Missaoui WN, Arnold RD, Cummings BS. Toxicological status of nanoparticles: what we know and what we don't know. Chem Biol Interact. 2018;295:1–12. https://doi.org/10.1016/j.cbi.2018.07.015
https://www.ncbi.nlm.nih.gov/pubmed/30048623.
Article
CAS
PubMed
Google Scholar
Prajitha N, Athira SS, Mohanan PV. Bio-interactions and risks of engineered nanoparticles. Environ Res. 2019;172:98–108. https://doi.org/10.1016/j.envres.2019.02.003
https://www.ncbi.nlm.nih.gov/pubmed/30782540.
Article
CAS
PubMed
Google Scholar
Nam NH, Luong NH. Nanoparticles: synthesis and applications. In: Grumezescu V, Grumezescu AM, editors. Materials for biomedical engineerin. Amsterdam: Elsevier; 2019. p. 211–40. ISBN: 9780081028155.
Chapter
Google Scholar
Thomas TA. Nanotechnology in consumer products : addressing potential health and safety implications for consumers. In: Monteiro-Riviere NA, Tran CL, editors. Nanotoxicology : Progress toward nanomedicine. 2nd ed. Boca Raton: CRC Press; 2014. p. 97–112.
Chapter
Google Scholar
Samberg ME, Loboa EG, Oldenburg SJ, Monteiro-Riviere NA. Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine (Lond). 2012;7(8):1197–209. https://doi.org/10.2217/nnm.12.18
https://www.ncbi.nlm.nih.gov/pubmed/22583572.
Article
CAS
Google Scholar
Samberg ME, Monteiro-Riviere NA. Silver nanoparticles in biomedical applications. In: Monteiro-Riviere NA, Tran CL, editors. Nanotoxicology : Progress toward nanomedicine. 2nd ed. Boca Raton: CRC Press; 2014. p. 405–21.
Chapter
Google Scholar
Dekkers S, Oomen AG, Bleeker EA, Vandebriel RJ, Micheletti C, Cabellos J, et al. Towards a nanospecific approach for risk assessment. Regul Toxicol Pharmacol. 2016;80:46–59. https://doi.org/10.1016/j.yrtph.2016.05.037
https://www.ncbi.nlm.nih.gov/pubmed/27255696.
Article
PubMed
Google Scholar
Lynch I, Weiss C, Valsami-Jones E. A strategy for grouping of nanomaterials based on key physico-chemical descriptors as a basis for safer-by-design NMs. Nano Today. 2014;9(3):266–70. https://doi.org/10.1016/j.nantod.2014.05.001 <Go to ISI>://WOS:000341481000005.
Article
CAS
Google Scholar
Arts JH, Hadi M, Irfan MA, Keene AM, Kreiling R, Lyon D, et al. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). Regul Toxicol Pharmacol. 2015;71(2 Suppl):S1–27. https://doi.org/10.1016/j.yrtph.2015.03.007
https://www.ncbi.nlm.nih.gov/pubmed/25818068.
Article
CAS
PubMed
Google Scholar
Liu SQ, Wang C, Hou J, Wang PF, Miao LZ, Li TF. Effects of silver sulfide nanoparticles on the microbial community structure and biological activity of freshwater biofilms. Environmen Sci-Nano. 2018;5(12):2899–908. https://doi.org/10.1039/c8en00480c <Go to ISI>://WOS:000452777300010.
Article
CAS
Google Scholar
Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, et al. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 2011;8(1):18. https://doi.org/10.1186/1743-8977-8-18
https://www.ncbi.nlm.nih.gov/pubmed/21631937.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Xu Z, Wimmer A, Tian Q, Wang X. New insights into the stability of silver sulfide nanoparticles in surface water: dissolution through hypochlorite oxidation. Environ Sci Technol. 2017;51(14):7920–7. https://doi.org/10.1021/acs.est.7b01738
https://www.ncbi.nlm.nih.gov/pubmed/28608678.
Article
CAS
PubMed
Google Scholar
Wang P, Lombi E, Sun SK, Scheckel KG, Malysheva A, McKenna BA, et al. Characterizing the uptake, accumulation and toxicity of silver sulfide nanoparticles in plants. Environmen Sci-Nano. 2017;4(2):448–60. https://doi.org/10.1039/c6en00489j <Go to ISI>://WOS:000395876000018.
