Moore JX, Chaudhary N, Akinyemiju T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev Chronic Dis. 2017;14:E24.
Article
PubMed
PubMed Central
Google Scholar
Chen JC, Schwartz J. Metabolic syndrome and inflammatory responses to long-term particulate air pollutants. Environ Health Perspect. 2008;116(5):612–7.
Article
PubMed
PubMed Central
Google Scholar
Cornier M-A, Dabelea D, Hernandez TL, Lindstrom RC, Steig AJ, Stob NR, Van Pelt RE, Wang H, Eckel RH. The metabolic syndrome. Endocr Rev. 2008;29(7):777–822.
Article
CAS
PubMed
PubMed Central
Google Scholar
McCormack MC, Belli AJ, Kaji DA, Matsui EC, Brigham EP, Peng RD, Sellers C, Williams DL, Diette GB, Breysse PN, et al. Obesity as a susceptibility factor to indoor particulate matter health effects in COPD. Eur Respir J. 2015;45(5):1248–57.
Article
PubMed
PubMed Central
Google Scholar
Clementi EA, Talusan A, Vaidyanathan S, Veerappan A, Mikhail M, Ostrofsky D, Crowley G, Kim JS, Kwon S, Nolan A. Metabolic syndrome and air pollution: a narrative review of their cardiopulmonary effects. Toxics. 2019;7(1):66.
Article
CAS
Google Scholar
Dubowsky SD, Suh H, Schwartz J, Coull BA, Gold DR. Diabetes, obesity, and hypertension may enhance associations between air pollution and markers of systemic inflammation. Environ Health Perspect. 2006;114(7):992–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ning J, Zhang Y, Hu H, Hu W, Li L, Pang Y, Ma S, Niu Y, Zhang R. Association between ambient particulate matter exposure and metabolic syndrome risk: a systematic review and meta-analysis. Sci Total Environ. 2021;782: 146855.
Article
CAS
PubMed
Google Scholar
Zhang JS, Gui ZH, Zou ZY, Yang BY, Ma J, Jing J, Wang HJ, Luo JY, Zhang X, Luo CY, et al. Long-term exposure to ambient air pollution and metabolic syndrome in children and adolescents: a national cross-sectional study in China. Environ Int. 2021;148: 106383.
Article
CAS
PubMed
Google Scholar
Le Ouay B, Stellacci F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today. 2015;10(3):339–54.
Article
CAS
Google Scholar
Pulit-Prociak J, Banach M. Silver nanoparticles—a material of the future…? Open Chem. 2016;14(1):76–91.
Article
CAS
Google Scholar
Alqahtani S, Kobos LM, Xia L, Ferreira C, Franco J, Du X, Shannahan JH. Exacerbation of nanoparticle-induced acute pulmonary inflammation in a mouse model of metabolic syndrome. Front Immunol. 2020;11:818.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kobos L, Alqahtani S, Xia L, Coltellino V, Kishman R, McIlrath D, Perez-Torres C, Shannahan J. Comparison of silver nanoparticle-induced inflammatory responses between healthy and metabolic syndrome mouse models. J Toxicol Environ Health A. 2020;83(7):249–68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alqahtani S, Xia L, Jannasch A, Ferreira C, Franco J, Shannahan JH. Disruption of pulmonary resolution mediators contribute to exacerbated silver nanoparticle-induced acute inflammation in a metabolic syndrome mouse model. Toxicol Appl Pharmacol. 2021;431: 115730.
Article
CAS
PubMed
Google Scholar
Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN. Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol. 2001;2(7):612–9.
Article
CAS
PubMed
Google Scholar
Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? Am J Pathol. 2010;177(4):1576–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng W, Duncan KE, Ghio AJ, Ward-Caviness C, Karoly ED, Diaz-Sanchez D, Conolly RB, Devlin RB. Changes in metabolites present in lung-lining fluid following exposure of humans to ozone. Toxicol Sci. 2018;163(2):430–9.
