Moreno-Horn M, Gebel T. Granular biodurable nanomaterials: no convincing evidence for systemic toxicity. Crit Rev Toxicol. 2014;44(10):849–75. https://doi.org/10.3109/10408444.2014.938802.
Article
CAS
PubMed
Google Scholar
Lamas B, Martins Breyner N, Houdeau E. Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: potential consequences for host health. Part Fibre Toxicol. 2020;17(1):19. https://doi.org/10.1186/s12989-020-00349-z.
Article
PubMed
PubMed Central
Google Scholar
van der Zande M, Vandebriel RJ, Groot MJ, Kramer E, Herrera Rivera ZE, Rasmussen K, et al. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol. 2014;11:8. https://doi.org/10.1186/1743-8977-11-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28(11):580–8. https://doi.org/10.1016/j.tibtech.2010.07.006.
Article
CAS
PubMed
Google Scholar
Aguilar F, Crebelli R, Di Domenico A, Dusemund B, Frutos MJ, Galtier P, et al. Scientific opinion on the re-evaluation of silver (E 174) as food additive. Efsa J. 2016. https://doi.org/10.2903/j.efsa.2016.4364.
Article
Google Scholar
Hadrup N, Sharma AK, Loeschner K. Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharm. 2018;98:257–67. https://doi.org/10.1016/j.yrtph.2018.08.007.
Article
CAS
Google Scholar
Giese B, Klaessig F, Park B, Kaegi R, Steinfeldt M, Wigger H, et al. Risks, release and concentrations of engineered nanomaterial in the environment. Sci Rep. 2018;8(1):1565. https://doi.org/10.1038/s41598-018-19275-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shahare B, Yashpal M. Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol Mech Methods. 2013;23(3):161–7. https://doi.org/10.3109/15376516.2013.764950.
Article
CAS
PubMed
Google Scholar
Cha K, Hong HW, Choi YG, Lee MJ, Park JH, Chae HK, et al. Comparison of acute responses of mice livers to short-term exposure to nano-sized or micro-sized silver particles. Biotechnol Lett. 2008;30(11):1893–9. https://doi.org/10.1007/s10529-008-9786-2.
Article
CAS
PubMed
Google Scholar
Park E-J, Bae E, Yi J, Kim Y, Choi K, Lee SH, et al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environ Toxicol Pharmacol. 2010;30(2):162–8.
Article
CAS
PubMed
Google Scholar
Bostan HB, Rezaee R, Valokala MG, Tsarouhas K, Golokhvast K, Tsatsakis AM, et al. Cardiotoxicity of nano-particles. Life Sci. 2016;165:91–9. https://doi.org/10.1016/j.lfs.2016.09.017.
Article
CAS
PubMed
Google Scholar
Kim YS, Kim JS, Cho HS, Rha DS, Kim JM, Park JD, et al. Twenty-eight-day oral toxicity, genotoxicity, and gender-related tissue distribution of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 2008;20(6):575–83.
Article
CAS
PubMed
Google Scholar
Jeong GN, Jo UB, Ryu HY, Kim YS, Song KS, Yu IJ. Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague-Dawley rats. Arch Toxicol. 2010;84(1):63–9.
Article
CAS
PubMed
Google Scholar
Maneewattanapinyo P, Banlunara W, Thammacharoen C, Ekgasit S, Kaewamatawong T. An evaluation of acute toxicity of colloidal silver nanoparticles. J Vet Med Sci. 2011;73(11):1417–23. https://doi.org/10.1292/jvms.11-0038.
Article
CAS
PubMed
Google Scholar
Kim JS, Song KS, Sung JH, Ryu HR, Choi BG, Cho HS, et al. Genotoxicity, acute oral and dermal toxicity, eye and dermal irritation and corrosion and skin sensitisation evaluation of silver nanoparticles. Nanotoxicology. 2013;7(5):953–60. https://doi.org/10.3109/17435390.2012.676099.