Article
CAS
Google Scholar
Abdelkhaliq A, van der Zande M, Undas AK, Peters RJB, Bouwmeester H. Impact of in vitro digestion on gastrointestinal fate and uptake of silver nanoparticles with different surface modifications. Nanotoxicology. 2019:1–16. https://doi.org/10.1080/17435390.2019.1675794
https://www.ncbi.nlm.nih.gov/pubmed/31648587.
Article
Google Scholar
van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6(8):7427–42. https://doi.org/10.1021/nn302649p
https://www.ncbi.nlm.nih.gov/pubmed/22857815.
Article
CAS
PubMed
Google Scholar
Cartwright L, Poulsen MS, Nielsen HM, Pojana G, Knudsen LE, Saunders M, et al. In vitro placental model optimization for nanoparticle transport studies. Int J Nanomedicine. 2012;7:497–510. https://doi.org/10.2147/IJN.S26601
https://www.ncbi.nlm.nih.gov/pubmed/22334780.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saunders M. Transplacental transport of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1(6):671–84. https://doi.org/10.1002/wnan.53
https://www.ncbi.nlm.nih.gov/pubmed/20049824.
Article
CAS
PubMed
Google Scholar
Aengenheister L, Keevend K, Muoth C, Schonenberger R, Diener L, Wick P, et al. An advanced human in vitro co-culture model for translocation studies across the placental barrier. Sci Rep. 2018;8(1):5388. https://doi.org/10.1038/s41598-018-23410-6
https://www.ncbi.nlm.nih.gov/pubmed/29599470.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tran DN, Ota LC, Jacobson JD, Patton WC, Chan PJ. Influence of nanoparticles on morphological differentiation of mouse embryonic stem cells. Fertil Steril. 2007;87(4):965–70. https://doi.org/10.1016/j.fertnstert.2006.07.1520
https://www.ncbi.nlm.nih.gov/pubmed/17140568.
Article
CAS
PubMed
Google Scholar
Muoth C, Aengenheister L, Kucki M, Wick P, Buerki-Thurnherr T. Nanoparticle transport across the placental barrier: pushing the field forward! Nanomedicine (Lond). 2016;11(8):941–57. https://doi.org/10.2217/nnm-2015-0012
https://www.ncbi.nlm.nih.gov/pubmed/26979802.
Article
CAS
Google Scholar
Aengenheister L, Dietrich D, Sadeghpour A, Manser P, Diener L, Wichser A, et al. Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models. J Nanobiotechnol. 2018;16(1):79. https://doi.org/10.1186/s12951-018-0406-6
https://www.ncbi.nlm.nih.gov/pubmed/30309365.
Article
CAS
Google Scholar
Levkovitz R, Zaretsky U, Gordon Z, Jaffa AJ, Elad D. In vitro simulation of placental transport: part I. biological model of the placental barrier. Placenta. 2013;34(8):699–707. https://doi.org/10.1016/j.placenta.2013.03.014
https://www.ncbi.nlm.nih.gov/pubmed/23764139.
Article
CAS
PubMed
Google Scholar
Wick P, Malek A, Manser P, Meili D, Maeder-Althaus X, Diener L, et al. Barrier capacity of human placenta for nanosized materials. Environ Health Perspect. 2010;118(3):432–6. https://doi.org/10.1289/ehp.0901200
https://www.ncbi.nlm.nih.gov/pubmed/20064770.
Article
CAS
PubMed
Google Scholar
Poulsen MS, Mose T, Maroun LL, Mathiesen L, Knudsen LE, Rytting E. Kinetics of silica nanoparticles in the human placenta. Nanotoxicology. 2015;9 Suppl 1(sup1):79–86. https://doi.org/10.3109/17435390.2013.812259
https://www.ncbi.nlm.nih.gov/pubmed/23742169.