Article
CAS
PubMed
Google Scholar
Kilburg-Basnyat B, Reece SW, Crouch MJ, Luo B, Boone AD, Yaeger M, Hodge M, Psaltis C, Hannan JL, Manke J. Specialized pro-resolving lipid mediators regulate ozone-induced pulmonary and systemic inflammation. Toxicol Sci. 2018;163(2):466–77.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Z, Xu P, Gong F, Tan Y, Han J, Tian L, Yan J, Li K, Xi Z, Liu X. Altered lipidomic profiles in lung and serum of rat after sub-chronic exposure to ozone. Sci Total Environ. 2022;806: 150630.
Article
CAS
PubMed
Google Scholar
Xiang S, Ye Y, Yang Q, Xu H, Shen C, Ma M, Jin S, Mei H, Zheng S, Smith F. RvD1 accelerates the resolution of inflammation by promoting apoptosis of the recruited macrophages via the ALX/FasL-FasR/caspase-3 signaling pathway. Cell Death Discov. 2021;7(1):1–10.
Article
CAS
Google Scholar
Titos E, Rius B, González-Périz A, López-Vicario C, Morán-Salvador E, Martínez-Clemente M, Arroyo V, Clària J. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol. 2011;187(10):5408–18.
Article
CAS
PubMed
Google Scholar
Zhao Q, Wu J, Hua Q, Lin Z, Ye L, Zhang W, Wu G, Du J, Xia J, Chu M. Resolvin D1 mitigates energy metabolism disorder after ischemia–reperfusion of the rat lung. J Transl Med. 2016;14(1):1–13.
Article
CAS
Google Scholar
Wang B, Gong X, Wan J, Zhang L, Zhang Z, Li H, Min S. Resolvin D1 protects mice from LPS-induced acute lung injury. Pulmon Pharmacol therap. 2011;24(4):434–41.
Article
CAS
Google Scholar
Hsiao H-M, Thatcher TH, Colas RA, Serhan CN, Phipps RP, Sime PJ. Resolvin D1 reduces emphysema and chronic inflammation. Am J Pathol. 2015;185(12):3189–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsiao H-M, Sapinoro RE, Thatcher TH, Croasdell A, Levy EP, Fulton RA, Olsen KC, Pollock SJ, Serhan CN, Phipps RP. A novel anti-inflammatory and pro-resolving role for resolvin D1 in acute cigarette smoke-induced lung inflammation. PLoS ONE. 2013;8(3): e58258.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Zhou D, Long FW, Chen KL, Yang HW, Lv ZY, Zhou B, Peng ZH, Sun XF, Li Y, et al. Resolvin D1 protects against inflammation in experimental acute pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol. 2016;310(5):G303-309.
Article
PubMed
Google Scholar
Isopi E, Mattoscio D, Codagnone M, Mari VC, Lamolinara A, Patruno S, D’Aurora M, Cianci E, Nespoli A, Franchi S. Resolvin D1 reduces lung infection and inflammation activating resolution in cystic fibrosis. Front Immunol. 2020;11:581.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anderson DS, Patchin ES, Silva RM, Uyeminami DL, Sharmah A, Guo T, Das GK, Brown JM, Shannahan J, Gordon T. Influence of particle size on persistence and clearance of aerosolized silver nanoparticles in the rat lung. Toxicol Sci. 2015;144(2):366–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Bi Z, Hu Y, Sun L, Song Y, Chen S, Mo F, Yang J, Wei Y, Wei X. Silver nanoparticles and silver ions cause inflammatory response through induction of cell necrosis and the release of mitochondria in vivo and in vitro. Cell Biol Toxicol. 2021;37(2):177–91.
Article
PubMed
CAS
Google Scholar
Shannahan JH, Podila R, Aldossari AA, Emerson H, Powell BA, Ke PC, Rao AM, Brown JM. Formation of a protein corona on silver nanoparticles mediates cellular toxicity via scavenger receptors. Toxicol Sci. 2015;143(1):136–46.
