Campagnolo L, Massimiani M, Magrini A, Camaioni A, Pietroiusti A. Physico-chemical properties mediating reproductive and developmental toxicity of engineered nanomaterials. Curr Med Chem. 2012;19(26):4488–94. https://doi.org/10.2174/092986712803251566.
Article
CAS
PubMed
Google Scholar
Pietroiusti A, Campagnolo L, Fadeel B. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small. 2013;9(9–10):1557–72. https://doi.org/10.1002/smll.201201463.
Article
CAS
PubMed
Google Scholar
Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, et al. Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano. 2017;11(5):4542–52. https://doi.org/10.1021/acsnano.6b08551.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schleh C, Semmler-Behnke M, Lipka J, Wenk A, Hirn S, Schäffler M, et al. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration. Nanotoxicology. 2012;6(1):36–46. https://doi.org/10.3109/17435390.2011.552811.
Article
CAS
PubMed
Google Scholar
Boudreau MD, Imam MS, Paredes AM, Bryant MS, Cunningham CK, Felton RP, et al. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the Sprague Dawley rat following daily Oral gavage administration for 13 weeks. Toxicol Sci. 2016;150(1):131–60. https://doi.org/10.1093/toxsci/kfv318.
Article
CAS
PubMed
PubMed Central
Google Scholar
Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie M, et al. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol. 2014;11(1):30. https://doi.org/10.1186/1743-8977-11-30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pietroiusti A, Vecchione L, Malvindi MA, Aru C, Massimiani M, Camaioni A, et al. Relevance to investigate different stages of pregnancy to highlight toxic effects of nanoparticles: the example of silica. Toxicol Appl Pharmacol. 2018;342:60–8. https://doi.org/10.1016/j.taap.2018.01.026.
Article
CAS
PubMed
Google Scholar
Bitounis D, Klein JP, Mery L, el Merhie A, Forest V, Boudard D, et al. Ex vivo detection and quantification of gold nanoparticles in human seminal and follicular fluids. Analyst. 2018;143(2):475–86. https://doi.org/10.1039/C7AN01641G.
Article
CAS
PubMed
Google Scholar
Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine. 2018;13:8487–506. https://doi.org/10.2147/IJN.S170723.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reynolds LP, Killilea SD, Redmer DA. Angiogenesis in the female reproductive system. FASEB J. 1992;6(3):886–92. https://doi.org/10.1096/fasebj.6.3.1371260.
Article
CAS
PubMed
Google Scholar
Stefansdottir A, Fowler PA, Powles-Glover N, Anderson RA, Spears N. Use of ovary culture techniques in reproductive toxicology. Reprod Toxicol. 2014;49:117–35. https://doi.org/10.1016/j.reprotox.2014.08.001.
Article
CAS
PubMed
Google Scholar
Chen L, Mao SJ, Larsen WJ. Identification of a factor in fetal bovine serum that stabilizes the cumulus extracellular matrix. A role for a member of the inter-alpha-trypsin inhibitor family. J Biol Chem. 1992;267(17):12380–6. https://doi.org/10.1016/S0021-9258(19)49851-7.
Article
CAS
PubMed
Google Scholar
Gosden RG, Hunter RHF, Telfer E, Torrance C, Brown N. Physiological factors underlying the formation of ovarian follicular fluid. J Reprod Fertil. 1988;82(2):813–25. https://doi.org/10.1530/jrf.0.0820813.
Article
CAS
PubMed
Google Scholar
Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82(6):1021–9. https://doi.org/10.1095/biolreprod.109.082941.
Article
CAS
PubMed
Google Scholar
Gao G, Ze Y, Li B, Zhao X, Zhang T, Sheng L, et al. Ovarian dysfunction and gene-expressed characteristics of female mice caused by long-term exposure to titanium dioxide nanoparticles. J Hazard Mater. 2012;243:19–27. https://doi.org/10.1016/j.jhazmat.2012.08.049.
Article
CAS
PubMed
Google Scholar
Tassinari R, Cubadda F, Moracci G, Aureli F, D’Amato M, Valeri M, et al. Oral, short-term exposure to titanium dioxide nanoparticles in Sprague-Dawley rat: focus on reproductive and endocrine systems and spleen. Nanotoxicology. 2014;8(6):654–62. https://doi.org/10.3109/17435390.2013.822114.
Article
CAS
PubMed
Google Scholar
Han JW, Jeong JK, Gurunathan S, Choi YJ, Das J, Kwon DN, et al. Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse. Nanotoxicology. 2016;10(3):361–73. https://doi.org/10.3109/17435390.2015.1073396.
Article
CAS
PubMed
Google Scholar
Tiedemann D, Taylor U, Rehbock C, Jakobi J, Klein S, Kues WA, et al. Reprotoxicity of gold, silver, and gold-silver alloy nanoparticles on mammalian gametes. Analyst. 2014;139(5):931–42. https://doi.org/10.1039/C3AN01463K.