Article
CAS
PubMed
Google Scholar
Omata W, Ackerman WE, Vandre DD, Robinson JM. Trophoblast cell fusion and differentiation are mediated by both the protein kinase C and a pathways. PLoS One. 2013;8(11):e81003. https://doi.org/10.1371/journal.pone.0081003
https://www.ncbi.nlm.nih.gov/pubmed/24236208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Correia Carreira S, Walker L, Paul K, Saunders M. The toxicity, transport and uptake of nanoparticles in the in vitro BeWo b30 placental cell barrier model used within NanoTEST. Nanotoxicology. 2015;9 Suppl 1(sup1):66–78. https://doi.org/10.3109/17435390.2013.833317
https://www.ncbi.nlm.nih.gov/pubmed/23927440.
Article
CAS
PubMed
Google Scholar
Bode CJ, Jin H, Rytting E, Silverstein PS, Young AM, Audus KL. In vitro models for studying trophoblast transcellular transport. Methods Mol Med. 2006;122:225–39. https://doi.org/10.1385/1-59259-989-3:225
https://www.ncbi.nlm.nih.gov/pubmed/16511984.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rytting E. Exploring the interactions of nanoparticles with multiple models of the maternal--fetal interface. Nanotoxicology. 2015;9 Suppl 1(sup1):137–8. https://doi.org/10.3109/17435390.2013.877997
https://www.ncbi.nlm.nih.gov/pubmed/25923351.
Article
PubMed
Google Scholar
Parry S, Zhang J. Multidrug resistance proteins affect drug transmission across the placenta. Am J Obstet Gynecol. 2007;196(5):476. https://doi.org/10.1016/j.ajog.2007.02.019 e1–6. https://www.ncbi.nlm.nih.gov/pubmed/17466710.
Article
CAS
PubMed
Google Scholar
Vardhana PA, Illsley NP. Transepithelial glucose transport and metabolism in BeWo choriocarcinoma cells. Placenta. 2002;23(8–9):653–60. https://doi.org/10.1053/plac.2002.0857
https://www.ncbi.nlm.nih.gov/pubmed/12361684.
Article
CAS
PubMed
Google Scholar
Li H, van Ravenzwaay B, Rietjens IM, Louisse J. Assessment of an in vitro transport model using BeWo b30 cells to predict placental transfer of compounds. Arch Toxicol. 2013;87(9):1661–9. https://doi.org/10.1007/s00204-013-1074-9
https://www.ncbi.nlm.nih.gov/pubmed/23689295.
Article
CAS
PubMed
Google Scholar
Chaby G, Viseux V, Poulain JF, De Cagny B, Denoeux JP, Lok C. Topical silver sulfadiazine-induced acute renal failure. Ann Dermatol Venereol. 2005;132(11 Pt 1):891–3. https://doi.org/10.1016/s0151-9638(05)79509-0
https://www.ncbi.nlm.nih.gov/pubmed/16327720.
Article
CAS
PubMed
Google Scholar
Bader KF. Organ deposition of silver following silver nitrate therapy of burns. Plast Reconstr Surg. 1966;37(6):550–1. https://doi.org/10.1097/00006534-196606000-00012
https://www.ncbi.nlm.nih.gov/pubmed/5932415.
Article
CAS
PubMed
Google Scholar
Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol. 2018;98:257–67. https://doi.org/10.1016/j.yrtph.2018.08.007
https://www.ncbi.nlm.nih.gov/pubmed/30125612.
Article
CAS
PubMed
Google Scholar
Dimopoulou M, Verhoef A, Gomes CA, van Dongen CW, Rietjens I, Piersma AH, et al. A comparison of the embryonic stem cell test and whole embryo culture assay combined with the BeWo placental passage model for predicting the embryotoxicity of azoles. Toxicol Lett. 2018;286:10–21. https://doi.org/10.1016/j.toxlet.2018.01.009
https://www.ncbi.nlm.nih.gov/pubmed/29337257.
Article
CAS
PubMed
Google Scholar
Li H, Flick B, Rietjens IM, Louisse J, Schneider S, van Ravenzwaay B. Extended evaluation on the ES-D3 cell differentiation assay combined with the BeWo transport model, to predict relative developmental toxicity of triazole compounds. Arch Toxicol. 2016;90(5):1225–37. https://doi.org/10.1007/s00204-015-1541-6
https://www.ncbi.nlm.nih.gov/pubmed/26047666.
