Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R: Applications and implications of nanotechnologies for the food sector. Food Addit Contam A 2008, 25: 241–258. 10.1080/02652030701744538
Article
CAS
Google Scholar
US-EPA: Nanomaterial case study: nanoscale titanium dioxide in water treatment and in topical sunscreen. In Book Nanomaterial case study: nanoscale titanium dioxide in water treatment and in topical sunscreen. Research Triangle Park, NC: City: National Center for Environmental Assessment-RTP division, Office of Research and Development, U.S. Environmental Protection Agency; 2010:222.
Google Scholar
Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N: Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 2012, 46: 2242–2250. 10.1021/es204168d
Article
PubMed Central
CAS
PubMed
Google Scholar
Chen XX, Cheng B, Yang YX, Cao A, Liu JH, Du LJ, Liu Y, Zhao Y, Wang H: Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum. Small 2012, 2012: 201201506.
Google Scholar
Bergin IL, Witzmann FA: Nanoparticle toxicity by the gastrointestinal route: evidence and knowledge gaps. Int J Biomed Nanosci Nanotechnol 2013, 3: 054515.
Article
Google Scholar
Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, Jia G, Gao Y, Li B, Sun J, Li Y, Jiao F, Zhao Y, Chai Z: Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 2007,168(2):176–185. 10.1016/j.toxlet.2006.12.001
Article
CAS
PubMed
Google Scholar
Jani PU, McCarthy DE, Florence AT: Titanium dioxide (rutile particle uptake from the rat GI tract and translocation to systemic organs after oral-administration. Int J Pharma 1994, 105: 157–168. 10.1016/0378-5173(94)90461-8
Article
CAS
Google Scholar
Wang Y, Chen Z, Ba T, Pu J, Chen T, Song Y, Gu Y, Qian Q, Xu Y, Xiang K, Wang H, Jia G: Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small 2013,9(9–10):1742–1752. 10.1002/smll.201201185
Article
CAS
PubMed
Google Scholar
Cui Y, Liu H, Zhou M, Duan Y, Li N, Gong X, Hu R, Hong M, Hong F: Signaling pathway of inflammatory responses in the mouse liver caused by TiO2 nanoparticles. J Biomed Mater Res A 2011, 96: 221–229.
Article
PubMed
Google Scholar
Duan Y, Liu J, Ma L, Li N, Liu H, Wang J, Zheng L, Liu C, Wang X, Zhao X, Yan J, Wang S, Wang H, Zhang X, Hong F: Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 2010,31(5):894–899. 10.1016/j.biomaterials.2009.10.003
Article
CAS
PubMed
Google Scholar
Gui S, Zhang Z, Zheng L, Cui Y, Liu X, Li N, Sang X, Sun Q, Gao G, Cheng Z, Wang L, Tang M, Hong F: Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. J Hazard Mater 2011, 195: 365–370.
Article
CAS
PubMed
Google Scholar
Zhao X, Ze Y, Gao G, Sang X, Li B, Gui S, Sheng L, Sun Q, Cheng J, Cheng Z, Hu R, Wang L, Hong F: Nanosized TiO2-induced reproductive system dysfunction and its mechanism in female mice. PLoS One 2013,8(4):2.
CAS
Google Scholar
Cho WS, Kang BC, Lee JK, Jeong J, Che JH, Seok SH: Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 2013, 10: 1743–8977.
Google Scholar
Hilgendorf C, Spahn-Langguth H, Regardh CG, Lipka E, Amidon GL, Langguth P: Caco-2 versus Caco-2/HT29-MTX co-cultured cell lines: permeabilities via diffusion, inside- and outside-directed carrier-mediated transport. J Pharma Sci 2000, 89: 63–75. 10.1002/(SICI)1520-6017(200001)89:1<63::AID-JPS7>3.0.CO;2-6
Article
CAS
Google Scholar
Lievin-Le Moal V, Servin AL: The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin Microbiol Rev 2006, 19: 315–337. 10.1128/CMR.19.2.315-337.2006
Article
PubMed Central
CAS
PubMed
Google Scholar
Hillery AM, Jani PU, Florence AT: Comparative, quantitative study of lymphoid and non-lymphoid uptake of 60 nm polystyrene particles. J Drug Target 1994, 2: 151–156. 10.3109/10611869409015904
Article
CAS
PubMed
Google Scholar
Jani P, Halbert GW, Langridge J, Florence AT: The uptake and translocation of latex nanospheres and microspheres after oral administration to rats. J Pharm Pharmacol 1989, 41: 809–812. 10.1111/j.2042-7158.1989.tb06377.x
Article
CAS
PubMed
Google Scholar
Jani P, Halbert GW, Langridge J, Florence AT: Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 1990, 42: 821–826. 10.1111/j.2042-7158.1990.tb07033.x
Article
CAS
PubMed
Google Scholar
Jenkins PG, Howard KA, Blackhall NW, Thomas NW, Davis SS, Ohagan DT: Microparticulate absorption from the rat intestine. J Control Release 1994, 29: 339–350. 10.1016/0168-3659(94)90079-5
Article
CAS
Google Scholar
Powell JJ, Faria N, Thomas-McKay E, Pele LC: Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 2010, 34: 21.
