ZM, Llera A, Hoogman M, Cao QJ, Zwiers MP, Bralten J, et al. Linked anatomical and functional brain alterations in children with attention-deficit/hyperactivity disorder. Neuroimage Clin. 2019;23:101851. https://doi.org/10.1016/j.nicl.2019.101851.
Article
PubMed
PubMed Central
Google Scholar
Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci. 2015;1338:38–57. https://doi.org/10.1111/nyas.12547.
Article
CAS
PubMed
Google Scholar
Bauer J, Werner A, Kohl W, Kugel H, Shushakova A, Pedersen A, et al. Hyperactivity and impulsivity in adult attention-deficit/hyperactivity disorder is related to glutamatergic dysfunction in the anterior cingulate cortex. World J Biol Psychiatry. 2016. https://doi.org/10.1080/15622975.2016.1262060.
Article
PubMed
Google Scholar
Cory-Slechta DA, Sobolewski M, Oberdörster G. Air pollution-related brain metal dyshomeostasis as a potential risk factor for neurodevelopmental disorders and neurodegenerative diseases. Atmosphere. 2020;11(10):1098.
Article
CAS
Google Scholar
Ault AP, Peters TM, Sawvel EJ, Casuccio GS, Willis RD, Norris GA, et al. Single-particle SEM-EDX analysis of iron-containing coarse particulate matter in an urban environment: sources and distribution of iron within Cleveland. Ohio Environ Sci Technol. 2012;46(8):4331–9. https://doi.org/10.1021/es204006k.
Article
CAS
PubMed
Google Scholar
Luglio David G, Katsigeorgis M, Hess J, Kim R, Adragna J, Raja A, et al. PM2.5 concentration and composition in subway systems in the northeastern United States. Environ Health Perspect. 2021;129(2):27001. https://doi.org/10.1289/EHP7202.
Article
CAS
PubMed
Google Scholar
Chen R, Cheng J, Lv J, Wu L, Wu J. Comparison of chemical compositions in air particulate matter during summer and winter in Beijing, China. Environ Geochem Health. 2017;39(4):913–21. https://doi.org/10.1007/s10653-016-9862-9.
Article
CAS
PubMed
Google Scholar
Bem H, Gallorini M, Rizzio E, Krzemińska M. Comparative studies on the concentrations of some elements in the urban air particulate matter in Lodz City of Poland and in Milan, Italy. Environ Int. 2003;29(4):423–8. https://doi.org/10.1016/S0160-4120(02)00190-3.
Article
CAS
PubMed
Google Scholar
Mansha M, Ghauri B, Rahman S, Amman A. Characterization and source apportionment of ambient air particulate matter (PM2.5) in Karachi. Sci Total Environ. 2012;425:176–83. https://doi.org/10.1016/j.scitotenv.2011.10.056.
Article
CAS
PubMed
Google Scholar
Reff A, Bhave PV, Simon H, Pace TG, Pouliot GA, Mobley JD, et al. Emissions inventory of PM2.5 trace elements across the United States. Environ Sci Technol. 2009;43(15):5790–6. https://doi.org/10.1021/es802930x.
Article
CAS
PubMed
Google Scholar
Cerami C. Iron nutriture of the fetus, neonate, infant, and child. Ann Nutr Metab. 2017;71(Suppl 3):8–14. https://doi.org/10.1159/000481447.
Article
CAS
PubMed
Google Scholar
Georgieff MK. Iron assessment to protect the developing brain. Am J Clin Nutr. 2017;106(Suppl 6):1588s-s1593. https://doi.org/10.3945/ajcn.117.155846.
Article
PubMed
PubMed Central
Google Scholar
Lozoff B, Georgieff MK. Iron deficiency and brain development. Semin Pediatr Neurol. 2006;13(3):158–65. https://doi.org/10.1016/j.spen.2006.08.004.
