Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, et al. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006;3:11.
Article
PubMed
PubMed Central
CAS
Google Scholar
George S, Ho SS, Wong ES, Tan TTY, Verma NK, Aitken RJ, et al. The multi-facets of sustainable nanotechnology–lessons from a nanosafety symposium. Nanotoxicology. 2015;9(3):404–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bakand S, Hayes A, Dechsakulthorn F. Nanoparticles: a review of particle toxicology following inhalation exposure. Inhal Toxicol. 2012;24(2):125–35.
Article
CAS
PubMed
Google Scholar
Frohlich E, Salar-Behzadi S. Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci. 2014;15(3):4795–822.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sung JC, Pulliam BL, Edwards DA. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 2007;25(12):563–70.
Article
CAS
PubMed
Google Scholar
Frampton MW. Systemic and cardiovascular effects of airway injury and inflammation: ultrafine particle exposure in humans. Environ Health Perspect. 2001;109(Suppl 4):529–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nawrot TS, Alfaro-Moreno E, Nemery B. Update in occupational and environmental respiratory disease 2007. Am J Respir Crit Care Med. 2008;177(7):696–700.
Article
CAS
PubMed
Google Scholar
Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287(9):1132–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pope CA 3rd, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D, et al. Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease. Circulation. 2004;109(1):71–7.
Article
PubMed
Google Scholar
Ruckerl R, Schneider A, Breitner S, Cyrys J, Peters A. Health effects of particulate air pollution: a review of epidemiological evidence. Inhal Toxicol. 2011;23(10):555–92.
Article
PubMed
CAS
Google Scholar
Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma. Eur Respir J. 2009;34(3):559–67.
Article
CAS
PubMed
Google Scholar
Sager TM, Kommineni C, Castranova V. Pulmonary response to intratracheal instillation of ultrafine versus fine titanium dioxide: role of particle surface area. Part Fibre Toxicol. 2008;5(1):17.
Article
PubMed
PubMed Central
CAS
Google Scholar
Enright EF, Gahan CG, Joyce SA, Griffin BT. The impact of the gut microbiota on drug metabolism and clinical outcome. Yale J Biol Med. 2016;89(3):375–82.
CAS
PubMed
PubMed Central
Google Scholar
Chandrasekaran R, Mac Aogain M, Chalmers JD, Elborn SJ, Chotirmall SH. Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis. BMC Pulm Med. 2018;18(1):83.
Article
PubMed
PubMed Central
Google Scholar
Chotirmall SH, Burke CM. Aging and the microbiome: implications for asthma in the elderly? Expert Rev Respir Med. 2015;9(2):125–8.
Article
CAS
PubMed
Google Scholar
Chotirmall SH, Gellatly SL, Budden KF, Mac Aogain M, Shukla SD, Wood DL, et al. Microbiomes in respiratory health and disease: an Asia-Pacific perspective. Respirology. 2017;22(2):240–50.
Article
PubMed
Google Scholar
Mac Aogain M, Chandrasekaran R, Lim Yick Hou A, Teck Boon L, Liang Tan G, Hassan T, et al. Immunological Corollary of the Pulmonary Mycobiome in Bronchiectasis: The Cameb Study. Eur Respir J. 2018;52(1). https://doi.org/10.1183/13993003.00766-2018.
Article
PubMed
Google Scholar
Adar SD, Huffnagle GB, Curtis JL. The respiratory microbiome: an underappreciated player in the human response to inhaled pollutants? Ann Epidemiol. 2016;26(5):355–9.
Article
PubMed
PubMed Central
Google Scholar
A. Dowling, R. Clift, N. Grobert, D. Hutton, R. Oliver, O. O’neill, et al: Nanoscience and Nanotechnologies: Opportunities and Uncertainties. https://royalsociety.org/topics-policy/publications/2004/nanoscience-nanotechnologies/ (2004). Accessed 04 Nov 2018.
Amin M, Alazba P, Manzoor U. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials, vol. 2014; 2014.
Google Scholar
V Pokropivny V, V Skorokhod V. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science, vol. 27; 2007.
Google Scholar
Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;2:3.
Article
PubMed
PubMed Central
Google Scholar
Hutchings GJ, Edwards JK. Chapter 6 - Application of Gold Nanoparticles in Catalysis. In: Johnston RL, Wilcoxon JP, editors. Frontiers of Nanoscience, vol. 3: Elsevier; Oxford: 2012. p. 249–93.
Chapter
Google Scholar
Hasan S. A Review on Nanoparticles: Their Synthesis and Types, vol. 4; 2015.
Google Scholar
Beyene HD, Werkneh AA, Bezabh HK, Ambaye TG. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain Mater Technol. 2017;13:18–23.
CAS
Google Scholar
Abenojar EC, Wickramasinghe S, Bas-Concepcion J, Samia ACS. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog Natl Sci. 2016;26(5):440–8.
Article
CAS
Google Scholar
Dan G, Guoxin X, Jianbin L. Mechanical properties of nanoparticles: basics and applications. J Phy D. 2014;47(1):013001.
Article
CAS
Google Scholar
Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: emerging carriers for drug delivery. Saudi Pharma J. 2011;19(3):129–41.
Article
CAS
Google Scholar
Labouta HI, el -Khordagui LK, Kraus T, Schneider M. Mechanism and determinants of nanoparticle penetration through human skin. Nanoscale. 2011;3(12):4989–99.
Article
CAS
PubMed
Google Scholar
Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Controlled Rel. 2013;172(3):782–94.
Article
CAS
Google Scholar
Meola A, Rao J, Chaudhary N, Sharma M, Chang SD. Gold nanoparticles for brain tumor imaging: a systematic review. Front Neurol. 2018;9:328.