Article
CAS
PubMed
Google Scholar
Chen J, Wang H, Long W, Shen X, Wu D, Song SS, et al. Sex differences in the toxicity of polyethylene glycol-coated gold nanoparticles in mice. Int J Nanomedicine. 2013;8:2409–19. https://doi.org/10.2147/IJN.S46376.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lei R, Bai X, Chang Y, Li J, Qin Y, Chen K, et al. Effects of Fullerenol nanoparticles on rat oocyte meiosis resumption. Int J Mol Sci. 2018;19(3):699. https://doi.org/10.3390/ijms19030699.
Article
CAS
PubMed Central
Google Scholar
Salustri A, et al. Molecular organization and mechanical properties of the hyaluronan matrix surrounding the mammalian oocyte. Matrix Biol. 2019;78–79:11–23.
Article
Google Scholar
Beker van Woudenberg A, Gröllers-Mulderij M, Snel C, Jeurissen N, Stierum R, Wolterbeek A. The bovine oocyte in vitro maturation model: a potential tool for reproductive toxicology screening. Reprod Toxicol. 2012;34(2):251–60. https://doi.org/10.1016/j.reprotox.2012.05.098.
Article
CAS
PubMed
Google Scholar
Di Lorenzo G, et al. Imaging and therapy of ovarian cancer: clinical application of nanoparticles and future perspectives. Theranostics. 2018;8(16):4279–94. https://doi.org/10.7150/thno.26345.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gass S, Cohen JM, Pyrgiotakis G, Sotiriou GA, Pratsinis SE, Demokritou P. A safer formulation concept for flame-generated engineered nanomaterials. ACS Sustain Chem Eng. 2013;1(7):843–57. https://doi.org/10.1021/sc300152f.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sotiriou GA, Watson C, Murdaugh KM, Darrah TH, Pyrgiotakis G, Elder A, et al. Engineering safer-by-design, transparent, silica-coated ZnO nanorods with reduced DNA damage potential. Environ Sci Nano. 2014;1(2):144–53. https://doi.org/10.1039/c3en00062a.
Article
CAS
PubMed
PubMed Central
Google Scholar
Utembe W, Potgieter K, Stefaniak AB, Gulumian M. Dissolution and biodurability: important parameters needed for risk assessment of nanomaterials. Part Fibre Toxicol. 2015;12(1):11. https://doi.org/10.1186/s12989-015-0088-2.
Article
CAS
PubMed
PubMed Central
Google Scholar
George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M, et al. Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano. 2010;4(1):15–29. https://doi.org/10.1021/nn901503q.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peretyazhko TS, Zhang Q, Colvin VL. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol. 2014;48(20):11954–61. https://doi.org/10.1021/es5023202.
Article
CAS
PubMed
Google Scholar
Kornberg TG, Stueckle TA, Coyle J, Derk R, Demokritou P, Rojanasakul Y, et al. Iron oxide nanoparticle-induced neoplastic-like cell transformation in vitro is reduced with a protective amorphous silica coating. Chem Res Toxicol. 2019;32(12):2382–97. https://doi.org/10.1021/acs.chemrestox.9b00118.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davidson DC, Derk R, He X, Stueckle TA, Cohen J, Pirela SV, et al. Direct stimulation of human fibroblasts by nCeO2 in vitro is attenuated with an amorphous silica coating. Part Fibre Toxicol. 2016;13(1):23. https://doi.org/10.1186/s12989-016-0134-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ma J, Mercer RR, Barger M, Schwegler-Berry D, Cohen JM, Demokritou P, et al. Effects of amorphous silica coating on cerium oxide nanoparticles induced pulmonary responses. Toxicol Appl Pharmacol. 2015;288(1):63–73. https://doi.org/10.1016/j.taap.2015.07.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konduru NV, Jimenez RJ, Swami A, Friend S, Castranova V, Demokritou P, et al. Silica coating influences the corona and biokinetics of cerium oxide nanoparticles. Part Fibre Toxicol. 2015;12(1):31. https://doi.org/10.1186/s12989-015-0106-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konduru NV, Murdaugh KM, Sotiriou GA, Donaghey TC, Demokritou P, Brain JD, et al. Bioavailability, distribution and clearance of tracheally-instilled and gavaged uncoated or silica-coated zinc oxide nanoparticles. Part Fibre Toxicol. 2014;11(1):44. https://doi.org/10.1186/s12989-014-0044-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Publications Office of the EU. https://op.europa.eu/en/publication-detail/-/publication/0ca3a430-cd22-4eea-9d29-e2953b290b71/language-en/format-PDF/source-120773074. Accessed 11 June 2020.