Article
PubMed
Google Scholar
Raffaeli G, Manzoni F, Cortesi V, Cavallaro G, Mosca F, Ghirardello S. Iron homeostasis disruption and oxidative stress in preterm newborns. Nutrients. 2020. https://doi.org/10.3390/nu12061554.
Article
PubMed
PubMed Central
Google Scholar
Rassin DK, Sturman JA, Gaull GE. Sulfur amino acid metabolism in the developing rhesus monkey brain: subcellular studies of taurine, cysteinesulfinic acid decarboxylase, gamma-aminobutyric acid, and glutamic acid decarboxylase. J Neurochem. 1981;37(3):740–8. https://doi.org/10.1111/j.1471-4159.1982.tb12550.x.
Article
CAS
PubMed
Google Scholar
Rassin DK, Sturman JA, Gaull GE. Sulfur amino acid metabolism in the developing rhesus monkey brain: subcellular studies of the methylation cycle and cystathionine beta-synthase. J Neurochem. 1981;36(3):1263–71. https://doi.org/10.1111/j.1471-4159.1981.tb01726.x.
Article
CAS
PubMed
Google Scholar
Stipanuk MH, Ueki I. Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis. 2011;34(1):17–32. https://doi.org/10.1007/s10545-009-9006-9.
Article
CAS
PubMed
Google Scholar
Adachi T, Yasutake A, Hirayama K. Influence of dietary levels of protein and sulfur amino acids on metabolism of glutathione and related amino acids in mice. J Health Sci. 2002;48(5):446–50. https://doi.org/10.1248/jhs.48.446.
Article
CAS
Google Scholar
Olkowski AA, Gooneratne SR, Crichlow EC, Rousseaux CG, Christensen DA. Effects of high dietary sulfur on brain functions using evoked-potentials technique. Can J Vet Res. 1990;54(1):113–8.
CAS
PubMed
PubMed Central
Google Scholar
Brissot P, Troadec MB, Loréal O, Brissot E. Pathophysiology and classification of iron overload diseases; update 2018. Transfus Clin Biol. 2019;26(1):80–8. https://doi.org/10.1016/j.tracli.2018.08.006.
Article
PubMed
Google Scholar
Chiueh CC. Iron overload, oxidative stress, and axonal dystrophy in brain disorders. Pediatr Neurol. 2001;25(2):138–47. https://doi.org/10.1016/s0887-8994(01)00266-1.
Article
CAS
PubMed
Google Scholar
Levi S, Cozzi A, Santambrogio P. Iron pathophysiology in neurodegeneration with brain iron accumulation. Adv Exp Med Biol. 2019;1173:153–77. https://doi.org/10.1007/978-981-13-9589-5_9.
Article
CAS
PubMed
Google Scholar
Yan N, Zhang J. Iron metabolism, ferroptosis, and the links with Alzheimer’s disease. Front Neurosci. 2019;13:1443. https://doi.org/10.3389/fnins.2019.01443.
Article
PubMed
Google Scholar
Gao D, Ripley S, Weichenthal S, Godri Pollitt KJ. Ambient particulate matter oxidative potential: chemical determinants, associated health effects, and strategies for risk management. Free Radical Biol Med. 2020;151:7–25. https://doi.org/10.1016/j.freeradbiomed.2020.04.028.
Article
CAS
Google Scholar
Lonnerdal B, Georgieff MK, Hernell O. Developmental physiology of iron absorption, homeostasis, and metabolism in the healthy term infant. J Pediatr. 2015;167(4 Suppl):S8-14. https://doi.org/10.1016/j.jpeds.2015.07.014.
Article
CAS
PubMed
PubMed Central
Google Scholar
Modabbernia A, Arora M, Reichenberg A. Environmental exposure to metals, neurodevelopment, and psychosis. Curr Opin Pediatr. 2016;28(2):243–9. https://doi.org/10.1097/MOP.0000000000000332.
