Babu R, Zhang J, Beckman EJ, Virji M, Pasculle WA, Wells A. Antimicrobial activities of silver used as a polymerization catalyst for a wound-healing matrix. Biomaterials. 2006;27:4304–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burdușel A-C, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials. 2018;8:681.
Article
PubMed Central
CAS
Google Scholar
Hashim T, Risan M, Kadhom M, Raheem R, Yousif E. Antifungal, antiviral, and antibacterial activities of silver nanoparticles synthesized using fungi: a review. Lett Appl NanoBioSci. 2020;9:1307–12.
Article
Google Scholar
Korani M, Ghazizadeh E, Korani S, Hami Z, Mohammadi-Bardbori A. Effects of silver nanoparticles on human health. Eur J Nanomed. 2015;7:51–62.
Article
CAS
Google Scholar
Li Z, Cong H, Yan Z, Liu A, Yu B. The potential human health and environmental issues of nanomaterials. In: Hussain CM, editor. Handbook of nanomaterials for industrial applications. 2018. p. 1049–54.
Xu L, Wang YY, Huang J, Chen CY, Wang ZX, Xie H. Silver nanoparticles: synthesis, medical applications and biosafety. Theranostics. 2020;10:8996–9031.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qing Y, Cheng L, Li R, Liu G, Zhang Y, Tang X, et al. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. Int J Nanomed. 2018;13:3311–27.
Article
CAS
Google Scholar
Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight, vol 10, Nano Today, Elsevier B.V.; 2015. p. 339–54.
McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22:116–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen KC, Seligy VL, Massarsky A, Moon TW, Rippstein P, Tan J, et al. Comparison of toxicity of uncoated and coated silver nanoparticles. J Phys Conf Ser. 2013;429:012025.
Article
CAS
Google Scholar
Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–53.
Article
CAS
PubMed
Google Scholar
Gliga AR, Skoglund S, Odnevall Wallinder I, Fadeel B, Karlsson HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol. 2014;11:11.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kubo A-L, Capjak I, Vinković Vrček I, Bondarenko OM, Kurvet I, Vija H, et al. Antimicrobial potency of differently coated 10 and 50 nm silver nanoparticles against clinically relevant bacteria Escherichia coli and Staphylococcus aureus. Coll Surf B: Biointerface. 2018;170:401–10.
Article
CAS
Google Scholar
Park EJ, Bae E, Yi J, Kim Y, Choi K, Lee SH, et al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol. 2010;30:162–8.
Article
CAS
PubMed
Google Scholar
Bergin IL, Wilding LA, Morishita M, Walacavage K, Ault AP, Axson JL, et al. Effects of particle size and coating on toxicologic parameters, fecal elimination kinetics and tissue distribution of acutely ingested silver nanoparticles in a mouse model. Nanotoxicology. 2016;10:352–60.
Article
CAS
PubMed
Google Scholar
Dziendzikowska K, Gromadzka-Ostrowska J, Lankoff A, Oczkowski M, Krawczyńska A, Chwastowska J, et al. Time-dependent biodistribution and excretion of silver nanoparticles in male Wistar rats. J Appl Toxicol. 2012;32:920–8.
Article
CAS
PubMed
Google Scholar
Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol. 2018;98:257–67.
Article
CAS
PubMed
Google Scholar
Park K, Park EJ, Chun IK, Choi K, Lee SH, Yoon J, et al. Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats. Arch Pharm Res. 2011;34:153–8.
Article
CAS
PubMed
Google Scholar
Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, et al. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 2011;8:18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boudreau MD, Imam MS, Paredes AM, Bryant MS, Cunningham CK, Felton RP, et al. Differential effects of silver nanoparticles and silver ions on tissue accumulation, distribution, and toxicity in the sprague dawley rat following daily oral gavage administration for 13 weeks. Toxicol Sci. 2016;150:131–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2008;20:575–83.
Article
CAS
PubMed
Google Scholar
De Matteis V. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/In vivo toxicity evaluation. Toxics. 2017;5:29.
Article
PubMed Central
CAS
Google Scholar
Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci. 2020;21:1–31.
Article
CAS
Google Scholar
Van Der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6:7427–42.
Article
PubMed
CAS
Google Scholar
Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, et al. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol Vitr. 2009;23:1076–84.
Article
CAS
Google Scholar
Pem B, Ćurlin M, Domazet Jurašin D, Vrček V, Barbir R, Micek V, et al. Fate and transformation of silver nanoparticles in different biological conditions. Beilstein J Nanotechnol. 2021;12:665–79.
Article
CAS
PubMed
PubMed Central
Google Scholar
Heydrnejad MS, Samani RJ, Aghaeivanda S. Toxic effects of silver nanoparticles on liver and some hematological parameters in male and female mice (mus musculus). Biol Trace Elem Res. 2015;165:153–8.