Article
Google Scholar
Hansen GH, Rasmussen K, Niels-Christiansen LL, Danielsen EM: Endocytic trafficking from the small intestinal brush border probed with FM dye. Am J Physiol Gastrointest Liver Physiol 2009, 297: 13.
Article
Google Scholar
Gerloff K, Albrecht C, Boots AW, Forster I, Schins RP: Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology 2009, 3: 355–364. 10.3109/17435390903276933
Article
CAS
Google Scholar
Gerloff K, Fenoglio I, Carella E, Kolling J, Albrecht C, Boots AW, Forster I, Schins RP: Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells. Chem Res Toxicol 2012, 25: 646–655. 10.1021/tx200334k
Article
CAS
PubMed
Google Scholar
Fisichella M, Berenguer F, Steinmetz G, Auffan M, Rose J, Prat O: Intestinal toxicity evaluation of TiO2 degraded surface-treated nanoparticles: a combined physico-chemical and toxicogenomics approach in caco-2 cells. Part Fibre Toxicol 2012, 9: 1743–8977.
Google Scholar
Koeneman BA, Zhang Y, Westerhoff P, Chen Y, Crittenden JC, Capco DG: Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol Toxicol 2009, 26: 225–238.
Article
PubMed
Google Scholar
Des Rieux A, Fievez V, Theate I, Mast J, Preat V, Schneider YJ: An improved in vitro model of human intestinal follicle-associated epithelium to study nanoparticle transport by M cells. Eur J Pharm Sci 2007, 30: 380–391. 10.1016/j.ejps.2006.12.006
Article
CAS
PubMed
Google Scholar
Des Rieux A, Ragnarsson EG, Gullberg E, Preat V, Schneider YJ, Artursson P: Transport of nanoparticles across an in vitro model of the human intestinal follicle associated epithelium. Eur J Pharm Sci 2005, 25: 455–465. 10.1016/j.ejps.2005.04.015
Article
CAS
PubMed
Google Scholar
Gullberg E, Keita AV, Salim SY, Andersson M, Caldwell KD, Soderholm JD, Artursson P: Identification of cell adhesion molecules in the human follicle-associated epithelium that improve nanoparticle uptake into the Peyer’s patches. J Pharmacol Exp Ther 2006, 319: 632–639. 10.1124/jpet.106.107847
Article
CAS
PubMed
Google Scholar
Bouwmeester H, Poortman J, Peters RJ, Wijma E, Kramer E, Makama S, Puspitaninganindita K, Marvin HJP, Peijnenburg AACM, Hendriksen PJM: Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 2011, 5: 4091–4103. 10.1021/nn2007145
Article
CAS
PubMed
Google Scholar
Mahler GJ, Esch MB, Tako E, Southard TL, Archer SD, Glahn RP, Shuler ML: Oral exposure to polystyrene nanoparticles affects iron absorption. Nat Nanotechnol 2012, 7: 264-U1500. 10.1038/nnano.2012.3
Article
CAS
PubMed
Google Scholar
Alvarez-Hernandez X, Nichols GM, Glass J: Caco-2 cell line: a system for studying intestinal iron transport across epithelial cell monolayers. Biochim Biophys Acta 1991, 18: 205–208.
Article
Google Scholar
Lesuffleur T, Barbat A, Dussaulx E, Zweibaum A: Growth adaptation to methotrexate of HT-29 human colon carcinoma cells is associated with their ability to differentiate into columnar absorptive and mucus-secreting cells. Cancer Res 1990, 50: 6334–6343.
CAS
PubMed
Google Scholar
Mahler GJ, Shuler ML, Glahn RP: Characterization of Caco-2 and HT29-MTX cocultures in an in vitro digestion/cell culture model used to predict iron bioavailability. J Nutr Biochem 2009, 20: 494–502. 10.1016/j.jnutbio.2008.05.006
Article
CAS
PubMed
Google Scholar
Walter E, Janich S, Roessler BJ, Hilfinger JM, Amidon GL: HT29-MTX/Caco-2 cocultures as an in vitro model for the intestinal epithelium: in vitro-in vivo correlation with permeability data from rats and humans. J Pharm Sci 1996, 85: 1070–1076. 10.1021/js960110x
Article
CAS
PubMed
Google Scholar
Barreau F, Madre C, Meinzer U, Berrebi D, Dussaillant M, Merlin F, Eckmann L, Karin M, Sterkers G, Bonacorsi S, Lesuffleur T, Hugot JP: Nod2 regulates the host response towards microflora by modulating T cell function and epithelial permeability in mouse Peyer’s patches. Gut 2009,59(2):207–217.