Article
CAS
PubMed
Google Scholar
Rodríguez-Barranco M, Lacasaña M, Aguilar-Garduño C, Alguacil J, Gil F, González-Alzaga B, et al. Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: a systematic review and meta-analysis. Sci Total Environ. 2013;454–455:562–77. https://doi.org/10.1016/j.scitotenv.2013.03.047.
Article
CAS
PubMed
Google Scholar
Fiore M, Barone R, Copat C, Grasso A, Cristaldi A, Rizzo R, et al. Metal and essential element levels in hair and association with autism severity. J Trace Elem Med Biol. 2020;57:126409. https://doi.org/10.1016/j.jtemb.2019.126409.
Article
CAS
PubMed
Google Scholar
Fiłon J, Ustymowicz-Farbiszewska J, Krajewska-Kułak E. Analysis of lead, arsenic and calcium content in the hair of children with autism spectrum disorder. BMC Public Health. 2020;20(1):383. https://doi.org/10.1186/s12889-020-08496-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Palmieri L, Papaleo V, Porcelli V, Scarcia P, Gaita L, Sacco R, et al. Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry. 2010;15(1):38–52. https://doi.org/10.1038/mp.2008.63.
Article
CAS
PubMed
Google Scholar
Shayganfard M. Are essential trace elements effective in modulation of mental disorders? update and perspectives. Biol Trace Elem Res. 2021. https://doi.org/10.1007/s12011-021-02733-y.
Article
PubMed
Google Scholar
Palmieri L, Persico AM. Mitochondrial dysfunction in autism spectrum disorders: cause or effect? Biochim Biophys Acta. 2010;1797(6–7):1130–7. https://doi.org/10.1016/j.bbabio.2010.04.018.
Article
CAS
PubMed
Google Scholar
Skalny AV, Simashkova NV, Skalnaya AA, Klyushnik TP, Zhegalova IV, Grabeklis AR, et al. Trace element levels are associated with neuroinflammatory markers in children with autistic spectrum disorder. J Trace Elem Med Biol. 2018;50:622–8. https://doi.org/10.1016/j.jtemb.2018.04.031.
Article
CAS
PubMed
Google Scholar
Costa-Mallen P, Gatenby C, Friend S, Maravilla KR, Hu SC, Cain KC, et al. Brain iron concentrations in regions of interest and relation with serum iron levels in Parkinson disease. J Neurol Sci. 2017;378:38–44. https://doi.org/10.1016/j.jns.2017.04.035.
Article
CAS
PubMed
PubMed Central
Google Scholar
Degremont A, Jain R, Philippou E, Latunde-Dada GO. Brain iron concentrations in the pathophysiology of children with attention deficit/hyperactivity disorder: a systematic review. Nutr Rev. 2021;79(5):615–26. https://doi.org/10.1093/nutrit/nuaa065.
Article
PubMed
Google Scholar
Gao L, Jiang Z, Cai Z, Cai M, Zhang Q, Ma Y, et al. Brain iron deposition analysis using susceptibility weighted imaging and its association with body iron level in patients with mild cognitive impairment. Mol Med Rep. 2017;16(6):8209–15. https://doi.org/10.3892/mmr.2017.7668.
Article
CAS
PubMed
PubMed Central
Google Scholar
Genoud S, Senior AM, Hare DJ, Double KL. Meta-analysis of copper and iron in Parkinson’s disease brain and biofluids. Mov Disord. 2020;35(4):662–71. https://doi.org/10.1002/mds.27947.
Article
CAS
PubMed
Google Scholar
Nischwitz V, Berthele A, Michalke B. Speciation analysis of selected metals and determination of their total contents in paired serum and cerebrospinal fluid samples: an approach to investigate the permeability of the human blood-cerebrospinal fluid-barrier. Anal Chim Acta. 2008;627(2):258–69. https://doi.org/10.1016/j.aca.2008.08.018.