Article
CAS
PubMed
Google Scholar
van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, et al. Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano. 2012;6(8):7427–42.
Article
PubMed
Google Scholar
Garcia T, Lafuente D, Blanco J, Sanchez DJ, Sirvent JJ, Domingo JL, et al. Oral subchronic exposure to silver nanoparticles in rats. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2016;92:177–87.
Article
CAS
Google Scholar
Hadrup N, Loeschner K, Bergstrom A, Wilcks A, Gao X, Vogel U, et al. Subacute oral toxicity investigation of nanoparticulate and ionic silver in rats. Arch Toxicol. 2012;86(4):543–51. https://doi.org/10.1007/s00204-011-0759-1.
Article
CAS
PubMed
Google Scholar
Hassankhani R, Esmaeillou M, Tehrani AA, Nasirzadeh K, Khadir F, Maadi H. In vivo toxicity of orally administrated silicon dioxide nanoparticles in healthy adult mice. Environ Sci Pollut Res Int. 2015;22(2):1127–32.
Article
CAS
PubMed
Google Scholar
Kim Y-R, Lee S-Y, Lee EJ, Park SH, Seong N-W, Seo H-S, et al. Toxicity of colloidal silica nanoparticles administered orally for 90 days in rats. Int J Nanomed. 2014;9(Suppl 2):67–78.
Google Scholar
Tarantini A, Huet S, Jarry G, Lanceleur R, Poul M, Tavares A, et al. Genotoxicity of synthetic amorphous silica nanoparticles in rats following short-term exposure. Part 1: oral route. Environ Mol Mutagen. 2015;56(2):218–27.
Article
CAS
PubMed
Google Scholar
Lee J-A, Kim M-K, Paek H-J, Kim Y-R, Kim M-K, Lee J-K, et al. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats. Int J Nanomed. 2014;9(Suppl 2):251–60.
CAS
Google Scholar
Yoshida T, Yoshioka Y, Takahashi H, Misato K, Mori T, Hirai T, et al. Intestinal absorption and biological effects of orally administered amorphous silica particles. Nanoscale Res Lett. 2014;9(1):532. https://doi.org/10.1186/1556-276X-9-532.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fu C, Liu T, Li L, Liu H, Chen D, Tang F. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials. 2013;34(10):2565–75. https://doi.org/10.1016/j.biomaterials.2012.12.043.
Article
CAS
PubMed
Google Scholar
Hadrup N, Lam HR. Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review. Regul Toxicol Pharmacol. 2014;68(1):1–7. https://doi.org/10.1016/j.yrtph.2013.11.002.
Article
CAS
PubMed
Google Scholar
Furchner JE, Richmond CR, Drake GA. Comparative metabolism of radionuclides in mammals. 4. Retention of silver-110m in mouse rat monkey and dog. Health Phys. 1968;15(6):505. https://doi.org/10.1097/00004032-196812000-00005.
Article
CAS
PubMed
Google Scholar
Dupont HL, Jiang ZD, Dupont AW, Utay NS. The intestinal microbiome in human health and disease. Trans Am Clin Climatol Assoc. 2020;131:178–97.
PubMed
PubMed Central
Google Scholar
Franzosa EA, Sirota-Madi A, Avila-Pacheco J, Fornelos N, Haiser HJ, Reinker S, et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat Microbiol. 2019;4(2):293–305. https://doi.org/10.1038/s41564-018-0306-4.
Article
CAS
PubMed
Google Scholar
Velasquez-Manoff M. Gut microbiome: the peacekeepers. Nature. 2015;518(7540):S3-11. https://doi.org/10.1038/518S3a.
Article
CAS
PubMed
Google Scholar
Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12. https://doi.org/10.1038/nrn3346.
Article
CAS
PubMed
Google Scholar
Sarkar A, Harty S, Lehto SM, Moeller AH, Dinan TG, Dunbar RIM, et al. The microbiome in psychology and cognitive neuroscience. Trends Cogn Sci. 2018;22(7):611–36. https://doi.org/10.1016/j.tics.2018.04.006.