Article
CAS
PubMed
Google Scholar
Li H, Rietjens IM, Louisse J, Blok M, Wang X, Snijders L, et al. Use of the ES-D3 cell differentiation assay, combined with the BeWo transport model, to predict relative in vivo developmental toxicity of antifungal compounds. Toxicol in Vitro. 2015;29(2):320–8. https://doi.org/10.1016/j.tiv.2014.11.012
https://www.ncbi.nlm.nih.gov/pubmed/25489799.
Article
CAS
PubMed
Google Scholar
Lee HY, Inselman AL, Kanungo J, Hansen DK. Alternative models in developmental toxicology. Syst Biol Reprod Med. 2012;58(1):10–22. https://doi.org/10.3109/19396368.2011.648302
https://www.ncbi.nlm.nih.gov/pubmed/22239077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seiler AE, Spielmann H. The validated embryonic stem cell test to predict embryotoxicity in vitro. Nat Protoc. 2011;6(7):961–78. https://doi.org/10.1038/nprot.2011.348
https://www.ncbi.nlm.nih.gov/pubmed/21720311.
Article
CAS
PubMed
Google Scholar
Tandon S, Jyoti S. Embryonic stem cells: an alternative approach to developmental toxicity testing. J Pharm Bioallied Sci. 2012;4(2):96–100. https://doi.org/10.4103/0975-7406.94808
https://www.ncbi.nlm.nih.gov/pubmed/22557918.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao X, Topping VD, Keltner Z, Sprando RL, Yourick JJ. Toxicity of nano- and ionic silver to embryonic stem cells: a comparative toxicogenomic study. J Nanobiotechnol. 2017;15(1):31. https://doi.org/10.1186/s12951-017-0265-6
https://www.ncbi.nlm.nih.gov/pubmed/28399865.
Article
CAS
Google Scholar
Kloet SK, Walczak AP, Louisse J, van den Berg HH, Bouwmeester H, Tromp P, et al. Translocation of positively and negatively charged polystyrene nanoparticles in an in vitro placental model. Toxicol in Vitro. 2015;29(7):1701–10. https://doi.org/10.1016/j.tiv.2015.07.003
https://www.ncbi.nlm.nih.gov/pubmed/26145586.
Article
CAS
PubMed
Google Scholar
Vidmar J, Loeschner K, Correia M, Larsen EH, Manser P, Wichser A, et al. Translocation of silver nanoparticles in the ex vivo human placenta perfusion model characterized by single particle ICP-MS. Nanoscale. 2018;10(25):11980–91. https://doi.org/10.1039/c8nr02096e
https://www.ncbi.nlm.nih.gov/pubmed/29904776.
Article
CAS
PubMed
Google Scholar
Behra R, Sigg L, Clift MJ, Herzog F, Minghetti M, Johnston B, et al. Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface. 2013;10(87):20130396. https://doi.org/10.1098/rsif.2013.0396
https://www.ncbi.nlm.nih.gov/pubmed/23883950.
Article
CAS
PubMed
PubMed Central
Google Scholar
van der Zande M, Undas AK, Kramer E, Monopoli MP, Peters RJ, Garry D, et al. Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology. 2016;10(10):1431–41. https://doi.org/10.1080/17435390.2016.1225132
https://www.ncbi.nlm.nih.gov/pubmed/27597447.
Article
CAS
PubMed
Google Scholar
Graf C, Nordmeyer D, Sengstock C, Ahlberg S, Diendorf J, Raabe J, et al. Shape-dependent dissolution and cellular uptake of silver nanoparticles. Langmuir. 2018;34(4):1506–19. https://doi.org/10.1021/acs.langmuir.7b03126
https://www.ncbi.nlm.nih.gov/pubmed/29272915.
Article
CAS
PubMed
Google Scholar
Myllynen PK, Loughran MJ, Howard CV, Sormunen R, Walsh AA, Vahakangas KH. Kinetics of gold nanoparticles in the human placenta. Reprod Toxicol. 2008;26(2):130–7. https://doi.org/10.1016/j.reprotox.2008.06.008
https://www.ncbi.nlm.nih.gov/pubmed/18638543.