Article
CAS
PubMed
Google Scholar
Ghio AJ, Stoneheurner J, McGee JK, Kinsey JS. Sulfate content correlates with iron concentrations in ambient air pollution particles. Inhal Toxicol. 1999;11(4):293–307. https://doi.org/10.1080/089583799197104.
Article
CAS
PubMed
Google Scholar
Watson AY, Brain JD. The effect of SO2 on the uptake of particles by mouse bronchial epithelium. Exp Lung Res. 1980;1(1):67–87. https://doi.org/10.3109/01902148009057514.
Article
CAS
PubMed
Google Scholar
Allen JL, Liu X, Weston D, Conrad K, Oberdorster G, Cory-Slechta DA. Consequences of developmental exposure to concentrated ambient ultrafine particle air pollution combined with the adult paraquat and maneb model of the Parkinson’s disease phenotype in male mice. Neurotoxicology. 2014;41:80–8. https://doi.org/10.1016/j.neuro.2014.01.004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Allen JL, Liu X, Weston D, Prince L, Oberdorster G, Finkelstein JN, et al. Developmental exposure to concentrated ambient ultrafine particulate matter air pollution in mice results in persistent and sex-dependent behavioral neurotoxicity and glial activation. Toxicol Sci. 2014;140(1):160–78. https://doi.org/10.1093/toxsci/kfu059.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cory-Slechta DA, Sobolewski M, Marvin E, Conrad K, Merrill A, Anderson T, et al. The impact of inhaled ambient ultrafine particulate matter on developing brain: potential importance of elemental contaminants. Toxicol Pathol. 2019;47(8):976–92. https://doi.org/10.1177/0192623319878400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sobolewski M, Varma G, Adams B, Anderson DW, Schneider JS, Cory-Slechta DA. Developmental lead exposure and prenatal stress result in sex-specific reprogramming of adult stress physiology and epigenetic profiles in brain. Toxicol Sci. 2018;163(2):478–89. https://doi.org/10.1093/toxsci/kfy046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cory-Slechta DA, Sobolewski M, Varma G, Schneider JS. Developmental lead and/or prenatal stress exposures followed by different types of behavioral experience result in the divergence of brain epigenetic profiles in a sex, brain region, and time-dependent manner: implications for neurotoxicology. Curr Opin Toxicol. 2017;6:60–70. https://doi.org/10.1016/j.cotox.2017.09.004.
Article
PubMed
PubMed Central
Google Scholar
Allen JL, Oberdorster G, Morris-Schaffer K, Wong C, Klocke C, Sobolewski M, et al. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology. 2017;59:140–54. https://doi.org/10.1016/j.neuro.2015.12.014.
Article
CAS
PubMed
Google Scholar
Klocke C, Allen JL, Sobolewski M, Mayer-Proschel M, Blum JL, Lauterstein D, et al. Neuropathological consequences of gestational exposure to concentrated ambient fine and ultrafine particles in the mouse. Soc Toxicol. 2017;156(2):492–508.
CAS
Google Scholar
Morris-Schaffer K, Sobolewski M, Allen JL, Marvin E, Yee M, Arora M, et al. Effect of neonatal hyperoxia followed by concentrated ambient ultrafine particle exposure on cumulative learning in C57Bl/6J mice. Neurotoxicology. 2018;67:234–44. https://doi.org/10.1016/j.neuro.2018.06.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris-Schaffer K, Sobolewski M, Welle K, Conrad K, Yee M, O’Reilly MA, et al. Cognitive flexibility deficits in male mice exposed to neonatal hyperoxia followed by concentrated ambient ultrafine particles. Neurotoxicol Teratol. 2018;70:51–9.
Article
CAS
Google Scholar
Sobolewski M, Anderson T, Conrad K, Marvin E, Klocke C, Morris-Schaffer K, et al. Developmental exposures to ultrafine particle air pollution reduces early testosterone levels and adult male social novelty preference: risk for children’s sex-biased neurobehavioral disorders. Neurotoxicology. 2018;68:203–11.