Article
PubMed
Google Scholar
Bassett SA, Young W, Fraser K, Dalziel JE, Webster J, Ryan L, et al. Metabolome and microbiome profiling of a stress-sensitive rat model of gut-brain axis dysfunction. Sci Rep. 2019;9(1):14026. https://doi.org/10.1038/s41598-019-50593-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Poore GD, Kopylova E, Zhu Q, Carpenter C, Fraraccio S, Wandro S, et al. Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature. 2020;579(7800):567–74. https://doi.org/10.1038/s41586-020-2095-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Savage N. The complex relationship between drugs and the microbiome. Nature. 2020;577(7792):S10–1. https://doi.org/10.1038/d41586-020-00196-0.
Article
CAS
PubMed
Google Scholar
Dolgin E. Fighting cancer with microbes. Nature. 2020;577(7792):S16–8. https://doi.org/10.1038/d41586-020-00199-x.
Article
CAS
PubMed
Google Scholar
Mesnage R, Antoniou MN, Tsoukalas D, Goulielmos GN, Tsatsakis A. Gut microbiome metagenomics to understand how xenobiotics impact human health. Curr Opin Toxicol. 2018;11–12:51–8. https://doi.org/10.1016/j.cotox.2019.02.002.
Article
Google Scholar
Ottman N, Geerlings SY, Aalvink S, de Vos WM, Belzer C. Action and function of Akkermansia muciniphila in microbiome ecology, health and disease. Best Pract Res Clin Gastroenterol. 2017;31(6):637–42. https://doi.org/10.1016/j.bpg.2017.10.001.
Article
PubMed
Google Scholar
Li J, Tang M, Xue Y. Review of the effects of silver nanoparticle exposure on gut bacteria. J Appl Toxicol. 2019;39(1):27–37. https://doi.org/10.1002/jat.3729.
Article
CAS
PubMed
Google Scholar
Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009;106(10):3698–703. https://doi.org/10.1073/pnas.0812874106.
Article
PubMed
PubMed Central
Google Scholar
Behr C, Ramirez-Hincapie S, Cameron HJ, Strauss V, Walk T, Herold M, et al. Impact of lincosamides antibiotics on the composition of the rat gut microbiota and the metabolite profile of plasma and feces. Toxicol Lett. 2018;296:139–51. https://doi.org/10.1016/j.toxlet.2018.08.002.
Article
CAS
PubMed
Google Scholar
Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity. Curr Opin Microbiol. 2017;35:8–15. https://doi.org/10.1016/j.mib.2016.10.003.
Article
CAS
PubMed
Google Scholar
Cani PD, Van Hul M, Lefort C, Depommier C, Rastelli M, Everard A. Microbial regulation of organismal energy homeostasis. Nat Metab. 2019;1(1):34–46. https://doi.org/10.1038/s42255-018-0017-4.
Article
CAS
PubMed
Google Scholar
Gao J, Xu K, Liu H, Liu G, Bai M, Peng C, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018;8:13. https://doi.org/10.3389/fcimb.2018.00013.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lavelle A, Sokol H. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol. 2020;17(4):223–37. https://doi.org/10.1038/s41575-019-0258-z.
Article
PubMed
Google Scholar
van Ravenzwaay B, Cunha GCP, Leibold E, Looser R, Mellert W, Prokoudine A, et al. The use of metabolomics for the discovery of new biomarkers of effect. Toxicol Lett. 2007;172(1–2):21–8. https://doi.org/10.1016/j.toxlet.2007.05.021.
Article
CAS
PubMed
Google Scholar
Kamp H, Strauss V, Wiemer J, Leibold E, Walk T, Mellert W, et al. Reproducibility and robustness of metabolome analysis in rat plasma of 28-day repeated dose toxicity studies. Toxicol Lett. 2012;215(2):143–9. https://doi.org/10.1016/j.toxlet.2012.09.015.