Article
PubMed
Google Scholar
Lundqvist M, Stigler J, Cedervall T, Berggard T, Flanagan MB, Lynch I, Elia G, Dawson K: The evolution of the protein corona around nanoparticles: a test study. ACS Nano 2011, 5: 7503–7509. 10.1021/nn202458g
Article
CAS
PubMed
Google Scholar
Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 2002, 30: 9. 10.1093/nar/30.2.e9
Article
Google Scholar
Veronesi G, Brun E, Fayard B, Cotte M, Carriere M: Structural properties of rutile TiO2 nanoparticles accumulated in a model of gastrointestinal epithelium elucidated by micro-beam x-ray absorption fine structure spectroscopy. Appl Phys Lett 2012, 100: 21.
Article
Google Scholar
Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank A-M, Brisset F, Carriere M: Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 2012, 431: 197–208.
Article
CAS
PubMed
Google Scholar
Luca V, Djajanti S, Howe RF: Structural and electronic properties of sol-gel titanium oxides studied by X-ray absorption spectroscopy. J Phys Chem B 1998, 102: 10650–10657. 10.1021/jp981644k
Article
CAS
Google Scholar
Wu ZY, Zhang J, Ibrahim K, Xian DC, Li G, Tao Y, Hu TD, Bellucci S, Marcelli A, Zhang QH, Gao L, Chen ZZ: Structural determination of titanium-oxide nanoparticles by x-ray absorption spectroscopy. Appl Phys Lett 2002,80(16):2973–2975. 10.1063/1.1470699
Article
CAS
Google Scholar
Apopa PL, Qian Y, Shao R, Guo NL, Schwegler-Berry D, Pacurari M, Porter D, Shi X, Vallyathan V, Castranova V, Flynn DC: Iron oxide nanoparticles induce human microvascular endothelial cell permeability through reactive oxygen species production and microtubule remodeling. Part Fibre Toxicol 2009, 6: 1743–8977.
Article
Google Scholar
Setyawati MI, Tay CY, Chia SL, Goh SL, Fang W, Neo MJ, Chong HC, Tan SM, Loo SC, Ng KW, Xie JP, Ong CN, Tan NS, Leong DT: Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat Commun 2013, 4.
Google Scholar
Iraha A, Chinen H, Hokama A, Yonashiro T, Kinjo T, Kishimoto K, Nakamoto M, Hirata T, Kinjo N, Higa F, Tateyama M, Kinjo F, Fujita J: Fucoidan enhances intestinal barrier function by upregulating the expression of claudin-1. World J Gastroenterol 2013,19(33):5500–5507. 10.3748/wjg.v19.i33.5500
Article
PubMed Central
PubMed
Google Scholar
Shi H, Magaye R, Castranova V, Zhao J: Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol 2013, 10: 1743–8977.
Article
Google Scholar
Jugan ML, Barillet S, Simon-Deckers A, Herlin-Boime N, Sauvaigo S, Douki T, Carriere M: Titanium dioxide nanoparticles exhibit genotoxicity and impair DNA repair activity in A549 cells. Nanotoxicology 2012, 6: 501–513. 10.3109/17435390.2011.587903
Article
CAS
PubMed
Google Scholar
Conner SD, Schmid SL: Regulated portals of entry into the cell. Nature 2003, 422: 37–44. 10.1038/nature01451
Article
CAS
PubMed
Google Scholar
Iversen T-G, Skotland T, Sandvig K: Endocytosis and intracellular transport of nanoparticles: present knowledge and need for future studies. Nano Today 2011, 6: 176–185. 10.1016/j.nantod.2011.02.003
Article
CAS
Google Scholar
Stern ST, Adiseshaiah PP, Crist RM: Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol 2012, 9: 1743–8977.