Article
CAS
Google Scholar
Oberdorster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, et al. Acute pulmonary effects of ultrafine particles in rats and mice. In Health effects institute research report, vol. 96. Cambridge MA: Health Effects Institute; 2000.
Wong JM, Malec PA, Mabrouk OS, Ro J, Dus M, Kennedy RT. Benzoyl chloride derivatization with liquid chromatography-mass spectrometry for targeted metabolomics of neurochemicals in biological samples. J Chromatogr A. 2016;1446:78–90. https://doi.org/10.1016/j.chroma.2016.04.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris G, Berk M, Carvalho AF, Maes M, Walker AJ, Puri BK. Why should neuroscientists worry about iron? the emerging role of ferroptosis in the pathophysiology of neuroprogressive diseases. Behav Brain Res. 2018;341:154–75. https://doi.org/10.1016/j.bbr.2017.12.036.
Article
CAS
PubMed
Google Scholar
Reichert CO, de Freitas FA, Sampaio-Silva J, Rokita-Rosa L, Barros PL, Levy D, et al. Ferroptosis mechanisms involved in neurodegenerative diseases. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21228765.
Article
PubMed
PubMed Central
Google Scholar
Moos T, Rosengren Nielsen T, Skjorringe T, Morgan EH. Iron trafficking inside the brain. J Neurochem. 2007;103(5):1730–40. https://doi.org/10.1111/j.1471-4159.2007.04976.x.
Article
CAS
PubMed
Google Scholar
Dallman PR, Spirito RA. Brain iron in the rat: extremely slow turnover in normal rats may explain long-lasting effects of early iron deficiency. J Nutr. 1977;107(6):1075–81. https://doi.org/10.1093/jn/107.6.1075.
Article
CAS
PubMed
Google Scholar
Fang T, Guo H, Zeng L, Verma V, Nenes A, Weber RJ. highly acidic ambient particles, soluble metals, and oxidative potential: a link between sulfate and aerosol toxicity. Environ Sci Technol. 2017;51(5):2611–20. https://doi.org/10.1021/acs.est.6b06151.
Article
CAS
PubMed
Google Scholar
Oakes M, Ingall ED, Lai B, Shafer MM, Hays MD, Liu ZG, et al. Iron solubility related to particle sulfur content in source emission and ambient fine particles. Environ Sci Technol. 2012;46(12):6637–44. https://doi.org/10.1021/es300701c.
Article
CAS
PubMed
Google Scholar
Bartzokis G, Tishler TA, Lu PH, Villablanca P, Altshuler LL, Carter M, et al. Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol Aging. 2007;28(3):414–23. https://doi.org/10.1016/j.neurobiolaging.2006.02.005.
Article
CAS
PubMed
Google Scholar
Persson N, Wu J, Zhang Q, Liu T, Shen J, Bao R, et al. Age and sex related differences in subcortical brain iron concentrations among healthy adults. Neuroimage. 2015;122:385–98. https://doi.org/10.1016/j.neuroimage.2015.07.050.
Article
PubMed
Google Scholar
Domellof M, Lonnerdal B, Dewey KG, Cohen RJ, Rivera LL, Hernell O. Sex differences in iron status during infancy. Pediatrics. 2002;110(3):545–52.
Article
Google Scholar
Lopes de Andrade V, Marreilha Dos Santos AP, Aschner M. Neurotoxicity of metal mixtures. Adv Neurotoxicol. 2021;5:329–64. https://doi.org/10.1016/bs.ant.2020.12.003.
Article
PubMed
PubMed Central
Google Scholar
Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010;345(1–2):91–104. https://doi.org/10.1007/s11010-010-0563-x.