Article
CAS
PubMed
Google Scholar
Mattes W, Davis K, Fabian E, Greenhaw J, Herold M, Looser R, et al. Detection of hepatotoxicity potential with metabolite profiling (metabolomics) of rat plasma. Toxicol Lett. 2014;230(3):467–78. https://doi.org/10.1016/j.toxlet.2014.07.021.
Article
CAS
PubMed
Google Scholar
Behr C, Kamp H, Fabian E, Krennrich G, Mellert W, Peter E, et al. Gut microbiome-related metabolic changes in plasma of antibiotic-treated rats. Arch Toxicol. 2017;91(10):3439–54. https://doi.org/10.1007/s00204-017-1949-2.
Article
CAS
PubMed
Google Scholar
OECD. Test No. 407: repeated dose 28-day oral toxicity study in rodents. 2008.
Tamimi SO, Zmeili SM, Gharaibeh MN, Shubair MS, Salhab AS. Toxicity of a new antismoking mouthwash 881010 in rats and rabbits. J Toxicol Environ Health A. 1998;53(1):47–60. https://doi.org/10.1080/009841098159466.
Article
CAS
PubMed
Google Scholar
Buesen R, Landsiedel R, Sauer UG, Wohlleben W, Groeters S, Strauss V, et al. Effects of SiO(2), ZrO(2), and BaSO(4) nanomaterials with or without surface functionalization upon 28-day oral exposure to rats. Arch Toxicol. 2014;88(10):1881–906. https://doi.org/10.1007/s00204-014-1337-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilding LA, Bassis CM, Walacavage K, Hashway S, Leroueil PR, Morishita M, et al. Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology. 2016;10(5):513–20. https://doi.org/10.3109/17435390.2015.1078854.
Article
CAS
PubMed
Google Scholar
van den Brule S, Ambroise J, Lecloux H, Levard C, Soulas R, De Temmerman PJ, et al. Dietary silver nanoparticles can disturb the gut microbiota in mice. Part Fibre Toxicol. 2016;13(1):38. https://doi.org/10.1186/s12989-016-0149-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang T, Li QQ, Cheng L, Buch H, Zhang F. Akkermansia muciniphila is a promising probiotic. Microb Biotechnol. 2019;12(6):1109–25. https://doi.org/10.1111/1751-7915.13410.
Article
PubMed
PubMed Central
Google Scholar
Drzewiecka D. Significance and roles of Proteus spp. bacteria in natural environments. Microb Ecol. 2016;72(4):741–58. https://doi.org/10.1007/s00248-015-0720-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
EFSA Nda Panel (Panel on Dietetic Products NaA). Opinion of the scientific panel on dietetic products, nutrition and allergies on a request from the commission related to the tolerable upper intake level of silicon. EFSA J. 2004;60:1–11.
Google Scholar
ATSDR. Toxicological profile for silver. Atlanta, GA: Agency for Toxic Substances and Disease Registry, US Department of Health and Human Services, Public Health Service; 1990.
Google Scholar
EPA US. Integrated risk information system (IRIS) toxicological review and summary documents for silver, CASRN 7440-22-4. Washington, DC: US Environmental Protection Agency; 1996.
Google Scholar
Varner Ke-B A, Feldhake D, Venkatapathy R. State-of-the-science review: everything nanosilver and more. Washington, DC: US Environmental Protection Agency; 2010. (EPA/600/R-10/ 084).
Google Scholar
Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. https://doi.org/10.1186/1471-2180-9-123.
Article
CAS
PubMed
PubMed Central
Google Scholar
Williams K, Milner J, Boudreau MD, Gokulan K, Cerniglia CE, Khare S. Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology. 2015;9(3):279–89. https://doi.org/10.3109/17435390.2014.921346.