Article
PubMed
PubMed Central
Google Scholar
Thakur K, Sharma G, Singh B, Chhibber S, Katare OP. Current state of nanomedicines in the treatment of topical infectious disorders. Recent Pat Antiinfective Drug Discov. 2018. https://doi.org/10.2174/1574891X13666180529103804
Tran TT, Vidaillac C, Yu H, Yong VFL, Roizman D, Chandrasekaran R, et al. A new therapeutic avenue for bronchiectasis: dry powder inhaler of ciprofloxacin nanoplex exhibits superior ex vivo mucus permeability and antibacterial efficacy to its native ciprofloxacin counterpart. Int J Pharm. 2018;547(1–2):368–76.
Article
CAS
PubMed
Google Scholar
Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392–400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray MA, Chotirmall SH. The impact of Immunosenescence on pulmonary disease. Mediat Inflamm. 2015;2015:692546.
Article
CAS
Google Scholar
Poh TY, Mac Aogain M, Chan AK, Yii AC, Yong VF, Tiew PY, et al. Understanding COPD-overlap syndromes. Expert Rev Respir Med. 2017;11(4):285–98.
Article
CAS
PubMed
Google Scholar
Chalmers JD, Chotirmall SH. Bronchiectasis: new therapies and new perspectives. Lancet Respir Med. 2018.
Yee AL, Gilbert JA. MICROBIOME. Is triclosan harming your microbiome? Science. 2016;353(6297):348–9.
Article
CAS
PubMed
Google Scholar
Ribado JV, Ley C, Haggerty TD, Tkachenko E, Bhatt AS, Parsonnet J. Household triclosan and triclocarban effects on the infant and maternal microbiome. EMBO Mol Med. 2017;9(12):1732–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The microbiome and the respiratory tract. Annu Rev Physiol. 2016;78:481–504.
Article
CAS
PubMed
Google Scholar
Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR, Huffnagle GB, et al. Bacterial topography of the healthy human lower respiratory tract. MBio. 2017;8:1.
Article
Google Scholar
O'Dwyer DN, Dickson RP, Moore BB. The lung microbiome, immunity, and the pathogenesis of chronic lung disease. J Immunol. 2016;196(12):4839–47.
Article
CAS
PubMed
Google Scholar
Marri PR, Stern DA, Wright AL, Billheimer D, Martinez FD. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol. 2013;131(2):346–52 e1–3.
Article
CAS
PubMed
Google Scholar
Sze MA, Dimitriu PA, Suzuki M, McDonough JE, Campbell JD, Brothers JF, et al. Host response to the lung microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015;192(4):438–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mac Aogain M, Tiew PY, Lim AYH, Low TB, Tan GL, Hassan T, et al. Distinct ‘Immuno-Allertypes’ of Disease and High Frequencies of Sensitisation in Non-Cystic-Fibrosis Bronchiectasis. Am J Respir Crit Care Med. 2018. https://doi.org/10.1164/rccm.201807-1355OC.
Lax S, Sangwan N, Smith D, Larsen P, Handley KM, Richardson M, et al. Bacterial colonization and succession in a newly opened hospital. Sci Transl Med. 2017;9:391.
Article
Google Scholar
Gibbons SM, Schwartz T, Fouquier J, Mitchell M, Sangwan N, Gilbert JA, et al. Ecological succession and viability of human-associated microbiota on restroom surfaces. Appl Environ Microbiol. 2015;81(2):765–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Acerbi E, Chenard C, Miller D, Gaultier NE, Heinle CE, Chang VW, et al. Ecological succession of the microbial communities of an air-conditioning cooling coil in the tropics. Indoor Air. 2017;27(2):345–53.
Article
CAS
PubMed
Google Scholar
Jones W, Gibb A, Goodier C, Bust P. Managing the unknown – addressing the potential health risks of nanomaterials in the built environment. Constr Manag Econ. 2017;35(3):122–36.
Article
Google Scholar
Prussin AJ 2nd, Marr LC. Sources of airborne microorganisms in the built environment. Microbiome. 2015;3:78.
Article
PubMed
PubMed Central
Google Scholar
Stephens B. What Have We Learned about the Microbiomes of Indoor Environments? mSystems. 2016;1:4.
Article
Google Scholar
Kelley ST, Gilbert JA. Studying the microbiology of the indoor environment. Genome Biol. 2013;14(2):202.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tringe SG, Rubin EM. Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet. 2005;6(11):805–14.
Article
CAS
PubMed
Google Scholar
Dunn RR, Fierer N, Henley JB, Leff JW, Menninger HL. Home Life: Factors Structuring the Bacterial Diversity Found within and between Homes. PLOS ONE. 2013;8(5):e64133.
Article
PubMed
PubMed Central
Google Scholar
Hewitt KM, Gerba CP, Maxwell SL, Kelley ST. Office Space Bacterial Abundance and Diversity in Three Metropolitan Areas. PLOS ONE. 2012;7(5):e37849.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kembel SW, Jones E, Kline J, Northcutt D, Stenson J, Womack AM, et al. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 2012;6(8):1469–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science. 2014;345(6200):1048–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rintala H, Pitkäranta M, Toivola M, Paulin L, Nevalainen A. Diversity and seasonal dynamics of bacterial community in indoor environment. BMC Microbiology. 2008;8(1):56.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tringe SG, Zhang T, Liu X, Yu Y, Lee WH, Yap J, et al. The Airborne Metagenome in an Indoor Urban Environment. PLOS ONE. 2008;3(4):e1862.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dai D, Prussin AJ, Marr LC, Vikesland PJ, Edwards MA, Pruden A. Factors shaping the human Exposome in the built environment: opportunities for engineering control. Environ Sci Technol. 2017;51(14):7759–74.
Article
CAS
PubMed
Google Scholar
Grice EA, Segre JA. The skin microbiome. Nat Rev Microbiol. 2011;9(4):244–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ege MJ, Mayer M, Normand AC, Genuneit J, Cookson WO, Braun-Fahrlander C, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011;364(8):701–9.
Article
CAS
PubMed
Google Scholar
Fujimura KE, Lynch SV. Microbiota in allergy and asthma and the emerging relationship with the gut microbiome. Cell Host Microbe. 2015;17(5):592–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ashbolt NJ. Environmental (Saprozoic) Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management. Pathogens. 2015;4(2):390–405.