Article
CAS
PubMed
Google Scholar
Laakso A, Vilkman H, Bergman J, Haaparanta M, Solin O, Syvälahti E, et al. Sex differences in striatal presynaptic dopamine synthesis capacity in healthy subjects. Biol Psychiatry. 2002;52(7):759–63. https://doi.org/10.1016/s0006-3223(02)01369-0.
Article
CAS
PubMed
Google Scholar
Becker JB. Gender differences in dopaminergic function in striatum and nucleus accumbens. Pharmacol Biochem Behav. 1999;64(4):803–12. https://doi.org/10.1016/s0091-3057(99)00168-9.
Article
CAS
PubMed
Google Scholar
Walker QD, Rooney MB, Wightman RM, Kuhn CM. Dopamine release and uptake are greater in female than male rat striatum as measured by fast cyclic voltammetry. Neuroscience. 2000;95(4):1061–70. https://doi.org/10.1016/s0306-4522(99)00500-x.
Article
CAS
PubMed
Google Scholar
Andersen SL, Rutstein M, Benzo JM, Hostetter JC, Teicher MH. Sex differences in dopamine receptor overproduction and elimination. NeuroReport. 1997;8(6):1495–8. https://doi.org/10.1097/00001756-199704140-00034.
Article
CAS
PubMed
Google Scholar
Hare DJ, Double KL. Iron and dopamine: a toxic couple. Brain. 2016;139(4):1026–35. https://doi.org/10.1093/brain/aww022.
Article
PubMed
Google Scholar
Dichtl S, Haschka D, Nairz M, Seifert M, Volani C, Lutz O, et al. Dopamine promotes cellular iron accumulation and oxidative stress responses in macrophages. Biochem Pharmacol. 2018;148:193–201. https://doi.org/10.1016/j.bcp.2017.12.001.
Article
CAS
PubMed
Google Scholar
Badillo-Ramírez I, Saniger JM, Rivas-Arancibia S. 5-S-cysteinyl-dopamine, a neurotoxic endogenous metabolite of dopamine: Implications for Parkinson’s disease. Neurochem Int. 2019;129:104514. https://doi.org/10.1016/j.neuint.2019.104514.
Article
CAS
PubMed
Google Scholar
Davenport EC, Szulc BR, Drew J, Taylor J, Morgan T, Higgs NF, et al. Autism and schizophrenia-associated CYFIP1 regulates the balance of synaptic excitation and inhibition. Cell Rep. 2019;26(8):2037-51.e6. https://doi.org/10.1016/j.celrep.2019.01.092.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davis AM, Ward SC, Selmanoff M, Herbison AE, McCarthy MM. Developmental sex differences in amino acid neurotransmitter levels in hypothalamic and limbic areas of rat brain. Neuroscience. 1999;90(4):1471–82. https://doi.org/10.1016/S0306-4522(98)00511-9.
Article
CAS
PubMed
Google Scholar
Al-Suwailem E, Abdi S, El-Ansary A. Sex differences in the glutamate signaling pathway in juvenile rats. J Neurosci Res. 2018;96(3):459–66. https://doi.org/10.1002/jnr.24144.
Article
CAS
PubMed
Google Scholar
Chang L, Jiang CS, Ernst T. Effects of age and sex on brain glutamate and other metabolites. Magn Reson Imaging. 2009;27(1):142–5. https://doi.org/10.1016/j.mri.2008.06.002.
Article
CAS
PubMed
Google Scholar
Maher P. Potentiation of glutathione loss and nerve cell death by the transition metals iron and copper: implications for age-related neurodegenerative diseases. Free Radic Biol Med. 2018;115:92–104. https://doi.org/10.1016/j.freeradbiomed.2017.11.015.
Article
CAS
PubMed
Google Scholar
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72. https://doi.org/10.1016/j.cell.2012.03.042.