Article
CAS
PubMed
Google Scholar
Chen HQ, Zhao RF, Wang B, Cai CX, Zheng LN, Wang HL, et al. The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. Nanoimpact. 2017;8:80–8. https://doi.org/10.1016/j.impact.2017.07.005.
Article
Google Scholar
Zhai QX, Li TQ, Yu LL, Xiao Y, Feng SS, Wu JP, et al. Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice. Sci Bull. 2017;62(12):831–40. https://doi.org/10.1016/j.scib.2017.01.031.
Article
CAS
Google Scholar
Tsiaoussis J, Antoniou MN, Koliarakis I, Mesnage R, Vardavas CI, Izotov BN, et al. Effects of single and combined toxic exposures on the gut microbiome: current knowledge and future directions. Toxicol Lett. 2019;312:72–97. https://doi.org/10.1016/j.toxlet.2019.04.014.
Article
CAS
PubMed
Google Scholar
Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E, Verger EO, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut. 2016;65(3):426–36. https://doi.org/10.1136/gutjnl-2014-308778.
Article
CAS
PubMed
Google Scholar
Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Backhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22(4):658–68. https://doi.org/10.1016/j.cmet.2015.07.026.
Article
CAS
PubMed
PubMed Central
Google Scholar
Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog. 2017;106:171–81. https://doi.org/10.1016/j.micpath.2016.02.005.
Article
PubMed
Google Scholar
Guarner F. The intestinal flora in inflammatory bowel disease: normal or abnormal? Curr Opin Gastroenterol. 2005;21(4):414–8.
PubMed
Google Scholar
Woting A, Blaut M. The intestinal microbiota in metabolic disease. Nutrients. 2016;8(4):202. https://doi.org/10.3390/nu8040202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lowry CA, Smith DG, Siebler PH, Schmidt D, Stamper CE, Hassell JE Jr, et al. The microbiota, immunoregulation, and mental health: implications for public health. Curr Environ Health Rep. 2016;3(3):270–86. https://doi.org/10.1007/s40572-016-0100-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guinane CM, Cotter PD. Role of the gut microbiota in health and chronic gastrointestinal disease: understanding a hidden metabolic organ. Ther Adv Gastroenterol. 2013;6(4):295–308. https://doi.org/10.1177/1756283X13482996.
Article
Google Scholar
Choi SC, Brown J, Gong M, Ge Y, Zadeh M, Li W, et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus-susceptible mice. Sci Transl Med. 2020. https://doi.org/10.1126/scitranslmed.aax2220.
Article
PubMed
PubMed Central
Google Scholar
Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife. 2013;2: e01202. https://doi.org/10.7554/eLife.01202.
Article
CAS
PubMed
PubMed Central
Google Scholar
Han J, Meng J, Chen SY, Li C. Integrative analysis of the gut microbiota and metabolome in rats treated with rice straw biochar by 16S rRNA gene sequencing and LC/MS-based metabolomics. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-54467-6.
Article
PubMed
PubMed Central
Google Scholar
Axson JL, Stark DI, Bondy AL, Capracotta SS, Maynard AD, Philbert MA, et al. Rapid kinetics of size and pH-dependent dissolution and aggregation of silver nanoparticles in simulated gastric fluid. J Phys Chem C Nanomater Interfaces. 2015;119(35):20632–41. https://doi.org/10.1021/acs.jpcc.5b03634.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bove P, Malvindi MA, Kote SS, Bertorelli R, Summa M, Sabella S. Dissolution test for risk assessment of nanoparticles: a pilot study. Nanoscale. 2017;9(19):6315–26. https://doi.org/10.1039/c6nr08131b.
Article
CAS
PubMed
Google Scholar
Peretyazhko TS, Zhang Q, Colvin VL. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Environ Sci Technol. 2014;48(20):11954–61. https://doi.org/10.1021/es5023202.