Publications Office of the EU. https://op.europa.eu/en/publication-detail/-/publication/afa11a7c-95db-4c38-acbb-00929744ed5a/language-en/format-PDF/source-120773218. Accessed 11 June 2020.
Demokritou P, et al. Development and characterization of a Versatile Engineered Nanomaterial Generation System (VENGES) suitable for toxicological studies. Inhal Toxicol. 2010;22 Suppl 2(0 2):107–16.
Article
Google Scholar
Sotiriou GA, Diaz E, Long MS, Godleski J, Brain J, Pratsinis SE, et al. A novel platform for pulmonary and cardiovascular toxicological characterization of inhaled engineered nanomaterials. Nanotoxicology. 2012;6(6):680–90. https://doi.org/10.3109/17435390.2011.604439.
Article
CAS
PubMed
Google Scholar
Beltran-Huarac J, Zhang Z, Pyrgiotakis G, DeLoid G, Vaze N, Hussain SM, et al. Development of reference metal and metal oxide engineered nanomaterials for nanotoxicology research using high throughput and precision flame spray synthesis approaches. NanoImpact. 2018;10:26–37. https://doi.org/10.1016/j.impact.2017.11.007.
Article
PubMed
Google Scholar
DeLoid G, et al. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat Protoc. 2017;12(2):355–71. https://doi.org/10.1038/nprot.2016.172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cohen JM, et al. Tracking translocation of industrially relevant engineered nanomaterials (ENMs) across alveolar epithelial monolayers in vitro. Nanotoxicology. 2014;8 Suppl 1(0 1):216–25.
Article
Google Scholar
Salustri A, Camaioni A, di Giacomo M, Fulop C, Hascall VC. Hyaluronan and proteoglycans in ovarian follicles. Hum Reprod Update. 1999;5(4):293–301. https://doi.org/10.1093/humupd/5.4.293.
Article
CAS
PubMed
Google Scholar
Russell DL, Robker RL. Molecular mechanisms of ovulation: co-ordination through the cumulus complex. Hum Reprod Update. 2007;13(3):289–312. https://doi.org/10.1093/humupd/dml062.
Article
CAS
PubMed
Google Scholar
Cillo F, Brevini TAL, Antonini S, Paffoni A, Ragni G, Gandolfi F. Association between human oocyte developmental competence and expression levels of some cumulus genes. Reproduction. 2007;134(5):645–50. https://doi.org/10.1530/REP-07-0182.
Article
CAS
PubMed
Google Scholar
Pangas SA, Jorgez CJ, Matzuk MM. Growth differentiation factor 9 regulates expression of the bone morphogenetic protein antagonist gremlin. J Biol Chem. 2004;279(31):32281–6. https://doi.org/10.1074/jbc.M403212200.
Article
CAS
PubMed
Google Scholar
Uyar A, Torrealday S, Seli E. Cumulus and granulosa cell markers of oocyte and embryo quality. Fertil Steril. 2013;99(4):979–97. https://doi.org/10.1016/j.fertnstert.2013.01.129.
Article
CAS
PubMed
Google Scholar
Assidi M, Dufort I, Ali A, Hamel M, Algriany O, Dielemann S, et al. Identification of potential markers of oocyte competence expressed in bovine cumulus cells matured with follicle-stimulating hormone and/or phorbol myristate acetate in vitro. Biol Reprod. 2008;79(2):209–22. https://doi.org/10.1095/biolreprod.108.067686.
Article
CAS
PubMed
Google Scholar
Zhang X, et al. Studies of gene expression in human cumulus cells indicate pentraxin 3 as a possible marker for oocyte quality. Fertil Steril. 2005;83(Suppl 1):1169–79. https://doi.org/10.1016/j.fertnstert.2004.11.030.
Article
CAS
PubMed
Google Scholar
Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett. 2007;168(2):176–85. https://doi.org/10.1016/j.toxlet.2006.12.001.
Article
CAS
PubMed
Google Scholar
Litscher ES, Wassarman PM. Zona Pellucida proteins, fibrils, and matrix. Annu Rev Biochem. 2020;89(1):695–715. https://doi.org/10.1146/annurev-biochem-011520-105310.
Article
CAS
PubMed
Google Scholar
Uboldi C, Giudetti G, Broggi F, Gilliland D, Ponti J, Rossi F. Amorphous silica nanoparticles do not induce cytotoxicity, cell transformation or genotoxicity in Balb/3T3 mouse fibroblasts. Mutat Res. 2012;745(1–2):11–20. https://doi.org/10.1016/j.mrgentox.2011.10.010.
Article
CAS
PubMed
Google Scholar
Lisle RS, Anthony K, Randall MA, Diaz FJ. Oocyte-cumulus cell interactions regulate free intracellular zinc in mouse oocytes. Reproduction. 2013;145(4):381–90. https://doi.org/10.1530/REP-12-0338 PMID: 23404848.