Article
Google Scholar
Zhao Y, Howe JL, Yu Z, Leong DT, Chu JJ, Loo JS, Ng KW: Exposure to titanium dioxide nanoparticles induces autophagy in primary human keratinocytes. Small 2013, 9: 387–392. 10.1002/smll.201201363
Article
PubMed
Google Scholar
Nowak JS, Mehn D, Nativo P, Garcia CP, Gioria S, Ojea-Jimenez I, Gilliland D, Rossi F: Silica nanoparticle uptake induces survival mechanism in A549 cells by the activation of autophagy but not apoptosis. Toxicol Lett 2014, 224: 84–92. 10.1016/j.toxlet.2013.10.003
Article
CAS
PubMed
Google Scholar
Tay CY, Fang W, Setyawati MI, Sum CP, Xie J, Ng KW, Chen XX, Hong CHL, Leong DT: Reciprocal response of human oral epihtelial cells to internalized silica nanoparticles. Part Part Syst Charact 2013, 30: 784–793. 10.1002/ppsc.201300111
Article
CAS
Google Scholar
Lesniak A, Fenaroli F, Monopoli MP, Aberg C, Dawson KA, Salvati A: Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 2012, 6: 5845–5857. 10.1021/nn300223w
Article
CAS
PubMed
Google Scholar
Liang M, Lin IC, Whittaker MR, Minchin RF, Monteiro MJ, Toth I: Cellular uptake of densely packed polymer coatings on gold nanoparticles. ACS Nano 2010, 4: 403–413. 10.1021/nn9011237
Article
CAS
PubMed
Google Scholar
Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Aberg C: Nanoparticle adhesion to the cell membrane and its effect on nanoparticle uptake efficiency. J Am Chem Soc 2013, 135: 1438–1444. 10.1021/ja309812z
Article
CAS
PubMed
Google Scholar
Pignon B, Maskrot H, Leconte Y, Coste S, Reynaud C, Herlin-Boime N, Gervais M, Guyot Ferreol V, Pouget T, Tranchant JF: Versatility of laser pyrolysis applied to synthesis of TiO
2
nanoparticles, application to UV attenuation. Eur J Inorg Chem 2008, 6: 883–889.
Article
Google Scholar
Simon-Deckers A, Gouget B, Mayne-L’hermite M, Herlin-Boime N, Reynaud C, Carriere M: In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 2008, 253: 137–146. 10.1016/j.tox.2008.09.007
Article
CAS
PubMed
Google Scholar
Taurozzi JS, Hackley VA, Wiesner MR: Ultrasonic dispersion of nanoparticles for environmental, health and safety assessment–issues and recommendations. Nanotoxicology 2011, 5: 711–729. 10.3109/17435390.2010.528846
Article
CAS
PubMed
Google Scholar
Flank AM, Cauchon G, Lagarde P, Bac S, Janousch M, Wetter R, Dubuisson JM, Idir M, Langlois F, Moreno T, Vantelon D: LUCIA, a microfocus soft XAS beamline. Nucl Instrum Meth B 2006, 246: 269–274. 10.1016/j.nimb.2005.12.007
Article
CAS
Google Scholar
Sole VA, Papillon E, Cotte M, Walter P, Susini J: A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochi Acta A 2007, 62: 63–68. 10.1016/j.sab.2006.12.002
Article
Google Scholar
Ravel B, Newville M: ATHENA and ARTEMIS: interactive graphical data analysis using IFEFFIT. Phys Scr 2005, T115: 1007–1010.
Article
CAS
Google Scholar
Wojdyr M: Fityk: a general-purpose peak fitting program. J Appl Crystallog 2010, 43: 1126–1128. 10.1107/S0021889810030499
Article
CAS
Google Scholar
Barberet P, Incerti S, Andersson F, Delalee F, Serani L, Moretto P: Technical description of the CENBG nanobeam line. Nucl Instrum Meth B 2009, 267: 2003–2007. 10.1016/j.nimb.2009.03.077
Article
CAS
Google Scholar
Mayer M: Ion beam analysis of rough thin films. Nucl Instrum Meth B 2002, 194: 177–186. 10.1016/S0168-583X(02)00689-4
Article
CAS
Google Scholar
Maxwell JA, Teesdale WJ, Campbell JL: The guelph-pixe software package-II. Nucl Instrum Meth B 1995, 95: 407–421. 10.1016/0168-583X(94)00540-0
Article
CAS
Google Scholar
Mironova EV, Evstratova AA, Antonov SM: A fluorescence vital assay for the recognition and quantification of excitotoxic cell death by necrosis and apoptosis using confocal microscopy on neurons in culture. J Neurosci Meth 2007, 163: 1–8. 10.1016/j.jneumeth.2007.02.010
Article
Google Scholar
Jung C, Meinzer U, Montcuquet N, Thachil E, Chateau D, Thiebaut R, Roy M, Alnabhani Z, Berrebi D, Dussaillant M, Pedruzzi E, Thenet S, Cerf-Bensussan N, Hugot JP, Barreau F: Yersinia pseudotuberculosis disrupts intestinal barrier integrity through hematopoietic TLR-2 signaling. J Clin Invest 2012,122(6):2239–2251. 10.1172/JCI58147
Article
PubMed Central
CAS
PubMed
Google Scholar
Brun E, Carriere M, Mabondzo A: In vitro evidence of dysregulation of blood-brain barrier function after acute and repeated/long-term exposure to TiO(2) nanoparticles. Biomaterials 2012, 33: 886–896. 10.1016/j.biomaterials.2011.10.025
Article
CAS
PubMed
Google Scholar