Article
CAS
PubMed
Google Scholar
Skalska J, Dąbrowska-Bouta B, Strużyńska L. Oxidative stress in rat brain but not in liver following oral administration of a low dose of nanoparticulate silver. Food Chem Toxicol. 2016;97:307–15.
Article
CAS
PubMed
Google Scholar
Tiwari R, Singh RD, Khan H, Gangopadhyay S, Mittal S, Singh V, et al. Oral subchronic exposure to silver nanoparticles causes renal damage through apoptotic impairment and necrotic cell death. Nanotoxicology. 2017;11:671–86.
Article
CAS
PubMed
Google Scholar
Baki ME, Miresmaili SM, Pourentezari M, Amraii E, Yousefi V, Spenani HR, et al. Effects of silver nano-particles on sperm parameters, number of Leydig cells and sex hormones in rats. Iran J Reprod Med. 2014;12:139–44.
CAS
PubMed
PubMed Central
Google Scholar
Patlolla AK, Hackett D, Tchounwou PB. Silver nanoparticle-induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Mol Cell Biochem. 2015;399:257–68.
Article
CAS
PubMed
Google Scholar
Song B, Zhang YL, Liu J, Feng XL, Zhou T, Shao LQ. Is neurotoxicity of metallic nanoparticles the cascades of oxidative stress? vol 11, Nanoscale Research Letters. 2016.
Abdal Dayem A, Hossain MK, Lee SB, Kim K, Saha SK, Yang GM, Choi HY, Cho SG. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 2017;18:120.
Article
PubMed Central
CAS
Google Scholar
Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett. 2009;190:156–62.
Article
CAS
PubMed
Google Scholar
Fu PP, Xia Q, Hwang HM, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal. 2014;22:64–75.
Article
CAS
PubMed
Google Scholar
Pinzaru I, Coricovac D, Dehelean C, Moacă EA, Mioc M, Baderca F, et al. Stable PEG-coated silver nanoparticles—a comprehensive toxicological profile. Food Chem Toxicol. 2018;111:546–56.
Article
CAS
PubMed
Google Scholar
Gaillet S, Rouanet JM. Silver nanoparticles: their potential toxic effects after oral exposure and underlying mechanisms—a review. Food Chem Toxicol. 2015;77:58–63.
Article
CAS
PubMed
Google Scholar
Ebabe Elle R, Gaillet S, Vidé J, Romain C, Lauret C, Rugani N, et al. Dietary exposure to silver nanoparticles in Sprague-Dawley rats: effects on oxidative stress and inflammation. Food Chem Toxicol. 2013;60:297–301.
Article
CAS
PubMed
Google Scholar
Blanco J, Tomás-Hernández S, García T, Mulero M, Gómez M, Domingo JL, et al. Oral exposure to silver nanoparticles increases oxidative stress markers in the liver of male rats and deregulates the insulin signalling pathway and p53 and cleaved caspase 3 protein expression. Food Chem Toxicol. 2018;115:398–404.
Article
CAS
PubMed
Google Scholar
Martins AC, Azevedo LF, de Souza Rocha CC, Carneiro MFH, Venancio VP, de Almeida MR, et al. Evaluation of distribution, redox parameters, and genotoxicity in Wistar rats co-exposed to silver and titanium dioxide nanoparticles. J Toxicol Environ Heal Part A Curr Issues. 2017;80:1156–65.
Article
CAS
Google Scholar
Dąbrowska-Bouta B, Sulkowski G, Strużyński W, Strużyńska L. Prolonged exposure to silver nanoparticles results in oxidative stress in cerebral myelin. Neurotox Res. 2019;35:495–504.
Article
PubMed
CAS
Google Scholar
Barbir R, Goessler W, Ćurlin M, Micek V, Milić M, Vuković B, et al. Protein corona modulates distribution and toxicological effects of silver nanoparticles in vivo. Part Part Syst Charact. 2019;36:1–12.
Article
CAS
Google Scholar
Shrivastava R, Kushwaha P, Bhutia YC, Flora SJS. Oxidative stress following exposure to silver and gold nanoparticles in mice. Toxicol Ind Health. 2016;32:1391–404.
Article
CAS
PubMed
Google Scholar
Liu W, Worms IAM, Herlin-Boime N, Truffier-Boutry D, Michaud-Soret I, Mintz E, Rollin-Genetet F. Interaction of silver nanoparticles with metallothionein and ceruloplasmin: impact on metal substitution by Ag(i), corona formation and enzymatic activity. Nanoscale. 2017;9:6581–94.
Article
CAS
PubMed
Google Scholar
Hohnholt MC, Geppert M, Luther EM, Petters C, Bulcke F. Dringen R handling of iron oxide and silver nanoparticles by astrocytes. Neurochem Res. 2013;38:227–39.