Article
CAS
PubMed
Google Scholar
Kim AM, Vogt S, O'Halloran TV, Woodruff TK. Zinc availability regulates exit from meiosis in maturing mammalian oocytes. Nat Chem Biol. 2010;6(9):674–81. https://doi.org/10.1038/nchembio.419.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian X, Diaz FJ. Zinc depletion causes multiple defects in ovarian function during the periovulatory period in mice. Endocrinology. 2012;153(2):873–86. https://doi.org/10.1210/en.2011-1599.
Article
CAS
PubMed
Google Scholar
Anchordoquy JM, Anchordoquy JP, Sirini MA, Picco SJ, Peral-García P, Furnus CC. The importance of having zinc during in vitro maturation of cattle cumulus-oocyte complex: role of cumulus cells. Reprod Domest Anim. 2014;49(5):865–74. https://doi.org/10.1111/rda.12385.
Article
CAS
PubMed
Google Scholar
Stephenson JL, Brackett BG. Influences of zinc on fertilisation and development of bovine oocytes in vitro. Zygote. 1999;7(3):195–201. https://doi.org/10.1017/S096719949900057X.
Article
CAS
PubMed
Google Scholar
Sugiura K, Pendola FL, Eppig JJ. Oocyte control of metabolic cooperativity between oocytes and companion granulosa cells: energy metabolism. Dev Biol. 2005;279(1):20–30. https://doi.org/10.1016/j.ydbio.2004.11.027.
Article
CAS
PubMed
Google Scholar
Gebhardt KM, et al. Human cumulus cell gene expression as a biomarker of pregnancy outcome after single embryo transfer. Fertil Steril. 2011;96(1):47–52.e2.
Article
CAS
Google Scholar
Preis KA, Seidel G Jr, Gardner DK. Metabolic markers of developmental competence for in vitro-matured mouse oocytes. Reproduction. 2005;130(4):475–83. https://doi.org/10.1530/rep.1.00831.
Article
CAS
PubMed
Google Scholar
McKenzie LJ, et al. Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection in women undergoing IVF. Hum Reprod. 2004;19(12):2869–74. https://doi.org/10.1093/humrep/deh535.
Article
CAS
PubMed
Google Scholar
Demokritou P, Gass S, Pyrgiotakis G, Cohen JM, Goldsmith W, McKinney W, et al. An in vivo and in vitro toxicological characterisation of realistic nanoscale CeO2 inhalation exposures. Nanotoxicology. 2013;7(8):1338–50. https://doi.org/10.3109/17435390.2012.739665.
Article
CAS
PubMed
Google Scholar
Rasmussen K, et al. MechTitanium dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: characterisation and physicochemical properties. Luxembourg: EUR Report 26637 EN, Publications Office of the European Union; 2014. https://doi.org/10.2788/79554.
Book
Google Scholar
Singh C, et al. NM-Series of Representative Manufactured Nanomaterials - Zinc Oxide NM-110, NM-111, NM-112, NM-113: Characterisation and Test Item Preparation. Luxembourg: EUR Report 25066 EN, Publications Office of the European Union; 2011. https://doi.org/10.2787/55008.
Book
Google Scholar
Filippi C, Pryde A, Cowan P, Lee T, Hayes P, Donaldson K, et al. Toxicology of ZnO and TiO2 nanoparticles on hepatocytes: impact on metabolism and bioenergetics. Nanotoxicology. 2015;9(1):126–34. https://doi.org/10.3109/17435390.2014.895437.
Article
CAS
PubMed
Google Scholar
Vanderhyden BC, Caron PJ, Buccione R, Eppig JJ. Developmental pattern of the secretion of cumulus expansion-enabling factor by mouse oocytes and the role of oocytes in promoting granulosa cell differentiation. Dev Biol. 1990;140(2):307–17. https://doi.org/10.1016/0012-1606(90)90081-S.
Article
CAS
PubMed
Google Scholar
DeLoid GM, et al. Advanced computational modeling for in vitro nanomaterial dosimetry. Part Fibre Toxicol. 2015;12(1):32. https://doi.org/10.1186/s12989-015-0109-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeLoid G, Cohen JM, Darrah T, Derk R, Rojanasakul L, Pyrgiotakis G, et al. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun. 2014;5(1):3514. https://doi.org/10.1038/ncomms4514.
Article
CAS
PubMed
Google Scholar
Scimeca M, Bischetti S, Lamsira HK, Bonfiglio R, Bonanno E. Energy dispersive X-ray (EDX) microanalysis: a powerful tool in biomedical research and diagnosis. Eur J Histochem. 2018;62(1):2841. https://doi.org/10.4081/ejh.2018.2841.
Article
PubMed
PubMed Central
Google Scholar