Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJ: Nanotoxicology. Occup Environ Med 2004, 61: 727–728. 10.1136/oem.2004.013243
Article
PubMed Central
CAS
PubMed
Google Scholar
Nel A, Xia T, Madler L, Li N: Toxic potential of materials at the nanolevel. Science 2006, 311: 622–627. 10.1126/science.1114397
Article
CAS
PubMed
Google Scholar
Oberdorster G, Oberdorster E, Oberdorster J: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005, 113: 823–839. 10.1289/ehp.7339
Article
PubMed Central
CAS
PubMed
Google Scholar
Donaldson K, Tran CL: Inflammation caused by particles and fibers. Inhal Toxicol 2002, 14: 5–27. 10.1080/089583701753338613
Article
CAS
PubMed
Google Scholar
Nel A: Atmosphere. Air pollution-related illness: effects of particles. Science 2005, 308: 804–806. 10.1126/science.1108752
Article
CAS
PubMed
Google Scholar
Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 2004, 77: 117–125. 10.1093/toxsci/kfg228
Article
CAS
PubMed
Google Scholar
Zhou YM, Zhong CY, Kennedy IM, Leppert VJ, Pinkerton KE: Oxidative stress and NFkappaB activation in the lungs of rats: a synergistic interaction between soot and iron particles. Toxicol Appl Pharmacol 2003, 190: 157–169. 10.1016/S0041-008X(03)00157-1
Article
CAS
PubMed
Google Scholar
Lam CW, James JT, McCluskey R, Hunter RL: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004, 77: 126–134. 10.1093/toxsci/kfg243
Article
CAS
PubMed
Google Scholar
Lin W, Huang YW, Zhou XD, Ma Y: In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 2006, 217: 252–259. 10.1016/j.taap.2006.10.004
Article
CAS
PubMed
Google Scholar
Cui D, Tian F, Ozkan CS, Wang M, Gao H: Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 2005, 155: 73–85. 10.1016/j.toxlet.2004.08.015
Article
CAS
PubMed
Google Scholar
Stone V, Johnston H, Clift MJD: Air Pollution, Ultrafine and Nanoparticle Toxicology: Cellular and Molecular Interactions. NanoBioscience, IEEE Transactions on 2007, 6: 331–340. 10.1109/TNB.2007.909005
Article
Google Scholar
Wang L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, Wu Y, Tan W: Watching Silica Nanoparticles Glow in the Biological World. Analytical Chemistry 2006, 78: 646. 10.1021/ac0693619
Article
Google Scholar
Long TC, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry GV, Veronesi B: Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ Health Perspect 2007, 115: 1631–1637. 10.1289/ehp.10216
Article
PubMed Central
CAS
PubMed
Google Scholar
Yang W, Peters JI, Williams Iii RO: Inhaled nanoparticles--A current review. International Journal of Pharmaceutics 2008, 356: 239–247. 10.1016/j.ijpharm.2008.02.011
Article
CAS
PubMed
Google Scholar
Kang SJ, Kim BM, Lee YJ, Chung HW: Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen 2008, 49: 399–405. 10.1002/em.20399
Article
CAS
PubMed
Google Scholar
Gurr JR, Wang AS, Chen CH, Jan KY: Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 2005, 213: 66–73. 10.1016/j.tox.2005.05.007
Article
CAS
PubMed
Google Scholar
Park E-J, Yi J, Chung K-H, Ryu D-Y, Choi J, Park K: Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicology Letters 2008, 180: 222–229. 10.1016/j.toxlet.2008.06.869
Article
CAS
PubMed
Google Scholar
Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ: In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 2005, 19: 975–983. 10.1016/j.tiv.2005.06.034
Article
CAS
PubMed
Google Scholar
Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L: Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine 2008, 4: 226–236. 10.1016/j.nano.2008.04.001
Article
CAS
Google Scholar
Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL: Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 2006, 92: 174–185. 10.1093/toxsci/kfj197
Article
CAS
PubMed
Google Scholar
Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Hohr D, Fubini B, Martra G, Fenoglio I, Borm PJ, Schins RP: Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 2007, 222: 141–151. 10.1016/j.taap.2007.05.001
Article
CAS
PubMed
Google Scholar
Thibodeau M, Giardina C, Hubbard AK: Silica-induced caspase activation in mouse alveolar macrophages is dependent upon mitochondrial integrity and aspartic proteolysis. Toxicol Sci 2003, 76: 91–101. 10.1093/toxsci/kfg178
Article
CAS
PubMed
Google Scholar
Thibodeau MS, Giardina C, Knecht DA, Helble J, Hubbard AK: Silica-induced apoptosis in mouse alveolar macrophages is initiated by lysosomal enzyme activity. Toxicol Sci 2004, 80: 34–48. 10.1093/toxsci/kfh121
Article
CAS
PubMed
Google Scholar
Wang L, Bowman L, Lu Y, Rojanasakul Y, Mercer RR, Castranova V, Ding M: Essential role of p53 in silica-induced apoptosis. Am J Physiol Lung Cell Mol Physiol 2005, 288: L488–496. 10.1152/ajplung.00123.2003
Article
CAS
PubMed
Google Scholar
Fubini B, Hubbard A: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 2003, 34: 1507–1516. 10.1016/S0891-5849(03)00149-7
Article
CAS
PubMed
Google Scholar
Zhao M, Antunes F, Eaton JW, Brunk UT: Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem 2003, 270: 3778–3786. 10.1046/j.1432-1033.2003.03765.x
Article
CAS
PubMed
Google Scholar
Chang J-S, Chang KLB, Hwang D-F, Kong Z-L: In Vitro Cytotoxicitiy of Silica Nanoparticles at High Concentrations Strongly Depends on the Metabolic Activity Type of the Cell Line. Environmental Science & Technology 2007, 41: 2064.
Article
CAS
Google Scholar
Hirano S, Kanno S, Furuyama A: Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol 2008, 232: 244–251. 10.1016/j.taap.2008.06.016
Article
CAS
PubMed
Google Scholar
Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue JP, Cooke PA, Gray JW, Chen FF: Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nano-onions on human skin fibroblast. Nano Lett 2005, 5: 2448–2464. 10.1021/nl051748o
Article
PubMed Central
CAS
PubMed
Google Scholar
Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T: Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 2006, 160: 121–126. 10.1016/j.toxlet.2005.06.020
Article
CAS
PubMed
Google Scholar
Pulskamp K, Diabate S, Krug HF: Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 2007, 168: 58–74. 10.1016/j.toxlet.2006.11.001
Article
CAS
PubMed
Google Scholar
Grabinski C, Hussain S, Lafdi K, Braydich-Stolle L, Schlager J: Effect of particle dimension on biocompatibility of carbon nanomaterials. Carbon 2007, 45: 2828–2835. 10.1016/j.carbon.2007.08.039
Article
CAS
Google Scholar
Chlopek J, Czajkowska B, Szaraniec B, Frackowiak E, Szostak K, Béguin F: In vitro studies of carbon nanotubes biocompatibility. Carbon 2006, 44: 1106–1111. 10.1016/j.carbon.2005.11.022
Article
CAS
Google Scholar
Lovrić J, Bazzi HS, Cuie Y, Fortin GRA, Winnik FM, Maysinger D: Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. Journal of Molecular Medicine 2005, 83: 377–385. 10.1007/s00109-004-0629-x
Article
PubMed
Google Scholar
Schrand AM, Dai L, Schlager JJ, Hussain SM, Osawa E: Differential biocompatibility of carbon nanotubes and nanodiamonds. Diamond and Related Materials 2007, 16: 2118–2123. 10.1016/j.diamond.2007.07.020
Article
CAS
Google Scholar
Rothen-Rutishauser B, Muhlfeld C, Blank F, Musso C, Gehr P: Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Particle and Fibre Toxicology 2007, 4: 9. 10.1186/1743-8977-4-9
Article
PubMed Central
PubMed
Google Scholar
Ju-Nam Y, Lead JR: Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of The Total Environment 2008, 400: 396–414. 10.1016/j.scitotenv.2008.06.042
Article
CAS
PubMed
Google Scholar
Warheit DB, Sayes CM, Reed KL, Swain KA: Health effects related to nanoparticle exposures: Environmental, health and safety considerations for assessing hazards and risks. Pharmacology & Therapeutics 2008, 120: 35–42.