Article
CAS
PubMed
Google Scholar
Pettersson US, Waldén TB, Carlsson P-O, Jansson L, Phillipson M. Female mice are protected against high-fat diet induced metabolic syndrome and increase the regulatory T cell population in adipose tissue; 2012.
Zhang J, Powell CA, Kay MK, Sonkar R, Meruvu S, Choudhury M. Effect of chronic western diets on non-alcoholic fatty liver of male mice modifying the PPAR-γ pathway via miR-27b-5p regulation. Int J Mol Sci. 2021;22(4):1822.
Article
CAS
PubMed
PubMed Central
Google Scholar
Meng Q, Lai Y-C, Kelly NJ, Bueno M, Baust JJ, Bachman TN, Goncharov D, Vanderpool RR, Radder JE, Hu J. Development of a mouse model of metabolic syndrome, pulmonary hypertension, and heart failure with preserved ejection fraction. Am J Respir Cell Mol Biol. 2017;56(4):497–505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holland N, Becak D, Shannahan JH, Brown J, Carratt S, Winkle L, Pinkerton K, Wang C, Munusamy P, Baer DR. Cardiac ischemia reperfusion injury following instillation of 20 nm citrate-capped nanosilver. J Nanomed Nanotechnol. 2015;6(Suppl 6):66.
Google Scholar
Shannahan JH, Podila R, Brown JM. A hyperspectral and toxicological analysis of protein corona impact on silver nanoparticle properties, intracellular modifications, and macrophage activation. Int J Nanomed. 2015;10:6509.
CAS
Google Scholar
Devlin RB, Smith CB, Schmitt MT, Rappold AG, Hinderliter A, Graff D, Carraway MS. Controlled exposure of humans with metabolic syndrome to concentrated ultrafine ambient particulate matter causes cardiovascular effects. Toxicol Sci. 2014;140(1):61–72.
Article
CAS
PubMed
Google Scholar
Park E-J, Choi K, Park K. Induction of inflammatory responses and gene expression by intratracheal instillation of silver nanoparticles in mice. Arch Pharmacal Res. 2011;34(2):299–307.
Article
CAS
Google Scholar
Chuang H-C, Hsiao T-C, Wu C-K, Chang H-H, Lee C-H, Chang C-C, Cheng T-J. Allergenicity and toxicology of inhaled silver nanoparticles in allergen-provocation mice models. Int J Nanomed. 2013;8:4495.
Article
CAS
Google Scholar
Silva RM, Anderson DS, Franzi LM, Peake JL, Edwards PC, Van Winkle LS, Pinkerton KE. Pulmonary effects of silver nanoparticle size, coating, and dose over time upon intratracheal instillation. Toxicol Sci. 2015;144(1):151–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang X, Ji Z, Chang CH, Zhang H, Wang M, Liao YP, Lin S, Meng H, Li R, Sun B. Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small. 2014;10(2):385–98.
Article
CAS
PubMed
Google Scholar
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nesman JI, Gangestad Primdahl K, Tungen JE, Palmas F, Dalli J, Hansen TV. Synthesis, structural confirmation, and biosynthesis of 22-OH-PD1n-3 DPA. Molecules. 2019;24(18):3228.
Article
PubMed Central
CAS
Google Scholar
Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pestka JJ, Akbari P, Wierenga KA, Bates MA, Gilley KN, Wagner JG, Lewandowski RP, Rajasinghe LD, Chauhan PS, Lock AL. Omega-3 polyunsaturated fatty acid intervention against established autoimmunity in a murine model of toxicant-triggered lupus. Front Immunol. 2021;12:66.
Article
Google Scholar
Chiang N, Fredman G, Bäckhed F, Oh SF, Vickery T, Schmidt BA, Serhan CN. Infection regulates pro-resolving mediators that lower antibiotic requirements. Nature. 2012;484(7395):524–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Croasdell A, Thatcher TH, Kottmann RM, Colas RA, Dalli J, Serhan CN, Sime PJ, Phipps RP. Resolvins attenuate inflammation and promote resolution in cigarette smoke-exposed human macrophages. Am J Physiol Lung Cell Mol Physiol. 2015;309(8):L888–901.
