Fuller R, Landrigan PJ, Balakrishnan K, Bathan G, Bose-O’Reilly S, Brauer M, Caravanos J, Chiles T, Cohen A, Corra L, Cropper M, Ferraro G, Hanna J, Hanrahan D, Hu H, Hunter D, Janata G, Kupka R, Lanphear B, Lichtveld M, Martin K, Mustapha A, Sanchez-Triana E, Sandilya K, Schaefli L, Shaw J, Seddon J, Suk W, Téllez-Rojo MM, Yan C. Pollution and health: a progress update. Lancet Planet Health. 2022;6(6):e535–47. https://doi.org/10.1016/S2542-5196(22)00090-0.
Article
PubMed
Google Scholar
Health-Effects-Institute. State of Global Air 2020 [Special Report]. Boston, MA2020. Available from: https://www.stateofglobalair.org/.
Murray CJL, Aravkin AY, Zheng P, Abbafati C, Abbas KM, Abbasi-Kangevari M, et al. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet. 2020;396(10258):1223–49. https://doi.org/10.1016/S0140-6736(20)30752-2.
Article
Google Scholar
Schraufnagel DE, Balmes JR, Cowl CT, De Matteis S, Jung SH, Mortimer K, et al. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, Part 2: air pollution and organ systems. Chest. 2019;155(2):417–26. https://doi.org/10.1016/j.chest.2018.10.041.
Article
PubMed
Google Scholar
Madureira J, Slezakova K, Costa C, Pereira MC, Teixeira JP. Assessment of indoor air exposure among newborns and their mothers: levels and sources of PM10, PM2.5 and ultrafine particles at 65 home environments. Environ Pollut. 2020;264:114746. https://doi.org/10.1016/j.envpol.2020.114746.
Article
PubMed
CAS
Google Scholar
Wei H, Feng Y, Liang F, Cheng W, Wu X, Zhou R, et al. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter. Toxicology. 2017;380:94–103. https://doi.org/10.1016/j.tox.2017.01.017.
Article
PubMed
CAS
Google Scholar
WHO. WHO releases country estimates on air pollution exposure and health impact 2016. Available from: https://www.who.int/en/news-room/detail/27-09-2016-who-releases-country-estimates-on-air-pollution-exposure-and-health-impact.
Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78. https://doi.org/10.1161/CIR.0b013e3181dbece1.
Article
PubMed
CAS
Google Scholar
Santus P, Russo A, Madonini E, Allegra L, Blasi F, Centanni S, et al. How air pollution influences clinical management of respiratory diseases. A case-crossover study in Milan. Respir Res. 2012;13(1):95.
Article
PubMed
PubMed Central
Google Scholar
Li R, Zhou R, Zhang J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol Lett. 2018;15(5):7506–14. https://doi.org/10.3892/ol.2018.8355.
Article
PubMed
PubMed Central
CAS
Google Scholar
Li D, Li Y, Li G, Zhang Y, Li J, Chen H. Fluorescent reconstitution on deposition of PM(2.5) in lung and extrapulmonary organs. Proc Nat Acad Sci USA. 2019;116(7):2488–93. https://doi.org/10.1073/pnas.1818134116.
Article
CAS
Google Scholar
Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf. 2016;128:67–74. https://doi.org/10.1016/j.ecoenv.2016.01.030.
Article
PubMed
CAS
Google Scholar
Grunig G, Marsh LM, Esmaeil N, Jackson K, Gordon T, Reibman J, et al. Perspective: ambient air pollution: inflammatory response and effects on the lung’s vasculature. Pulm Circ. 2014;4(1):25–35. https://doi.org/10.1086/674902.
Article
PubMed
PubMed Central
Google Scholar
Huang Y, Bao M, Xiao J, Qiu Z, Wu K. Effects of PM(2.5) on cardio-pulmonary function injury in open manganese mine workers. Int J Environ Res Public Health. 2019. https://doi.org/10.3390/ijerph16112017.