Article
CAS
Google Scholar
Maurer-Jones MA, Bantz KC, Love SA, Marquis BJ, Haynes CL: Toxicity of therapeutic nanoparticles. Nanomedicine 2009, 4: 219–241. 10.2217/17435889.4.2.219
Article
CAS
PubMed
Google Scholar
Longmire M, Choyke PL, Kobayashi H: Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 2008, 3: 703–717. 10.2217/17435889.3.5.703
Article
PubMed Central
CAS
PubMed
Google Scholar
Horie M, Nishio K, Fujita K, Endoh S, Miyauchi A, Saito Y, Iwahashi H, Yamamoto K, Murayama H, Nakano H, et al.: Protein Adsorption of Ultrafine Metal Oxide and Its Influence on Cytotoxicity toward Cultured Cells. Chemical Research in Toxicology 2009, 22: 543–553. 10.1021/tx800289z
Article
CAS
PubMed
Google Scholar
Ehrenberg MS, Friedman AE, Finkelstein JN, Oberdörster G, McGrath JL: The influence of protein adsorption on nanoparticle association with cultured endothelial cells. Biomaterials 2009, 30: 603–610. 10.1016/j.biomaterials.2008.09.050
Article
CAS
PubMed
Google Scholar
Stayton I, Winiarz J, Shannon K, Ma Y: Study of uptake and loss of silica nanoparticles in living human lung epithelial cells at single cell level. Analytical and Bioanalytical Chemistry 2009, 394: 1595–1608. 10.1007/s00216-009-2839-0
Article
CAS
PubMed
Google Scholar
Soejima K, Fang W, Rollins BJ: DNA methyltransferase 3b contributes to oncogenic transformation induced by SV40T antigen and activated Ras. Oncogene 2003, 22: 4723–4733. 10.1038/sj.onc.1206510
Article
CAS
PubMed
Google Scholar
Suzuki H, Toyooka T, Ibuki Y: Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol 2007, 41: 3018–3024. 10.1021/es0625632
Article
CAS
PubMed
Google Scholar
Worle-Knirsch JM, Pulskamp K, Krug HF: Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006, 6: 1261–1268. 10.1021/nl060177c
Article
CAS
PubMed
Google Scholar
Yang H, Liu C, Yang D, Zhang H, Xi Z: Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 2009, 29: 69–78. 10.1002/jat.1385
Article
PubMed
Google Scholar
Kroemer G, Jaattela M: Lysosomes and autophagy in cell death control. Nat Rev Cancer 2005, 5: 886–897. 10.1038/nrc1738
Article
CAS
PubMed
Google Scholar
Xia T, Kovochich M, Liong M, Zink JI, Nel AE: Cationic Polystyrene Nanosphere Toxicity Depends on Cell-Specific Endocytic and Mitochondrial Injury Pathways. ACS Nano 2008, 2: 85–96. 10.1021/nn700256c
Article
CAS
PubMed
Google Scholar
Zdolsek JM, Olsson GM, Brunk UT: Photooxidative damage to lysosomes of cultured macrophages by acridine orange. Photochem Photobiol 1990, 51: 67–76. 10.1111/j.1751-1097.1990.tb01685.x
Article
CAS
PubMed
Google Scholar
Servais H, Van Der Smissen P, Thirion G, Van Der Essen G, Van Bambeke F, Tulkens PM, Mingeot-Leclercq M-P: Gentamicin-induced apoptosis in LLC-PK1 cells: Involvement of lysosomes and mitochondria. Toxicol Appl Pharmacol 2005, 206: 321–333. 10.1016/j.taap.2004.11.024
Article
CAS
PubMed
Google Scholar
Zareba M, Raciti MW, Henry MM, Sarna T, Burke JM: Oxidative stress in ARPE-19 cultures: Do melanosomes confer cytoprotection? Free Radic Biol 2006, 40: 87–100. 10.1016/j.freeradbiomed.2005.08.015