Article
PubMed
PubMed Central
Google Scholar
Falkinham JO 3rd, Hilborn ED, Arduino MJ, Pruden A, Edwards MA. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environ Health Perspect. 2015;123(8):749–58.
CAS
PubMed
PubMed Central
Google Scholar
Falkinham JO, Pruden A, Edwards M. Opportunistic Premise Plumbing Pathogens: Increasingly Important Pathogens in Drinking Water. Pathogens. 2015;4(2):373–86.
Article
PubMed
PubMed Central
Google Scholar
Roser DJ, van den Akker B, Boase S, Haas CN, Ashbolt NJ, Rice SA. Pseudomonas aeruginosa dose response and bathing water infection. Epidemiol Infect. 2014;142(3):449–62.
Article
CAS
PubMed
Google Scholar
Wang H, Edwards MA, Falkinham JO, Pruden A. Probiotic approach to pathogen control in premise plumbing systems? A review. Environ Sci Technol. 2013;47(18):10117–28.
Article
CAS
PubMed
Google Scholar
Lee J, Lee CS, Hugunin KM, Maute CJ, Dysko RC. Bacteria from drinking water supply and their fate in gastrointestinal tracts of germ-free mice: a phylogenetic comparison study. Water Res. 2010;44(17):5050–8.
Article
CAS
PubMed
Google Scholar
Boverhof DR, David RM. Nanomaterial characterization: considerations and needs for hazard assessment and safety evaluation. Anal Bioanal Chem. 2010;396(3):953–61.
Article
CAS
PubMed
Google Scholar
Abbott Chalew TE, Ajmani GS, Huang H, Schwab KJ. Evaluating nanoparticle breakthrough during drinking water treatment. Environ Health Perspect. 2013;121(10):1161–6.
Article
CAS
PubMed
Google Scholar
Tiede K, Hanssen SF, Westerhoff P, Fern GJ, Hankin SM, Aitken RJ, et al. How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology. 2016;10(1):102–10.
CAS
PubMed
Google Scholar
Jacobson KH, Gunsolus IL, Kuech TR, Troiano JM, Melby ES, Lohse SE, et al. Lipopolysaccharide density and structure govern the extent and distance of nanoparticle interaction with actual and model bacterial outer membranes. Environ Sci Technol. 2015;49(17):10642–50.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marambio-Jones C, Hoek EMV. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res. 2010;12(5):1531–51.
Article
CAS
Google Scholar
Fröhlich E, Fröhlich E. Cytotoxicity of Nanoparticles Contained in Food on Intestinal Cells and the Gut Microbiota. Int J Mol Sci. 2016;17(4):509.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu L, Yang J, Xie J, Luo Z, Jiang J, Yang YY, et al. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes. Nanoscale. 2013;5(9):3834–40.
Article
CAS
PubMed
Google Scholar
Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R, et al. Sharper and faster “Nano darts” kill more Bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano. 2009;3(12):3891–902.
Article
CAS
PubMed
Google Scholar
Lu HD, Yang SS, Wilson BK, McManus SA, Chen CVH-H, Prud’homme RK. Nanoparticle targeting of gram-positive and gram-negative bacteria for magnetic-based separations of bacterial pathogens. Appl Nanosci. 2017;7(3):83–93.
Article
CAS
Google Scholar
Feng ZV, Gunsolus IL, Qiu TA, Hurley KR, Nyberg LH, Frew H, et al. Impacts of gold nanoparticle charge and ligand type on surface binding and toxicity to gram-negative and gram-positive bacteria. Chem Sci. 2015;6(9):5186–96.
Article
CAS
PubMed
PubMed Central
Google Scholar
El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM. Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol. 2011;45(1):283–7.
Article
CAS
PubMed
Google Scholar
Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial silver nanomaterials. Coord Chem Rev. 2018;357:1–17.
Article
CAS
Google Scholar
Quadros ME, Marr LC. Environmental and human health risks of aerosolized silver nanoparticles. J Air Waste Manag Assoc. 2010;60(7):770–81.
Article
CAS
PubMed
Google Scholar
Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, O’Shaughnessy PT, Grassian VH, et al. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol. 2011;8:5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silva RM, Anderson DS, Peake J, Edwards PC, Patchin ES, Guo T, et al. Aerosolized silver nanoparticles in the rat lung and pulmonary responses over time. Toxicol Pathol. 2016;44(5):673–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Marambio-Jones C, Hoek E. A Review of the Antibacterial Effects of Silver Nanomaterials and Potential Implications for Human Health and the Environment, vol. 12; 2010.
Google Scholar
Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 2008;4(3):707–16.
Article
CAS
PubMed
Google Scholar
Suresh AK, Pelletier DA, Doktycz MJ. Relating nanomaterial properties and microbial toxicity. Nanoscale. 2013;5(2):463–74.
Article
CAS
PubMed
Google Scholar
Suresh AK, Pelletier DA, Wang W, Moon J-W, Gu B, Mortensen NP, et al. Silver Nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive Bacteria. Environ Sci Technol. 2010;44(13):5210–5.
Article
CAS
PubMed
Google Scholar
Yoon KY, Hoon Byeon J, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007;373(2–3):572–5.
Article
CAS
PubMed
Google Scholar
Buchman JT, Rahnamoun A, Landy KM, Zhang X, Vartanian AM, Jacob LM, et al. Using an environmentally-relevant panel of gram-negative bacteria to assess the toxicity of polyallylamine hydrochloride-wrapped gold nanoparticles. Environ Sci-Nano. 2018;5(2):279–88.
Article
CAS
PubMed
Google Scholar
Navarre WW, Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev. 1999;63(1):174–229.
CAS
PubMed
PubMed Central
Google Scholar
Fu LM, Fu-Liu CS. Is Mycobacterium tuberculosis a closer relative to gram-positive or gram-negative bacterial pathogens? Tuberculosis (Edinb). 2002;82(2–3):85–90.