Article
CAS
PubMed
Google Scholar
Mao BH, Chen ZY, Wang YJ, Yan SJ. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci Rep. 2018;8:1–16.
Google Scholar
Gochfeld M. Sex differences in human and animal toxicology: toxicokinetics. Toxicol Pathol. 2017;45:1.
Article
Google Scholar
Lee IC, Ko JW, Park SH, Lim JO, Shin IS, Moon C, et al. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int J Nanomed. 2016;11:2883.
Article
CAS
Google Scholar
You DJ, Lee HY, Taylor-Just AJ, Linder KE, Bonner JC. Sex differences in the acute and subchronic lung inflammatory responses of mice to nickel nanoparticles. Nanotoxicology. 2020;14:1058–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tariba Lovaković B, Barbir B, Pem B, Goessler W, Ćurlin M, Micek V, Debeljak Ž, Božičević L, Ilić K, Pavičić I. Sex-related response in mice after sub-acute intraperitoneal exposure to silver nanoparticles. NanoImpact. 2021;23:100340.
Article
PubMed
Google Scholar
Kim WY, Kim J, Park JD, Ryu HY, Yu IJ. Histological study of gender differences in accumulation of silver nanoparticles in kidneys of Fischer 344 rats. J Toxicol Environ Heal Part A Curr Issues. 2009;72:1279–84.
Article
CAS
Google Scholar
Xue Y, Zhang S, Huang Y, Zhang T, Liu X, Hu Y, et al. Acute toxic effects and gender-related biokinetics of silver nanoparticles following an intravenous injection in mice. J Appl Toxicol. 2012;32:890–9.
Article
CAS
PubMed
Google Scholar
Kim YS, Song MY, Park JD, Song KS, Ryu HR, Chung YH, et al. Subchronic oral toxicity of silver nanoparticles. Part Fibre Toxicol. 2010;7:20.
Article
PubMed
PubMed Central
CAS
Google Scholar
Williams K, Milner J, Boudreau MD, Gokulan K, Cerniglia CE, Khare S. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology. 2015;9:279–89.
Article
CAS
PubMed
Google Scholar
Orr SE, Gokulan K, Boudreau M, Cerniglia CE, Khare S. Alteration in the mRNA expression of genes associated with gastrointestinal permeability and ileal TNF-α secretion due to the exposure of silver nanoparticles in Sprague-Dawley rats. J Nanobiotechnol. 2019;17:1–10.
Article
Google Scholar
Artiaga G, Ramos K, Ramos L, Cámara C, Gómez-Gómez M. Migration and characterisation of nanosilver from food containers by AF4-ICP-MS. Food Chem. 2015;166:76–85.
Article
CAS
PubMed
Google Scholar
De Matteis V, Malvindi MA, Galeone A, Brunetti V, De Luca E, Kote S, et al. Negligible particle-specific toxicity mechanism of silver nanoparticles: the role of Ag+ ion release in the cytosol. Nanomed Nanotechnol Biol Med. 2015;11:731–9.
Article
CAS
Google Scholar
Long YM, Hu LG, Yan XT, Zhao XC, Zhou QF, Cai Y, et al. Surface ligand controls silver ion release of nanosilver and its antibacterial activity against Escherichia coli. Int J Nanomed. 2017;12:3193–206.
Article
CAS
Google Scholar
Beer C, Foldbjerg R, Hayashi Y, Sutherland DS, Autrup H. Toxicity of silver nanoparticles-nanoparticle or silver ion? Toxicol Lett. 2012;208:286–92.
Article
CAS
PubMed
Google Scholar
Jeong GN, Jo UB, Ryu HY, Kim YS, Song KS, Yu IJ. Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague-Dawley rats. Arch Toxicol. 2010;84:63–9.
Article
CAS
PubMed
Google Scholar
Barp J, Araújo ASR, Fernandes TRG, Rigatto KV, Llesuy S, Belló-Klein A, et al. Myocardial antioxidant and oxidative stress changes due to sex hormones. Braz J Med Biol Res. 2002;35:1075–81.
Article
CAS
PubMed
Google Scholar
Ide T, Tsutsui H, Ohashi N, Hayashidani S, Suematsu N, Tsuchihashi M, et al. Greater oxidative stress in healthy young men compared with premenopausal women. Arterioscler Thromb Vasc Biol. 2002;22:438–42.
Article
CAS
PubMed
Google Scholar
Matarrese P, Colasanti T, Ascione B, Margutti P, Franconi F, Alessandri C, et al. Gender disparity in susceptibility to Oxidative stress and apoptosis induced by autoantibodies specific to RLIP76 in vascular cells. Antioxidants Redox Signal. 2011;15:2825–36.