Article
CAS
PubMed
PubMed Central
Google Scholar
Walker J, Sundarasivarao PK, Thornton J, Sochacki K, Rodriguez A, Spur B, Acharya N, Yin K. Resolvin D2 promotes host defense in a 2-hit model of sepsis with secondary lung infection. Prostaglandins Other Lipid Mediat. 2022;66:106–617.
Google Scholar
Gemperle C, Tran S, Schmid M, Rimann N, Marti-Jaun J, Hartling I, Wawrzyniak P, Hersberger M. Resolvin D1 reduces inflammation in co-cultures of primary human macrophages and adipocytes by triggering macrophages. Prostaglandins Leukot Essent Fatty Acids. 2021;174: 102363.
Article
CAS
PubMed
Google Scholar
Rey C, Nadjar A, Buaud B, Vaysse C, Aubert A, Pallet V, Layé S, Joffre C. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro. Brain Behav Immun. 2016;55:249–59.
Article
CAS
PubMed
Google Scholar
Tang H, Liu Y, Yan C, Petasis NA, Serhan CN, Gao H. Protective actions of aspirin-triggered (17R) resolvin D1 and its analogue, 17R-hydroxy-19-para-fluorophenoxy-resolvin D1 methyl ester, in C5a-dependent IgG immune complex-induced inflammation and lung injury. J Immunol. 2014;193(7):3769–78.
Article
CAS
PubMed
Google Scholar
Lu G, Zhang R, Geng S, Peng L, Jayaraman P, Chen C, Xu F, Yang J, Li Q, Zheng H. Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat Commun. 2015;6(1):1–14.
Article
CAS
Google Scholar
Speyer CL, Neff TA, Warner RL, Guo RF, Sarma JV, Riedemann NC, Murphy ME, Murphy HS, Ward PA. Regulatory effects of iNOS on acute lung inflammatory responses in mice. Am J Pathol. 2003;163(6):2319–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey JD, Diotallevi M, Nicol T, McNeill E, Shaw A, Chuaiphichai S, Hale A, Starr A, Nandi M, Stylianou E, et al. Nitric oxide modulates metabolic remodeling in inflammatory macrophages through TCA cycle regulation and itaconate accumulation. Cell Rep. 2019;28(1):218-230.e217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Prado CM, Righetti RF, Lopes FDTQdS, Leick EA, Arantes-Costa FM, de Almeida FM, Saldiva PHN, Mauad T, Tibério IdFLC, Martins MdA. iNOS inhibition reduces lung mechanical alterations and remodeling induced by particulate matter in mice. Pulm Med. 2019;6:66.
Ferrara AL, Galdiero MR, Fiorelli A, Cristinziano L, Granata F, Marone G, Di Crescenzo RM, Braile M, Marcella S, Modestino L. Macrophage-polarizing stimuli differentially modulate the inflammatory profile induced by the secreted phospholipase A2 group IA in human lung macrophages. Cytokine. 2021;138: 155378.
Article
CAS
PubMed
Google Scholar
Makita N, Hizukuri Y, Yamashiro K, Murakawa M, Hayashi Y. IL-10 enhances the phenotype of M2 macrophages induced by IL-4 and confers the ability to increase eosinophil migration. Int Immunol. 2015;27(3):131–41.
Article
CAS
PubMed
Google Scholar
Titos E, Rius B, López-Vicario C, Alcaraz-Quiles J, García-Alonso V, Lopategi A, Dalli J, Lozano JJ, Arroyo V, Delgado S, et al. Signaling and immunoresolving actions of resolvin D1 in inflamed human visceral adipose tissue. J Immunol. 2016;197(8):3360–70.
Article
CAS
PubMed
Google Scholar
Gu Z, Lamont GJ, Lamont RJ, Uriarte SM, Wang H, Scott DA. Resolvin D1, resolvin D2 and maresin 1 activate the GSK3β anti-inflammatory axis in TLR4-engaged human monocytes. Innate Immun. 2016;22(3):186–95.