Article
CAS
Google Scholar
Vatanen T, Kostic AD, d'Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in microbiome LPS immunogenicity contributes to autoimmunity in humans. Cell. 2016;165(4):842–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch M, Walsh TA, Marszalowska I, Webb AE, Mac Aogain M, Rogers TR, et al. Surface layer proteins from virulent Clostridium difficile ribotypes exhibit signatures of positive selection with consequences for innate immune response. BMC Evol Biol. 2017;17(1):90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Baysse C, Cullinane M, Denervaud V, Burrowes E, Dow JM, Morrissey JP, et al. Modulation of quorum sensing in Pseudomonas aeruginosa through alteration of membrane properties. Microbiol. 2005;151(Pt 8):2529–42.
Article
CAS
Google Scholar
Jiang W, Yang K, Vachet RW, Xing B. Interaction between oxide nanoparticles and biomolecules of the bacterial cell envelope as examined by infrared spectroscopy. Langmuir. 2010;26(23):18071–7.
Article
CAS
PubMed
Google Scholar
Jucker BA, Harms H, Hug SJ, Zehnder AJB. Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds. Colloids Surf B: Biointerfaces. 1997;9(6):331–43.
Article
CAS
Google Scholar
Kettiger H, Québatte G, Perrone B, Huwyler J. Interactions between silica nanoparticles and phospholipid membranes. Biochim Biophys Acta Biomembr. 2016;1858(9):2163–70.
Article
CAS
Google Scholar
Zucker I, Werber JR, Fishman ZS, Hashmi SM, Gabinet UR, Lu X, et al. Loss of phospholipid membrane integrity induced by two-dimensional nanomaterials. Environ Sci Technol Lett. 2017;4(10):404–9.
Article
CAS
Google Scholar
Pham VTH, Truong VK, Quinn MDJ, Notley SM, Guo Y, Baulin VA, et al. Graphene induces formation of pores that kill spherical and rod-shaped Bacteria. ACS Nano. 2015;9(8):8458–67.
Article
CAS
PubMed
Google Scholar
Tu Y, Lv M, Xiu P, Huynh T, Zhang M, Castelli M, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nano. 2013;8:594.
Article
CAS
Google Scholar
Xue J, BinAhmed S, Wang Z, Karp NG, Stottrup BL, Romero-Vargas CS. Bacterial adhesion to graphene oxide (GO)-functionalized interfaces is determined by hydrophobicity and GO sheet spatial orientation. Environ Sci Technol Lett. 2018;5(1):14–9.
Article
CAS
Google Scholar
Bello D, Martin J, Santeufemio C, Sun Q, Lee Bunker K, Shafer M, et al. Physicochemical and morphological characterisation of nanoparticles from photocopiers: implications for environmental health. Nanotoxicology. 2013;7(5):989–1003.
Article
CAS
PubMed
Google Scholar
Pal AK, Watson CY, Pirela SV, Singh D, Chalbot MC, Kavouras I, et al. Linking exposures of particles released from Nano-enabled products to toxicology: an integrated methodology for particle sampling, extraction, dispersion, and dosing. Toxicol Sci. 2015;146(2):321–33.
Article
PubMed
PubMed Central
Google Scholar
Pirela SV, Sotiriou GA, Bello D, Shafer M, Bunker KL, Castranova V, et al. Consumer exposures to laser printer-emitted engineered nanoparticles: a case study of life-cycle implications from nano-enabled products. Nanotoxicology. 2015;9(6):760–8.
Article
CAS
PubMed
Google Scholar
Chalbot M-CG, Pirela SV, Schifman L, Kasaraneni V, Oyanedel-Craver V, Bello D, et al. Synergistic effects of engineered nanoparticles and organics released from laser printers using nano-enabled toners: potential health implications from exposures to the emitted organic aerosol. Environ Sci-Nano. 2017;4(11):2144–56.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stern ST, McNeil SE. Nanotechnology safety concerns revisited. Toxicol Sci. 2008;101(1):4–21.
Article
CAS
PubMed
Google Scholar
Borm P, Kreyling W. Toxicological Hazards of Inhaled Nanoparticles—Potential Implications for Drug Delivery. 2004;4.
Article
CAS
PubMed
Google Scholar
C Powell M, Kanarek M. Nanomaterial health effects - Part 1: Background and current knowledge. 2006;105.
Elder A, Lynch I, Grieger K, Chan-Remillard S, Gatti A, Gnewuch H, et al. Human Health Risks of Engineered Nanomaterials, vol. 3-29. Dordrecht: Springer Netherlands; 2009.
Google Scholar
Oberdörster G. Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Internal Med. 2010;267(1):89–105.
Article
PubMed
CAS
Google Scholar
Hoet PH, Brüske-Hohlfeld I, Salata OV. Nanoparticles – known and unknown health risks. J Nanobiotechnology. 2004;2(1):12.
Article
PubMed
PubMed Central
CAS
Google Scholar
Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, et al. The pulmonary toxicology of ultrafine particles. J Aerosol Med. 2002;15(2):213–20.
Article
CAS
PubMed
Google Scholar
Kendall M, Holgate S. Health impact and toxicological effects of nanomaterials in the lung. Respirology. 2012;17(5):743–58.
Article
PubMed
Google Scholar
Kreyling WG, Semmler-Behnke M, Moller W. Ultrafine particle-lung interactions: does size matter? J Aerosol Med. 2006;19(1):74–83.
Article
CAS
PubMed
Google Scholar
Moller W, Felten K, Sommerer K, Scheuch G, Meyer G, Meyer P, et al. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am J Respir Crit Care Med. 2008;177(4):426–32.
Article
PubMed
Google Scholar
Nemmar A, Hoet PH, Nemery B. Translocation of ultrafine particles. Environ Health Perspect. 2006;114(4):A211–2.