Article
CAS
Google Scholar
Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, et al.: Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 1999, 144: 281–292. 10.1083/jcb.144.2.281
Article
PubMed Central
CAS
PubMed
Google Scholar
Hanley C, Layne J, Punnoose A, Reddy KM, Coombs I, Coombs A, Feris K, Wingett D: Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles. Nanotechnology 2008, 19: 1–10. 10.1088/0957-4484/19/29/295103
Article
Google Scholar
Van Engeland M, Ramaekers FCS, Schutte B, Reutelingsperger PM: A novel assay to measure loss of plasma membrane assymetry during apoptosis of adherent cells in culture. Cytometry 1996, 24: 131–139. 10.1002/(SICI)1097-0320(19960601)24:2<131::AID-CYTO5>3.0.CO;2-M
Article
CAS
PubMed
Google Scholar
Tang L, Wu Y, Timmons RB: Fibrinogen adsorption and host tissue responses to plasma functionalized surfaces. Journal of Biomedical Materials Research 1998, 42: 156–163. 10.1002/(SICI)1097-4636(199810)42:1<156::AID-JBM19>3.0.CO;2-J
Article
CAS
PubMed
Google Scholar
Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ: Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration and diffusion at low concentrations. Environ Sci Technol 2005, 39: 9370–9376. 10.1021/es051043o
Article
CAS
PubMed
Google Scholar
Mu X, Li Z, Li X, Mishra SR, Zhang B, Si Z, Yang L, Jiang W, Yan B: Characterization of protein clusters of diverse magnetic nanoparticles and their dynamic interactions with human cells. J Phys Chem C 2009, 113: 5390–5395. 10.1021/jp809493t
Article
CAS
Google Scholar
Xia T, Kovochich M, Liong M, Zink JI, Nel AE: Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2008, 2: 85–96. 10.1021/nn700256c
Article
CAS
PubMed
Google Scholar
Thevenot P, Hu W, Tang L: Surface chemistry influences implant biocompatibility. Curr Top Med Chem 2008, 8: 270–280. 10.2174/156802608783790901
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhu Y, Li W, Li Q, Li Y, Li Y, Zhang X, Huang Q: Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon 2009, 47: 1351–1358. 10.1016/j.carbon.2009.01.026
Article
CAS
Google Scholar
Karatoki AS, Hench LL, Seal S: The potential toxicity of nanomaterials-The role of surfaces. JOM 2006, 58: 77–82.
Google Scholar
Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B: Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 2006, 40: 4346–4352. 10.1021/es060589n
Article
CAS
PubMed
Google Scholar
Chellat F, Merhi Y, Moreau A, Yahia LH: Therapeutic potential of nanoparticulate systems for macrophage targeting. Biomaterials 2005, 26: 7260–7275. 10.1016/j.biomaterials.2005.05.044
Article
CAS
PubMed
Google Scholar
Koch AM, Reynolds F, Kircher MF, Merkle HP, Weissleder R, Josephson I: Uptake and metabolism of a dual fluorochome Tat-nanoparticle in HeLa cells. Bioconjugate Chem 2003, 14: 1115–1121. 10.1021/bc034123v
Article
CAS
Google Scholar
Tang L, Eaton JW: Natural responses to unnatural materials: A molecular mechanism for foreign body reactions. Mol Med 1999, 5: 351–358.