Article
CAS
PubMed
Google Scholar
Chiurchiù V, Leuti A, Dalli J, Jacobsson A, Battistini L, Maccarrone M, Serhan CN. Proresolving lipid mediators resolvin D1, resolvin D2, and maresin 1 are critical in modulating T cell responses. Sci Transl Med. 2016;8(353):353ra111.
Kang J-W, Lee S-M. Resolvin D1 protects the liver from ischemia/reperfusion injury by enhancing M2 macrophage polarization and efferocytosis. Biochimica et Biophysica Acta BBA Mol Cell Biol Lipids. 2016;1861(9):1025–35.
CAS
Google Scholar
Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev.2009;22(2):240–73; Table of Contents.
Serhan CN, Savill J. Resolution of inflammation: the beginning programs the end. Nat Immunol. 2005;6(12):1191–7.
Article
CAS
PubMed
Google Scholar
Chiang N, Serhan CN. Specialized pro-resolving mediator network: an update on production and actions. Essays Biochem. 2020;64(3):443–62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest. 2018;128(7):2657–69.
Article
PubMed
PubMed Central
Google Scholar
Molaei E, Molaei A, Hayes AW, Karimi G. Resolvin D1, therapeutic target in acute respiratory distress syndrome. Eur J Pharmacol. 2021;911: 174527.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bannenberg G, Serhan CN. Specialized pro-resolving lipid mediators in the inflammatory response: an update. Biochim Biophys Acta. 2010;1801(12):1260–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fredman G, Ozcan L, Spolitu S, Hellmann J, Spite M, Backs J, Tabas I. Resolvin D1 limits 5-lipoxygenase nuclear localization and leukotriene B4 synthesis by inhibiting a calcium-activated kinase pathway. Proc Natl Acad Sci. 2014;111(40):14530–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fredman G, Hellmann J, Proto JD, Kuriakose G, Colas RA, Dorweiler B, Connolly ES, Solomon R, Jones DM, Heyer EJ. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat Commun. 2016;7(1):1–11.
Article
Google Scholar
Kuzumoto T, Tanigawa T, Higashimori A, Kitamura H, Nadatani Y, Otani K, Fukunaga S, Hosomi S, Tanaka F, Kamata N. Protective role of resolvin D1, a pro-resolving lipid mediator, in nonsteroidal anti-inflammatory drug-induced small intestinal damage. PLoS ONE. 2021;16(5): e0250862.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnardottir H, Thul S, Pawelzik S-C, Karadimou G, Artiach G, Gallina AL, Mysdotter V, Carracedo M, Tarnawski L, Caravaca AS. The resolvin D1 receptor GPR32 transduces inflammation resolution and atheroprotection. J Clin Investig. 2021;131(24):66.
Article
Google Scholar
Chiang N, Dalli J, Colas RA, Serhan CN. Identification of resolvin D2 receptor mediating resolution of infections and organ protection. J Exp Med. 2015;212(8):1203–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiang N, Libreros S, Norris PC, de la Rosa X, Serhan CN. Maresin 1 activates LGR6 receptor promoting phagocyte immunoresolvent functions. J Clin Investig. 2019;129(12):5294–311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Herová M, Schmid M, Gemperle C, Hersberger M. ChemR23, the receptor for chemerin and resolvin E1, is expressed and functional on M1 but not on M2 macrophages. J Immunol. 2015;194(5):2330–7.
Article
PubMed
CAS
Google Scholar
Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8(5):349–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tsutsumi K, Hagi A, Inoue Y. The relationship between plasma high density lipoprotein cholesterol levels and cholesteryl ester transfer protein activity in six species of healthy experimental animals. Biol Pharm Bull. 2001;24(5):579–81.
Article
CAS
PubMed
Google Scholar
Cao K, Xu J, Zou X, Li Y, Chen C, Zheng A, Li H, Li H. Szeto IM-Y, Shi Y: Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice. Free Radical Biol Med. 2014;67:396–407.