Article
PubMed
PubMed Central
Google Scholar
Nemmar A, Hoylaerts MF, Nemery B. Effects of particulate air pollution on hemostasis. Clin Occup Environ Med. 2006;5(4):865–81.
PubMed
Google Scholar
Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A. Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci. 2010;14(10):809–21.
CAS
PubMed
Google Scholar
Geiser M. Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv. 2010;23(4):207–17.
Article
CAS
PubMed
Google Scholar
Bennett WD. Rapid translocation of nanoparticles from the lung to the bloodstream? Am J Respir Crit Care Med. 2002;165(12):1671–2.
Article
PubMed
Google Scholar
Wiebert P, Sanchez-Crespo A, Seitz J, Falk R, Philipson K, Kreyling WG, et al. Negligible clearance of ultrafine particles retained in healthy and affected human lungs. Eur Respir J. 2006;28(2):286–90.
Article
CAS
PubMed
Google Scholar
Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol. 2010;28(12):1300–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Elder A, Oberdorster G. Translocation and effects of ultrafine particles outside of the lung. Clin Occup Environ Med. 2006;5(4):785–96.
PubMed
Google Scholar
Nemmar A, Hoylaerts MF, Hoet PH, Nemery B. Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicol Lett. 2004;149(1–3):243–53.
Article
CAS
PubMed
Google Scholar
Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A. 2002;65(20):1513–30.
Article
CAS
PubMed
Google Scholar
Mills NL, Amin N, Robinson SD, Anand A, Davies J, Patel D, et al. Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am J Respir Crit Care Med. 2006;173(4):426–31.
Article
PubMed
Google Scholar
Yacobi NR, Malmstadt N, Fazlollahi F, DeMaio L, Marchelletta R, Hamm-Alvarez SF, et al. Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles. Am J Respir Cell Mol Biol. 2010;42(5):604–14.
Article
CAS
PubMed
Google Scholar
Liu Y, Gao Y, Zhang L, Wang T, Wang J, Jiao F, et al. Potential health impact on mice after nasal instillation of nano-sized copper particles and their translocation in mice. J Nanosci Nanotechnol. 2009;9(11):6335–43.
Article
CAS
PubMed
Google Scholar
Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect. 2006;114(8):1172–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weibel ER. Morphometry of the human lung: the state of the art after two decades. Bull Eur Physiopathol Respir. 1979;15(5):999–1013.
CAS
PubMed
Google Scholar
Stone KC, Mercer RR, Gehr P, Stockstill B, Crapo JD. Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol. 1992;6(2):235–43.
Article
CAS
PubMed
Google Scholar
Groneberg DA, Witt C, Wagner U, Chung KF, Fischer A. Fundamentals of pulmonary drug delivery. Respir Med. 2003;97(4):382–7.
Article
CAS
PubMed
Google Scholar
Weibel ER. Morphometry of the human lung 1st edition edn: academic press; 1963.
Book
Google Scholar
Courrier HM, Butz N, Vandamme TF. Pulmonary drug delivery systems: recent developments and prospects. Crit Rev Ther Drug Carrier Syst. 2002;19(4–5):425–98.
Article
CAS
PubMed
Google Scholar
Gehr P, Green FH, Geiser M, Im Hof V, Lee MM, Schurch S. Airway surfactant, a primary defense barrier: mechanical and immunological aspects. J Aerosol Med. 1996;9(2):163–81.
Article
CAS
PubMed
Google Scholar
Vincent JH, Johnston AM, Jones AD, Bolton RE, Addison J. Kinetics of deposition and clearance of inhaled mineral dusts during chronic exposure. Br J Ind Med. 1985;42(10):707–15.
CAS
PubMed
PubMed Central
Google Scholar
Newman SP, Pavia D, Garland N, Clarke SW. Effects of various inhalation modes on the deposition of radioactive pressurized aerosols. Eur J Respir Dis Suppl. 1982;119:57–65.
CAS
PubMed
Google Scholar
Martonen TB, Katz IM. Deposition patterns of aerosolized drugs within human lungs: effects of ventilatory parameters. Pharm Res. 1993;10(6):871–8.
Article
CAS
PubMed
Google Scholar
R. Byron P, Patton J. Drug Delivery via the Respiratory Tract, vol. 7; 1994.
Google Scholar
Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci U S A. 2002;99(19):12001–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gill S, Löbenberg R, Ku T, Azarmi S, Roa W, Prenner E. Nanoparticles: Characteristics, Mechanisms of Action, and Toxicity in Pulmonary Drug Delivery—A Review, vol. 3; 2007.
Google Scholar
WHO HP. Control in the Work Environment: Airborne Particle. Geneva: Prevention and Control Exchange (PACE), World Health Organization, WHO/SDE/OEH/9914; 1999. p. 1–219.
Google Scholar
KH F, Peter W. Nanotoxicology: An Interdisciplinary Challenge. Angewandte Chemie Int Ed. 2011;50(6):1260–78.
Article
CAS
Google Scholar
Kreyling WG, Semmler-Behnke M, Takenaka S, Möller W. Differences in the biokinetics of inhaled Nano- versus micrometer-sized particles. Acc Chem Res. 2013;46(3):714–22.
Article
CAS
PubMed
Google Scholar
Kreyling WG, Hirn S, Möller W, Schleh C, Wenk A, Celik G, et al. Air–blood barrier translocation of Tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano. 2014;8(1):222–33.
Article
CAS
PubMed
Google Scholar
Kumar A, Chen F, Mozhi A, Zhang X, Zhao Y, Xue X, et al. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale. 2013;5(18):8307–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Byron PR. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci. 1986;75(5):433–8.
Article
CAS
PubMed
Google Scholar
Heyder J, Gebhart J, Rudolf G, Schiller CF, Stahlhofen W. Deposition of particles in the human respiratory tract in the size range 0.005–15 μm. J Aerosol Sci. 1986;17(5):811–25.
Article
Google Scholar
Heyder J, Rudolf G. Mathematical models of particle deposition in the human respiratory tract. J Aerosol Sci. 1984;15(6):697–707.