Article
CAS
PubMed
Google Scholar
Fennell TR, Mortensen NP, Black SR, Snyder RW, Levine KE, Poitras E, et al. Disposition of intravenously or orally administered silver nanoparticles in pregnant rats and the effect on the biochemical profile in urine. J Appl Toxicol. 2017;37(5):530–44. https://doi.org/10.1002/jat.3387
https://www.ncbi.nlm.nih.gov/pubmed/27696470.
Article
CAS
PubMed
Google Scholar
Wu J, Yu C, Tan Y, Hou Z, Li M, Shao F, et al. Effects of prenatal exposure to silver nanoparticles on spatial cognition and hippocampal neurodevelopment in rats. Environ Res. 2015;138:67–73. https://doi.org/10.1016/j.envres.2015.01.022
https://www.ncbi.nlm.nih.gov/pubmed/25701810.
Article
CAS
PubMed
Google Scholar
Lee Y, Choi J, Kim P, Choi K, Kim S, Shon W, et al. A transfer of silver nanoparticles from pregnant rat to offspring. Toxicol Res. 2012;28(3):139–41. https://doi.org/10.5487/TR.2012.28.3.139
https://www.ncbi.nlm.nih.gov/pubmed/24278602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lyon TD, Patriarca M, Howatson G, Fleming PJ, Blair PS, Fell GS. Age dependence of potentially toxic elements (Sb, cd, Pb, ag) in human liver tissue from paediatric subjects. J Environ Monit. 2002;4(6):1034–9. https://doi.org/10.1039/b205972j
https://www.ncbi.nlm.nih.gov/pubmed/12509062.
Article
CAS
PubMed
Google Scholar
Menezes V, Malek A, Keelan JA. Nanoparticulate drug delivery in pregnancy: placental passage and fetal exposure. Curr Pharm Biotechnol. 2011;12(5):731–42. https://doi.org/10.2174/138920111795471010
https://www.ncbi.nlm.nih.gov/pubmed/21342124.
Article
CAS
PubMed
Google Scholar
Corradi S, Dakou E, Yadav A, Thomassen LC, Kirsch-Volders M, Leyns L. Morphological observation of embryoid bodies completes the in vitro evaluation of nanomaterial embryotoxicity in the embryonic stem cell test (EST). Toxicol in Vitro. 2015;29(7):1587–96. https://doi.org/10.1016/j.tiv.2015.06.015
https://www.ncbi.nlm.nih.gov/pubmed/26093180.
Article
CAS
PubMed
Google Scholar
Vecchione L, Massimiani M, Camaioni A, Sifrani L, Magrini A, Pietroiusti A, et al. A comparative study of metal oxide nanoparticles embryotoxicity using the embryonic stem cell test. In: BioNanoMaterials, vol. 14; 2013. p. 61.
Google Scholar
Park MV, Neigh AM, Vermeulen JP, de la Fonteyne LJ, Verharen HW, Briede JJ, et al. The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials. 2011;32(36):9810–7. https://doi.org/10.1016/j.biomaterials.2011.08.085
https://www.ncbi.nlm.nih.gov/pubmed/21944826.
Article
CAS
PubMed
Google Scholar
Bouwmeester H, Poortman J, Peters RJ, Wijma E, Kramer E, Makama S, et al. Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano. 2011;5(5):4091–103. https://doi.org/10.1021/nn2007145
https://www.ncbi.nlm.nih.gov/pubmed/21480625.
Article
CAS
PubMed
Google Scholar
Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, et al. Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol. 2012;46(13):6992–7000. https://doi.org/10.1021/es203732x
https://www.ncbi.nlm.nih.gov/pubmed/22296331.
Article
CAS
PubMed
Google Scholar
Yin Y, Yu S, Shen M, Liu J, Jiang G. Fate and transport of silver nanoparticles in the environment. In: Liu J, Jiang G, editors. Silver nanoparticles in the environment. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 73–108.
Google Scholar
Peters R, Herrera-Rivera Z, Undas A, van der Lee M, Marvin H, Bouwmeester H, et al. Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices. J Anal Atom Spectrom. 2015;30(6):1274–85. https://doi.org/10.1039/c4ja00357h <Go to ISI>://WOS:000355559500007.
Article
CAS
Google Scholar