Article
CAS
PubMed
Google Scholar
Wu W, Zhang R, McClements DJ, Chefetz B, Polubesova T, Xing B. Transformation and speciation analysis of silver nanoparticles of dietary supplement in simulated human gastrointestinal tract. Environ Sci Technol. 2018;52(15):8792–800. https://doi.org/10.1021/acs.est.8b01393.
Article
CAS
PubMed
Google Scholar
Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, et al. Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol. 2011;8:18. https://doi.org/10.1186/1743-8977-8-18.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hanchi H, Mottawea W, Sebei K, Hammami R. The genus Enterococcus: between probiotic potential and safety concerns-an update. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.01791.
Article
PubMed
PubMed Central
Google Scholar
Franz CMAP, Huch M, Abriouel H, Holzapfel W, Galvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol. 2011;151(2):125–40. https://doi.org/10.1016/j.ijfoodmicro.2011.08.014.
Article
CAS
PubMed
Google Scholar
Jiao N, Baker SS, Nugent CA, Tsompana M, Cai LT, Wang Y, et al. Gut microbiome may contribute to insulin resistance and systemic inflammation in obese rodents: a meta-analysis. Physiol Genom. 2018;50(4):244–54. https://doi.org/10.1152/physiolgenomics.00114.2017.
Article
CAS
Google Scholar
Fung TC, Vuong HE, Luna CDG, Pronovost GN, Aleksandrova AA, Riley NG, et al. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. Nat Microbiol. 2019;4(12):2064–73. https://doi.org/10.1038/s41564-019-0540-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magruder M, Edusei E, Zhang LS, Albakry S, Satlin MJ, Westblade LF, et al. Gut commensal microbiota and decreased risk for Enterobacteriaceae bacteriuria and urinary tract infection. Gut Microbes. 2020. https://doi.org/10.1080/19490976.2020.1805281.
Article
PubMed
PubMed Central
Google Scholar
Tsoukalas D, Fragoulakis V, Papakonstantinou E, Antonaki M, Vozikis A, Tsatsakis A, et al. Prediction of autoimmune diseases by targeted metabolomic assay of urinary organic acids. Metabolites. 2020. https://doi.org/10.3390/metabo10120502.
Article
PubMed
PubMed Central
Google Scholar
Hadrup N, Lam HR, Loeschner K, Mortensen A, Larsen EH, Frandsen H. Nanoparticulate silver increases uric acid and allantoin excretion in rats, as identified by metabolomics. J Appl Toxicol. 2012;32(11):929–33. https://doi.org/10.1002/jat.2779.
Article
CAS
PubMed
Google Scholar
Hu HL, Fan XP, Guo Q, Wei XJ, Yang DQ, Zhang BY, et al. Silicon dioxide nanoparticles induce insulin resistance through endoplasmic reticulum stress and generation of reactive oxygen species. Part Fibre Toxicol. 2019. https://doi.org/10.1186/s12989-019-0327-z.
Article
PubMed
PubMed Central
Google Scholar
Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Pt B):128–33. https://doi.org/10.1016/j.brainres.2018.03.015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magnusdottir S, Ravcheev D, de Crecy-Lagard V, Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front Genet. 2015;6:148. https://doi.org/10.3389/fgene.2015.00148.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gominak SC. Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a “pro-inflammatory” state associated with atherosclerosis and autoimmunity. Med Hypotheses. 2016;94:103–7. https://doi.org/10.1016/j.mehy.2016.07.007.
Article
CAS
PubMed
Google Scholar
Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9(1):3294. https://doi.org/10.1038/s41467-018-05470-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
van Beek AA, Hugenholtz F, Meijer B, Sovran B, Perdijk O, Vermeij WP, et al. Frontline science: tryptophan restriction arrests B cell development and enhances microbial diversity in WT and prematurely aging Ercc1(-/Delta7) mice. J Leukoc Biol. 2017;101(4):811–21. https://doi.org/10.1189/jlb.1HI0216-062RR.