Article
Google Scholar
Patton JS. Unlocking the opportunity of tight glycaemic control. Innovative delivery of insulin via the lung. Diabetes Obes Metab. 2005;7(Suppl 1):S5–8.
Article
CAS
PubMed
Google Scholar
Schaumann F, Fromke C, Dijkstra D, Alessandrini F, Windt H, Karg E, et al. Effects of ultrafine particles on the allergic inflammation in the lung of asthmatics: results of a double-blinded randomized cross-over clinical pilot study. Part Fibre Toxicol. 2014;11:39.
Article
PubMed
PubMed Central
CAS
Google Scholar
Vora R, Zareba W, Utell MJ, Pietropaoli AP, Chalupa D, Little EL, et al. Inhalation of ultrafine carbon particles alters heart rate and heart rate variability in people with type 2 diabetes. Part Fibre Toxicol. 2014;11:31.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoek G, Boogaard H, Knol A, de Hartog J, Slottje P, Ayres JG, et al. Concentration response functions for ultrafine particles and all-cause mortality and hospital admissions: results of a European expert panel elicitation. Environ Sci Technol. 2010;44(1):476–82.
Article
CAS
PubMed
Google Scholar
Jaques PA, Kim CS. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal Toxicol. 2000;12(8):715–31.
Article
CAS
PubMed
Google Scholar
Frampton MW, Utell MJ, Zareba W, Oberdorster G, Cox C, Huang LS, et al. Effects of exposure to ultrafine carbon particles in healthy subjects and subjects with asthma. Res Rep Health Eff Inst. 2004;126:1–47 discussion 9-63.
Google Scholar
Pietropaoli AP, Frampton MW, Hyde RW, Morrow PE, Oberdorster G, Cox C, et al. Pulmonary function, diffusing capacity, and inflammation in healthy and asthmatic subjects exposed to ultrafine particles. Inhal Toxicol. 2004;16(Suppl 1):59–72.
Article
CAS
PubMed
Google Scholar
Chalupa DC, Morrow PE, Oberdorster G, Utell MJ, Frampton MW. Ultrafine particle deposition in subjects with asthma. Environ Health Perspect. 2004;112(8):879–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brown JS, Zeman KL, Bennett WD. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med. 2002;166(9):1240–7.
Article
PubMed
Google Scholar
Londahl J, Swietlicki E, Rissler J, Bengtsson A, Boman C, Blomberg A, et al. Experimental determination of the respiratory tract deposition of diesel combustion particles in patients with chronic obstructive pulmonary disease. Part Fibre Toxicol. 2012;9:30.
Article
PubMed
PubMed Central
CAS
Google Scholar
Leung JM, Tiew PY, Mac Aogain M, Budden KF, Yong VF, Thomas SS, et al. The role of acute and chronic respiratory colonization and infections in the pathogenesis of COPD. Respirology. 2017;22(4):634–50.
Article
PubMed
PubMed Central
Google Scholar
Schurch S, Gehr P, Im Hof V, Geiser M, Green F. Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol. 1990;80(1):17–32.
Article
CAS
PubMed
Google Scholar
Geiser M, Schurch S, Gehr P. Influence of surface chemistry and topography of particles on their immersion into the lung's surface-lining layer. J Appl Physiol. 2003;94(5):1793–801.
Article
PubMed
Google Scholar
Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A. 2002;65(20):1531–43.
Article
CAS
PubMed
Google Scholar
Oberdorster G. Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol. 2002;14(1):29–56.
Article
CAS
PubMed
Google Scholar
Gupta N, Kumar R, Agrawal B. New players in immunity to tuberculosis: the host microbiome, lung epithelium, and innate immune cells. Front Immunol. 2018;9:709.
Article
PubMed
PubMed Central
Google Scholar
Hong B-Y, Maulén NP, Adami AJ, Granados H, Balcells ME, Cervantes J. Microbiome changes during tuberculosis and Antituberculous therapy. Clin Microbiol Rev. 2016;29(4):915–26.
Article
PubMed
Google Scholar
Wood MR, Yu EA, Mehta S. The human microbiome in the fight against tuberculosis. Am J Trop Med Hyg. 2017;96(6):1274–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunter RL. The pathogenesis of tuberculosis: the early infiltrate of post-primary (adult pulmonary) tuberculosis: a distinct disease entity. Front Immunol. 2018;9:2108.
Article
PubMed
PubMed Central
Google Scholar
Bloom BR, Atun R, Cohen T, Dye C, Fraser H, Gomez GB, et al. Tuberculosis. In: Holmes KK, Bertozzi S, Bloom BR, Jha P, editors. . Washington (DC): Major Infectious Diseases. : The International Bank for Reconstruction and Development / The World Bank (c) 2017 International Bank for Reconstruction and Development / The World Bank; 2017.
Chapter
Google Scholar
Tran NT, Zhang J, Xiong F, Wang GT, Li WX, Wu SG. Altered gut microbiota associated with intestinal disease in grass carp (Ctenopharyngodon idellus). World J Microbiol Biotechnol. 2018;34(6):71.
Article
PubMed
CAS
Google Scholar
Muhlfeld C, Gehr P, Rothen-Rutishauser B. Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly. 2008;138(27–28):387–91.
PubMed
Google Scholar
Salvi S, Blomberg A, Rudell B, Kelly F, Sandstrom T, Holgate ST, et al. Acute inflammatory responses in the airways and peripheral blood after short-term exposure to diesel exhaust in healthy human volunteers. Am J Respir Crit Care Med. 1999;159(3):702–9.
Article
CAS
PubMed
Google Scholar
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–71.
Article
PubMed
Google Scholar
Nicolete R, DFd S, Faccioli LH. The uptake of PLGA micro or nanoparticles by macrophages provokes distinct in vitro inflammatory response. Int Immunopharmacol. 2011;11(10):1557–63.