Article
CAS
Google Scholar
Bhatia K, Elmarakby AA, El-Remessey A, Sullivan JC. Oxidative stress contributes to sex differences in angiotensin II-mediated hypertension in spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2012;302:R274–82.
Article
CAS
PubMed
Google Scholar
Chen Y, Ji LL, Liu TY, Wang ZT. Evaluation of gender-related differences in various oxidative stress enzymes in mice. Chin J Physiol. 2011;54:385–90.
Article
CAS
PubMed
Google Scholar
Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2011;201:92–100.
Article
CAS
PubMed
Google Scholar
Lu SC. Regulation of glutathione synthesis. Mol Asp Med. 2009;30:42–59.
Article
CAS
Google Scholar
Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al. Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol. 2008;42:8959–64.
Article
CAS
PubMed
Google Scholar
Wong DL, Merrifield-MacRae ME, Stillman MJ. Lead(II) binding in metallothioneins. In: Lead: its effects on environment and health. Berlin, Boston: De Gruyter; 2017. p. 241–70.
Mehta A, Flora SJS. Possible role of metal redistribution, hepatotoxicity and oxidative stress in chelating agents induced hepatic and renal metallothionein in rats. Food Chem Toxicol. 2001;39:1029–38.
Article
CAS
PubMed
Google Scholar
Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, et al. The role of metallothionein in oxidative stress. Int J Mol Sci. 2013;14:6044–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cortese MM, Suschek CV, Wetzel W, Kröncke KD, Kolb-Bachofen V. Zinc protects endothelial cells from hydrogen peroxide via Nrf2-dependent stimulation of glutathione biosynthesis. Free Radic Biol Med. 2008;44:2002–12.
Article
CAS
PubMed
Google Scholar
Stefanidou M, Maravelias C, Dona A, Spiliopoulou C. Zinc: a multipurpose trace element. Arch Toxicol. 2006;80:1–9.
Article
CAS
PubMed
Google Scholar
Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, et al. Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett. 2011;201:27–33.
Article
CAS
PubMed
Google Scholar
Fang W, Chi Z, Li W, Zhang X, Zhang Q. Comparative study on the toxic mechanisms of medical nanosilver and silver ions on the antioxidant system of erythrocytes: from the aspects of antioxidant enzyme activities and molecular interaction mechanisms. J Nanobiotechnol. 2019;17:1–13.
Article
CAS
Google Scholar
Vahter M, Åkesson A, Lidén C, Ceccatelli S, Berglund M. Gender differences in the disposition and toxicity of metals. Environ Res. 2007;104:85–95.
Article
CAS
PubMed
Google Scholar
El Mahdy MM, Eldin TAS, Aly HS, Mohammed FF, Shaalan MI. Evaluation of hepatotoxic and genotoxic potential of silver nanoparticles in albino rats. Exp Toxicol Pathol. 2015;67:21–9.
Article
PubMed
CAS
Google Scholar
Dobrzyńska MM, Gajowik A, Radzikowska J, Lankoff A, Dušinská M, Kruszewski M. Genotoxicity of silver and titanium dioxide nanoparticles in bone marrow cells of rats in vivo. Toxicology. 2014;315:86–91.
Article
PubMed
CAS
Google Scholar
Jurašin DD, Ćurlin M, Capjak I, Crnković T, Lovrić M, Babič M, et al. Surface coating affects behavior of metallic nanoparticles in a biological environment. Beilstein J Nanotechnol. 2016;7:246–62.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dikalov SI, Harrison DG. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxidants Redox Signal. 2014;20:372–82.
Article
CAS
Google Scholar
Kalyanaraman B, Darley-Usmar V, Davies KJA, Dennery PA, Forman HJ, Grisham MB, et al. Measuring reactive oxygen and nitrogen species with fluorescent probes: Challenges and limitations. Free Radic Biol Med. 2012;52:1–6.
Article
CAS
PubMed
Google Scholar
Kamencic H, Lyon A, Paterson PG, Juurlink BHJ. Monochlorobimane fluorometric method to measure tissue glutathione. Anal Biochem. 2000;286:35–7.
Article
CAS
PubMed
Google Scholar
Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:469–74.
Article
CAS
PubMed
Google Scholar
Flohé L, Günzler WA. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–20.
Article
PubMed
Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2008;8:R19.
Article
CAS
Google Scholar
Gassmann M, Grenacher B, Rohde B, Vogel J. Quantifying western blots: pitfalls of densitometry. Electrophoresis. 2009;30:1845–55.
Article
CAS
PubMed
Google Scholar
Marusteri M, Bacarea V. Kako odabrati pravi test za procjenu statističke značajnosti razlike između skupina? Comparing groups for statistical differences: how to choose the right statistical test? Biochem Medica. 2010;20:15–32.
Article
Google Scholar