Article
CAS
PubMed
PubMed Central
Google Scholar
Banerjee R, Vitvitsky V, Garg SK. The undertow of sulfur metabolism on glutamatergic neurotransmission. Trends Biochem Sci. 2008;33(9):413–9. https://doi.org/10.1016/j.tibs.2008.06.006.
Article
CAS
PubMed
Google Scholar
Vitvitsky V, Thomas M, Ghorpade A, Gendelman HE, Banerjee R. A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem. 2006;281(47):35785–93. https://doi.org/10.1074/jbc.M602799200.
Article
CAS
PubMed
Google Scholar
Burger A, Kotze MJ, Stein DJ, Janse van Rensburg S, Howells FM. The relationship between measurement of in vivo brain glutamate and markers of iron metabolism A proton magnetic resonance spectroscopy study in healthy adults. Eur J Neurosci. 2020;51(4):984–90. https://doi.org/10.1111/ejn.14583.
Article
PubMed
Google Scholar
Wood JD, Kurylo E, Geddes JW. Methionine-induced changes in glutamate, aspartate, glutamine, and gamma-aminobutyrate levels in brain tissue. J Neurochem. 1985;45(3):777–83. https://doi.org/10.1111/j.1471-4159.1985.tb04060.x.
Article
CAS
PubMed
Google Scholar
Machado FR, Ferreira AG, da Cunha AA, Tagliari B, Mussulini BH, Wofchuk S, et al. Homocysteine alters glutamate uptake and Na+, K+-ATPase activity and oxidative status in rats hippocampus: protection by vitamin C. Metab Brain Dis. 2011;26(1):61–7. https://doi.org/10.1007/s11011-011-9232-3.
Article
CAS
PubMed
Google Scholar
Abushik PA, Niittykoski M, Giniatullina R, Shakirzyanova A, Bart G, Fayuk D, et al. The role of NMDA and mGluR5 receptors in calcium mobilization and neurotoxicity of homocysteine in trigeminal and cortical neurons and glial cells. J Neurochem. 2014;129(2):264–74. https://doi.org/10.1111/jnc.12615.
Article
CAS
PubMed
Google Scholar
Tisato V, Silva JA, Longo G, Gallo I, Singh AV, Milani D, et al. Genetics and epigenetics of one-carbon metabolism pathway in autism spectrum disorder: a sex-specific brain epigenome? Genes (Basel). 2021. https://doi.org/10.3390/genes12050782.
Article
Google Scholar
Campesi I, Carru C, Zinellu A, Occhioni S, Sanna M, Palermo M, et al. Regular cigarette smoking influences the transsulfuration pathway, endothelial function, and inflammation biomarkers in a sex-gender specific manner in healthy young humans. Am J Transl Res. 2013;5(5):497–509.
CAS
PubMed
PubMed Central
Google Scholar
Fukagawa NK, Martin JM, Wurthmann A, Prue AH, Ebenstein D, O’Rourke B. Sex-related differences in methionine metabolism and plasma homocysteine concentrations. Am J Clin Nutr. 2000;72(1):22–9. https://doi.org/10.1093/ajcn/72.1.22.
Article
CAS
PubMed
Google Scholar
Vitvitsky V, Prudova A, Stabler S, Dayal S, Lentz SR, Banerjee R. Testosterone regulation of renal cystathionine beta-synthase: implications for sex-dependent differences in plasma homocysteine levels. Am J Physiol Renal Physiol. 2007;293(2):F594-600. https://doi.org/10.1152/ajprenal.00171.2007.
Article
CAS
PubMed
Google Scholar
Klocke C, Allen JL, Sobolewski M, Blum JL, Zelikoff JT, Cory-Slechta DA. Exposure to fine and ultrafine particulate matter during gestation alters postnatal oligodendrocyte maturation, proliferation capacity, and myelination. Neurotoxicology. 2017. https://doi.org/10.1016/j.neuro.2017.10.004.
Article
PubMed
PubMed Central
Google Scholar