Article
PubMed
Google Scholar
Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med. 2016;22(6):598–605. https://doi.org/10.1038/nm.4102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang G, Huang S, Wang Y, Cai S, Yu H, Liu H, et al. Bridging intestinal immunity and gut microbiota by metabolites. Cell Mol Life Sci. 2019;76(20):3917–37. https://doi.org/10.1007/s00018-019-03190-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Metidji A, Omenetti S, Crotta S, Li Y, Nye E, Ross E, et al. The environmental sensor AHR protects from inflammatory damage by maintaining intestinal stem cell homeostasis and barrier integrity. Immunity. 2018;49(2):353. https://doi.org/10.1016/j.immuni.2018.07.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scott SA, Fu J, Chang PV. Microbial tryptophan metabolites regulate gut barrier function via the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A. 2020. https://doi.org/10.1073/pnas.2000047117.
Article
PubMed
PubMed Central
Google Scholar
Krishnan S, Ding Y, Saedi N, Choi M, Sridharan GV, Sherr DH, et al. Gut microbiota-derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 2018;23(4):1099–111. https://doi.org/10.1016/j.celrep.2018.03.109.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hellack B, Hülser T, Izak E, Kuhlbusch T, Meyer F, Spree M, et al. Characterization report for all nanoGEM materials. 2012.
Wohlleben W, Kuhlbusch TAJ, Schnekenburger J, Lehr C-M, editors. Safety of nanomaterials along their lifecycle: release, exposure and human hazards. Boca Raton: CRC Press; 2014.
Google Scholar
Henkler F, Tralau T, Tentschert J, Kneuer C, Haase A, Platzek T, et al. Risk assessment of nanomaterials in cosmetics: a European Union perspective. Arch Toxicol. 2012;86(11):1641–6. https://doi.org/10.1007/s00204-012-0944-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
REACH, Anon: Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency. Edited by UNION EPATCOTE2006.
Wohlleben W, Ma-Hock L, Boyko V, Cox G, Egenolf H, Freiberger H, et al. Nanospecific guidance in REACH: a comparative physical-chemical characterization of 15 materials with methodical correlations. J Ceram Sci Technol. 2013;4(2):93–104. https://doi.org/10.4416/Jcst2012-00045.
Article
Google Scholar
Landsiedel R, Sauer UG, Ma-Hock L, Schnekenburger J, Wiemann M. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies. Nanomedicine (London). 2014;9(16):2557–85. https://doi.org/10.2217/nnm.14.149.
Article
CAS
Google Scholar
Commission E, Centre JR, Protection IfHaC. REACH implementation project substance identification of nanomaterials (RIP-oN 1). 2011. http://ec.europa.eu/environment/chemicals/nanotech/pdf/report_ripon1.pdf.
van Ravenzwaay B, Herold M, Kamp H, Kapp MD, Fabian E, Looser R, et al. Metabolomics: a tool for early detection of toxicological effects and an opportunity for biology based grouping of chemicals-from QSAR to QBAR. Mutat Res. 2012;746(2):144–50. https://doi.org/10.1016/j.mrgentox.2012.01.006.
Article
CAS
PubMed
Google Scholar
van Ravenzwaay B, Sperber S, Lemke O, Fabian E, Faulhammer F, Kamp H, et al. Metabolomics as read-across tool: a case study with phenoxy herbicides. Regul Toxicol Pharmacol. 2016;81:288–304. https://doi.org/10.1016/j.yrtph.2016.09.013.
Article
CAS
PubMed
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. Cambridge: Babraham Bioinformatics, Babraham Institute; 2010.
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–3. https://doi.org/10.1038/nmeth.3869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6. https://doi.org/10.1093/nar/gks1219.
Article
CAS
PubMed
Google Scholar
Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6(1):90. https://doi.org/10.1186/s40168-018-0470-z.
Article
PubMed
PubMed Central
Google Scholar
R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2020.
Google Scholar