Article
CAS
PubMed
Google Scholar
Wang Y, Lin Y-X, Qiao S-L, An H-W, Ma Y, Qiao Z-Y, et al. Polymeric nanoparticles promote macrophage reversal from M2 to M1 phenotypes in the tumor microenvironment. Biomaterials. 2017;112:153–63.
Article
CAS
PubMed
Google Scholar
Getts DR, Shea LD, Miller SD, King NJC. Harnessing nanoparticles for immune modulation. Trends Immunol. 2015;36(7):419–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sakagami M. In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev. 2006;58(9):1030–60.
Article
CAS
PubMed
Google Scholar
Patton J, R Byron P. Inhaling medicines: Delivering drugs to the body through the lungs, vol. 6; 2007.
Google Scholar
Gumbleton M. Caveolae as potential macromolecule trafficking compartments within alveolar epithelium. Adv Drug Deliv Rev. 2001;49(3):281–300.
Article
CAS
PubMed
Google Scholar
Arredouani M, Yang Z, Ning Y, Qin G, Soininen R, Tryggvason K, et al. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J Exp Med. 2004;200(2):267–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sibille Y, Reynolds HY. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis. 1990;141(2):471–501.
Article
CAS
PubMed
Google Scholar
Rejman J, Oberle V, Zuhorn IS, Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem J. 2004;377(Pt 1):159–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patton JS. Mechanisms of macromolecule absorption by the lungs. Expert Opin Drug Deliv. 1996;19(1):3–36.
CAS
Google Scholar
Nel A, Xia T, Mädler L, Li N. Toxic Potential of Materials at the Nanolevel. Science. 2006;311(5761):622–7.
Article
CAS
PubMed
Google Scholar
Gustafsson A, Jonasson S, Sandstrom T, Lorentzen JC, Bucht A. Genetic variation influences immune responses in sensitive rats following exposure to TiO2 nanoparticles. Toxicology. 2014;326:74–85.
Article
CAS
PubMed
Google Scholar
Gustafsson Å, Bergström U, Ågren L, Österlund L, Sandström T, Bucht A. Differential cellular responses in healthy mice and in mice with established airway inflammation when exposed to hematite nanoparticles. Toxicol Appl Pharmacol. 2015;288(1):1–11.
Article
CAS
PubMed
Google Scholar
Ma-Hock L, Burkhardt S, Strauss V, Gamer AO, Wiench K, van Ravenzwaay B, et al. Development of a short-term inhalation test in the rat using Nano-titanium dioxide as a model substance. Inhal Toxicol. 2009;21(2):102–18.
Article
CAS
PubMed
Google Scholar
Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J. Comparative pulmonary toxicity study of nano-TiO (2) particles of different sizes and agglomerations in rats: different short- and long-term post-instillation results. Toxicology. 2009;264(1–2):110–8.
Article
CAS
PubMed
Google Scholar
Rossi EM, Pylkkanen L, Koivisto AJ, Vippola M, Jensen KA, Miettinen M, et al. Airway exposure to silica-coated TiO2 nanoparticles induces pulmonary neutrophilia in mice. Toxicol Sci. 2010;113(2):422–33.
Article
CAS
PubMed
Google Scholar
Ban M, Langonne I, Huguet N, Goutet M. Effect of submicron and nano-iron oxide particles on pulmonary immunity in mice. Toxicol Lett. 2012;210(3):267–75.
Article
CAS
PubMed
Google Scholar
Sayes CM, Marchione AA, Reed KL, Warheit DB. Comparative pulmonary toxicity assessments of C60 water suspensions in rats: few differences in fullerene toxicity in vivo in contrast to in vitro profiles. Nano Lett. 2007;7(8):2399–406.
Article
CAS
PubMed
Google Scholar
Gustafsson A, Lindstedt E, Elfsmark LS, Bucht A. Lung exposure of titanium dioxide nanoparticles induces innate immune activation and long-lasting lymphocyte response in the dark Agouti rat. J Immunotoxicol. 2011;8(2):111–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jonasson S, Gustafsson A, Koch B, Bucht A. Inhalation exposure of nano-scaled titanium dioxide (TiO2) particles alters the inflammatory responses in asthmatic mice. Inhal Toxicol. 2013;25(4):179–91.
Article
CAS
PubMed
Google Scholar
Poulsen SS, Saber AT, Williams A, Andersen O, Kobler C, Atluri R, et al. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol. 2015;284(1):16–32.
Article
CAS
PubMed
Google Scholar
Pirela S, Molina R, Watson C, Cohen JM, Bello D, Demokritou P, et al. Effects of copy center particles on the lungs: a toxicological characterization using a Balb/c mouse model. Inhal Toxicol. 2013;25(9):498–508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pirela SV, Miousse IR, Lu X, Castranova V, Thomas T, Qian Y, et al. Effects of laser printer-emitted engineered nanoparticles on cytotoxicity, chemokine expression, reactive oxygen species, DNA methylation, and DNA damage: a Comprehensive in Vitro Analysis in human small airway epithelial cells, macrophages, and Lymphoblasts. Environ Health Perspect. 2016;124(2):210–9.
Article
CAS
PubMed
Google Scholar
Pirela SV, Lu X, Miousse I, Sisler JD, Qian Y, Guo N, et al. Effects of intratracheally instilled laser printer-emitted engineered nanoparticles in a mouse model: a case study of toxicological implications from nanomaterials released during consumer use. NanoImpact. 2016;1:1–8.
Article
PubMed
PubMed Central
Google Scholar
Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnology. 2013;11:26.
Article
CAS
PubMed
PubMed Central
Google Scholar
Endotoxins. Structure, Function and Recognition: Springer Netherlands; 2010.
Schumann RR, Lamping N, Kirschning C, Hoss A, Herrmann F. The Regulation of the Secretory Response of Macrophages - Promotor-Function-Analysis and Structure-Function-Analysis of Lps-Binding-Proteins Suggest a Common Endotoxin-Recognition Mechanism. Blood. 1993;82(10):A186–A.