Article
CAS
Google Scholar
Rodríguez-Correa E, González-Pérez I, Clavel-Pérez PI, Contreras-Vargas Y, Carvajal K. Biochemical and nutritional overview of diet-induced metabolic syndrome models in rats: what is the best choice? Nutr Diabetes. 2020;10(1):1–15.
Article
CAS
Google Scholar
Silva RM, Anderson DS, Peake J, Edwards PC, Patchin ES, Guo T, Gordon T, Chen LC, Sun X, Van Winkle LS, et al. Aerosolized silver nanoparticles in the rat lung and pulmonary responses over time. Toxicol Pathol. 2016;44(5):673–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Della Vedova MC, Muñoz MD, Santillan LD, Plateo-Pignatari MG, Germanó MJ, Tosi MER, Garcia S, Gomez NN, Fornes MW, Mejiba SEG: A mouse model of diet-induced obesity resembling most features of human metabolic syndrome. Nutr Metabolic Insights 2016, 9.
Gallou-Kabani C, Vigé A, Gross MS, Rabès JP, Boileau C, Larue-Achagiotis C, Tomé D, Jais JP, Junien C. C57BL/6J and A/J mice fed a high-fat diet delineate components of metabolic syndrome. Obesity. 2007;15(8):1996–2005.
Article
CAS
PubMed
Google Scholar
Narciso L, Martinelli A, Torriani F, Frassanito P, Bernardini R, Chiarotti F, Marianelli C. Natural mineral waters and metabolic syndrome: insights from obese male and female C57BL/6 mice on caloric restriction. Front Nutr. 2022;9:66.
Article
Google Scholar
Roda E, Bottone M, Biggiogera M, Milanesi G, Coccini T. Pulmonary and hepatic effects after low dose exposure to nanosilver: early and long-lasting histological and ultrastructural alterations in rat. Toxicol Rep. 2019;6:1047–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alessandrini F, Vennemann A, Gschwendtner S, Neumann AU, Rothballer M, Seher T, Wimmer M, Kublik S, Traidl-Hoffmann C, Schloter M. Pro-inflammatory versus immunomodulatory effects of silver nanoparticles in the lung: the critical role of dose, size and surface modification. Nanomaterials. 2017;7(10):300.
Article
PubMed Central
CAS
Google Scholar
Lee JH, Mun J, Park JD, Yu IJ. A health surveillance case study on workers who manufacture silver nanomaterials. Nanotoxicology. 2012;6(6):667–9.
Article
CAS
PubMed
Google Scholar
Bhat TA, Kalathil SG, Miller A, Thatcher TH, Sime PJ, Thanavala Y. Specialized proresolving mediators overcome immune suppression induced by exposure to secondhand smoke. J Immunol. 2020;205(11):3205–17.
Article
CAS
PubMed
Google Scholar
Dalli J, Winkler JW, Colas RA, Arnardottir H, Cheng CYC, Chiang N, Petasis NA, Serhan CN. Resolvin D3 and aspirin-triggered resolvin D3 are potent immunoresolvents. Chem Biol. 2013;20(2):188–201.
Article
CAS
PubMed
PubMed Central
Google Scholar
Werz O, Gerstmeier J, Libreros S, De la Rosa X, Werner M, Norris PC, Chiang N, Serhan CN. Human macrophages differentially produce specific resolvin or leukotriene signals that depend on bacterial pathogenicity. Nat Commun. 2018;9(1):1–12.
Article
CAS
Google Scholar
Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, Walters DM, Wingard CJ, Brown JM. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol. 2011;8(1):1–13.
Article
CAS
Google Scholar
Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol. 2011;44(5):725–38.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tighe RM, Birukova A, Yaeger MJ, Reece SW, Gowdy KM. Euthanasia-and lavage-mediated effects on bronchoalveolar measures of lung injury and inflammation. Am J Respir Cell Mol Biol. 2018;59(2):257–66.
Article
CAS
PubMed
PubMed Central
Google Scholar