PubMed Central
CAS
PubMed
Google Scholar
Jiao Sun, Tingting Ding: p53 reaction to apoptosis induced by hydroxyapatite nanoparticles in rat macrophages. Journal of Biomedical Materials Research Part A 2009, (88A):673–679.
Article
CAS
Google Scholar
Clift MJD, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V: The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicology and Applied Pharmacology 2008, 232: 418–427. 10.1016/j.taap.2008.06.009
Article
CAS
PubMed
Google Scholar
Hoet PH, Bruske-Hohlfeld I, Salata OV: Nanoparticles - known and unknown health risks. J Nanobiotechnology 2004, 2: 12. 10.1186/1477-3155-2-12
Article
PubMed Central
PubMed
Google Scholar
Brown DM, Kinloch IA, Bangert U, Windle AH, Walter DM, Walker GS, Scotchford CA, Donaldson K, Stone V: An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 2007, 45: 1743–1756. 10.1016/j.carbon.2007.05.011
Article
CAS
Google Scholar
Huang M, Ma Z, Khor E, Lim L-Y: Uptake of FITC-Chitosan Nanoparticles by A549 Cells. Pharmaceutical Research 2002, 19: 1488–1494. 10.1023/A:1020404615898
Article
CAS
PubMed
Google Scholar
Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Müller RH: [']Stealth' corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids and Surfaces B: Biointerfaces 2000, 18: 301–313. 10.1016/S0927-7765(99)00156-3
Article
CAS
PubMed
Google Scholar
Yin Win K, Feng S-S: Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005, 26: 2713–2722. 10.1016/j.biomaterials.2004.07.050
Article
Google Scholar
Karlsson HL, Cronholm P, Gustafsson J, Möller L: Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chemical Research in Toxicology 2008, 21: 1726–1732. 10.1021/tx800064j
Article
CAS
PubMed
Google Scholar
Sato M, Bremner I: Oxygen free radicals and metallothionein. Free Radic Biol Med 1993, 14: 325–337. 10.1016/0891-5849(93)90029-T
Article
CAS
PubMed
Google Scholar
Palmiter RD: The elusive function of metallothioneins. Proc Natl Acad Sci USA 1998, 95: 8428–8430. 10.1073/pnas.95.15.8428
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang Y, Wimmer U, Lichtlen P, Inderbitzin D, Stieger B, Meier PJ, Hunziker L, Stallmach T, Forrer R, Rulicke T, et al.: Metal-responsive transcription factor-1 (MTF-1) is essential for embryonic liver development and heavy metal detoxification in the adult liver. FASEB J 2004, 18: 1071–1079. 10.1096/fj.03-1282com
Article
CAS
PubMed
Google Scholar
Masters BA, Kelly EJ, Quaife CJ, Brinster RL, Palmiter RD: Targeted disruption of metallothionein I and II genes increases sensitivity to cadmium. Proc Natl Acad Sci USA 1994, 91: 584–588. 10.1073/pnas.91.2.584
Article
PubMed Central
CAS
PubMed
Google Scholar
Courtade M, Carrera G, Paternain JL, Martel S, Carre PC, Folch J, Pipy B: Metallothionein expression in human lung and its varying levels after lung transplantation. Toulouse Lung Transplantation Group. Chest 1998, 113: 371–378. 10.1378/chest.113.2.371
Article
CAS
PubMed
Google Scholar
Piedboeuf B, Johnston C, Watkins R, Hudak B, Lazo J, Cherian M, Horowitz S: Increased expression of tissue inhibitor of metalloproteinases (TIMP-I) and metallothionein in murine lungs after hyperoxic exposure. Am J Respir Cell Mol Biol 1994, 10: 123–132.
Article
CAS
PubMed
Google Scholar
Chubatsu LS, Meneghini R: Metallothionein protects DNA from oxidative damage. Biochem J 1993, 291(Pt 1):193–198.