Google Scholar
Vallhov H, Qin J, Johansson SM, Ahlborg N, Muhammed MA, Scheynius A, et al. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Lett. 2006;6(8):1682–6.
Article
CAS
PubMed
Google Scholar
Li Y, Boraschi D. Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine (Lond). 2016;11(3):269–87.
Article
CAS
Google Scholar
Oostingh GJ, Casals E, Italiani P, Colognato R, Stritzinger R, Ponti J, et al. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part Fibre Toxicol. 2011;8(1):8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gorbet MB, Sefton MV. Endotoxin: the uninvited guest. Biomaterials. 2005;26(34):6811–7.
Article
CAS
PubMed
Google Scholar
Darkow R, Groth T, Albrecht W, Lutzow K, Paul D. Functionalized nanoparticles for endotoxin binding in aqueous solutions. Biomaterials. 1999;20(14):1277–83.
Article
CAS
PubMed
Google Scholar
Murali K, Kenesei K, Li Y, Demeter K, Kornyei Z, Madarasz E. Uptake and bio-reactivity of polystyrene nanoparticles is affected by surface modifications, ageing and LPS adsorption: in vitro studies on neural tissue cells. Nanoscale. 2015;7(9):4199–210.
Article
CAS
PubMed
Google Scholar
Li Y, Shi Z, Radauer-Preiml I, Andosch A, Casals E, Luetz-Meindl U, et al. Bacterial endotoxin (lipopolysaccharide) binds to the surface of gold nanoparticles, interferes with biocorona formation and induces human monocyte inflammatory activation. Nanotoxicology. 2017;11(9–10):1157–75.
Article
CAS
PubMed
Google Scholar
Pietroiusti A, Magrini A, Campagnolo L. New frontiers in nanotoxicology: gut microbiota/microbiome-mediated effects of engineered nanomaterials. Toxicol Appl Pharmacol. 2016;299:90–5.
Article
CAS
PubMed
Google Scholar
Rosenfeld CS. Gut Dysbiosis in animals due to environmental chemical exposures. Front Cell Infect Microbiol. 2017;7.
Aljuffali IA, Huang CH, Fang JY. Nanomedical strategies for targeting skin microbiomes. Curr Drug Metab. 2015;16(4):255–71.
Article
CAS
PubMed
Google Scholar
Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27(1):76–83.
Article
CAS
PubMed
Google Scholar
van den Brule S, Ambroise J, Lecloux H, Levard C, Soulas R, De Temmerman P-J, et al. Dietary silver nanoparticles can disturb the gut microbiota in mice. Part Fibre Toxicol. 2016;13(1):38.
Article
PubMed
PubMed Central
CAS
Google Scholar
Javurek AB, Suresh D, Spollen WG, Hart ML, Hansen SA, Ellersieck MR, et al. Gut Dysbiosis and neurobehavioral alterations in rats exposed to silver nanoparticles. Sci Rep. 2017;7.
Williams K, Milner J, Boudreau MD, Gokulan K, Cerniglia CE, Khare S. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology. 2015;9(3):279–89.
Article
CAS
PubMed
Google Scholar
Hadrup N, Loeschner K, Bergstrom A, Wilcks A, Gao X, Vogel U, et al. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch Toxicol. 2012;86(4):543–51.
Article
CAS
PubMed
Google Scholar
Wilding LA, Bassis CM, Walacavage K, Hashway S, Leroueil PR, Morishita M, et al. Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology. 2016;10(5):513–20.
Article
CAS
PubMed
Google Scholar
Fondevila M, Herrer R, Casallas MC, Abecia L, Ducha JJ. Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim Feed Sci Technol. 2009;150(3–4):259–69.
Article
CAS
Google Scholar
Wang MQ, Du YJ, Wang C, Tao WJ, He YD, Li H. Effects of copper-loaded chitosan nanoparticles on intestinal microflora and morphology in weaned piglets. Biol Trace Elem Res. 2012;149(2):184–9.
Article
CAS
PubMed
Google Scholar
Das P, McDonald J, Petrof E, Allen-Vercoe E, Walker V. Nanosilver-mediated change in human intestinal microbiota, vol. 5; 2014.
Google Scholar
Brandt O, Mildner M, Egger AE, Groessl M, Rix U, Posch M, et al. Nanoscalic silver possesses broad-spectrum antimicrobial activities and exhibits fewer toxicological side effects than silver sulfadiazine. Nanomedicine. 2012;8(4):478–88.
Article
CAS
PubMed
Google Scholar
Sandri G, Bonferoni MC, D'Autilia F, Rossi S, Ferrari F, Grisoli P, et al. Wound dressings based on silver sulfadiazine solid lipid nanoparticles for tissue repairing. Eur J Pharm Biopharm. 2013;84(1):84–90.
Article
CAS
PubMed
Google Scholar
Pati R, Mehta RK, Mohanty S, Padhi A, Sengupta M, Vaseeharan B, et al. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine. 2014;10(6):1195–208.
Article
CAS
PubMed
Google Scholar
Meli K, Kamika I, Keshri J, Momba MN. The impact of zinc oxide nanoparticles on the bacterial microbiome of activated sludge systems. Sci Rep. 2016;6:39176.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lu K, Abo RP, Schlieper KA, Graffam ME, Levine S, Wishnok JS, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect. 2014;122(3):284–91.
PubMed
PubMed Central
Google Scholar
Silver S, Phung LT. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl Environ Microbiol. 2005;71(2):599–608.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van de Wiele T, Vanhaecke L, Boeckaert C, Peru K, Headley J, Verstraete W, et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect. 2005;113(1):6–10.
Article
CAS
PubMed
Google Scholar
Cho Y, Abu-Ali G, Tashiro H, Kasahara DI, Brown TA, Brand JD, et al. The Microbiome Regulates Pulmonary Responses to Ozone in Mice. Am J Respir Cell Mol Biol. 2018;(3):346-354. https://doi.org/10.1165/rcmb.2017-0404OC.
Article
PubMed
PubMed Central
Google Scholar