Article
PubMed Central
CAS
PubMed
Google Scholar
Baird SK, Kurz T, Brunk UT: Metallothionein protects against oxidative stress-induced lysosomal destabilization. Biochem J 2006, 394: 275–283. 10.1042/BJ20051143
Article
PubMed Central
CAS
PubMed
Google Scholar
Kang JL, Moon C, Lee HS, Lee HW, Park EM, Kim HS, Castranova V: Comparison of the biological activity between ultrafine and fine titanium dioxide particles in RAW 264.7 cells associated with oxidative stress. J Toxicol Environ Health A 2008, 71: 478–485. 10.1080/15287390801906675
Article
CAS
PubMed
Google Scholar
Simon-Deckers A, Gouget B, Mayne-L'hermite M, Herlin-Boime N, Reynaud C, Carriere M: In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 2008, 253: 137–146. 10.1016/j.tox.2008.09.007
Article
CAS
PubMed
Google Scholar
Simon A, Gouget B, Mayne M, Herlin N, Reynaud C, Degrouard J, Carriere M: In vitro investigation of TiO2, Al2O3, Au nanoparticles and mutli-walled carbon nanotubes cyto- and genotoxicity on lung, kidney cells and hepatocytes. Toxicology Letters 2007, 172: S36-S36. 10.1016/j.toxlet.2007.05.124
Article
Google Scholar
Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A: The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicology Letters 2007, 168: 121–131. 10.1016/j.toxlet.2006.08.019
Article
CAS
PubMed
Google Scholar
Kagan VE, Bayir H, Shvedova AA: Nanomedicine and nanotoxicology: two sides of the same coin. Nanomedicine 2005, 1: 313–316.
Article
CAS
PubMed
Google Scholar
Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM: The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 2008, 105: 11613–11618. 10.1073/pnas.0801763105
Article
PubMed Central
CAS
PubMed
Google Scholar
Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH: Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 2009, 5: 846–853. 10.1002/smll.200800461
Article
CAS
PubMed
Google Scholar
Sonavane G, Tomoda K, Makino K: Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids and Surfaces B: Biointerfaces 2008, 66: 274–280. 10.1016/j.colsurfb.2008.07.004
Article
CAS
PubMed
Google Scholar
Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J: Comparative pulmonary toxicity study of nano-TiO2 particles of different sizes and agglomerations in rats: Different short- and long-term post-instillation results. Toxicology 2009, 264: 110–118. 10.1016/j.tox.2009.08.002
Article
CAS
PubMed
Google Scholar
Chithrani BD, Ghazani AA, Chan WC: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006, 6: 662–668. 10.1021/nl052396o
Article
CAS
PubMed
Google Scholar
Foged C, Brodin B, Frokjaer S, Sundblad A: Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharm 2005, 298: 315–322. 10.1016/j.ijpharm.2005.03.035
Article
CAS
PubMed
Google Scholar
Cooke MS, Evans MD, Dizdaroglu M, Lunec J: Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 2003, 17: 1195–1214. 10.1096/fj.02-0752rev
Article
CAS
PubMed
Google Scholar
Meneghini R: Iron homeostasis, oxidative stress, and DNA damage. Free Radic Biol Med 1997, 23: 783–792. 10.1016/S0891-5849(97)00016-6
Article
CAS
PubMed
Google Scholar
Brunk UT, Dalen H, Roberg K, Hellquist HB: Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radic Biol Med 1997, 23: 616–626. 10.1016/S0891-5849(97)00007-5
Article
CAS
PubMed
Google Scholar
Kagedal K, Zhao M, Svensson I, Brunk UT: Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J 2001, 359: 335–343. 10.1042/0264-6021:3590335
Article
PubMed Central
CAS
PubMed
Google Scholar
Guicciardi ME, Leist M, Gores GJ: Lysosomes in cell death. Oncogene 2004, 23: 2881–2890. 10.1038/sj.onc.1207512
Article
CAS
PubMed
Google Scholar
Jaattela M: Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 2004, 23: 2746–2756. 10.1038/sj.onc.1207513
Article
PubMed
Google Scholar