Article
PubMed
PubMed Central
Google Scholar
Chen JJ, Ma WM, Yuan JL, Cui LQ. PM2.5 exposure aggravates left heart failure induced pulmonary hypertension. Acta Cardiol. 2019;74(3):238–44.
Article
PubMed
CAS
Google Scholar
Rajagopalan S, Al-Kindi SG, Brook RD. Air pollution and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72(17):2054–70. https://doi.org/10.1016/j.jacc.2018.07.099.
Article
PubMed
CAS
Google Scholar
Pope CA 3rd, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA. 2002;287(9):1132–41. https://doi.org/10.1001/jama.287.9.1132.
Article
PubMed
PubMed Central
CAS
Google Scholar
Huang F, Pan B, Wu J, Chen E, Chen L. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: a meta-analysis. Oncotarget. 2017;8(26):43322–31. https://doi.org/10.18632/oncotarget.17313.
Article
PubMed
PubMed Central
Google Scholar
Sisani F, Di Maria F, Cesari D. Environmental and human health impact of different powertrain passenger cars in a life cycle perspective. A focus on health risk and oxidative potential of particulate matter components. Sci Total Environ. 2022;805:150171. https://doi.org/10.1016/j.scitotenv.2021.150171.
Article
PubMed
CAS
Google Scholar
Shi L, Zanobetti A, Kloog I, Coull BA, Koutrakis P, Melly SJ, et al. Low-concentration PM2.5 and mortality: estimating acute and chronic effects in a population-based study. Environ Health Perspect. 2016;124(1):46–52. https://doi.org/10.1289/ehp.1409111.
Article
PubMed
Google Scholar
Shin S, Burnett RT, Kwong JC, Hystad P, van Donkelaar A, Brook JR, et al. Ambient air pollution and the risk of atrial fibrillation and stroke: a population-based cohort study. Environ Health Perspect. 2019;127(8):87009. https://doi.org/10.1289/EHP4883.
Article
PubMed
Google Scholar
You R, Ho YS, Chang RC. The pathogenic effects of particulate matter on neurodegeneration: a review. J Biomed Sci. 2022;29(1):15. https://doi.org/10.1186/s12929-022-00799-x.
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Zhong Y, Liao J, Wang G. PM2.5-related cell death patterns. Int J Med Sci. 2021;18(4):1024–9. https://doi.org/10.7150/ijms.46421.
Article
PubMed
PubMed Central
CAS
Google Scholar
Weichenthal SA, Godri-Pollitt K, Villeneuve PJ. PM2.5, oxidant defence and cardiorespiratory health: a review. Environ Health. 2013;12:40. https://doi.org/10.1186/1476-069X-12-40.
Article
PubMed
PubMed Central
Google Scholar
Niu X, Jones T, BéruBé K, Chuang HC, Sun J, Ho KF. The oxidative capacity of indoor source combustion derived particulate matter and resulting respiratory toxicity. Sci Total Environ. 2021;767: 144391. https://doi.org/10.1016/j.scitotenv.2020.144391.
Article
PubMed
CAS
Google Scholar
Meng M, Jia R, Wei M, Meng X, Zhang X, Du R, et al. Oxidative stress activates Ryr2-Ca(2+) and apoptosis to promote PM(2.5)-induced heart injury of hyperlipidemia mice. Ecotoxicol Environ Saf. 2022;232:113228. https://doi.org/10.1016/j.ecoenv.2022.113228.
Article
PubMed
CAS
Google Scholar
Jia H, Liu Y, Guo D, He W, Zhao L, Xia S. PM2.5-induced pulmonary inflammation via activating of the NLRP3/caspase-1 signaling pathway. Environ Toxicol. 2021;36(3):298–307. https://doi.org/10.1002/tox.23035.
Article
PubMed
CAS
Google Scholar
Lei X, Chen R, Wang C, Shi J, Zhao Z, Li W, et al. Personal fine particulate matter constituents, increased systemic inflammation, and the role of DNA hypomethylation. Environ Sci Technol. 2019;53(16):9837–44. https://doi.org/10.1021/acs.est.9b02305.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu C, Cai J, Qiao L, Wang H, Xu W, Li H, et al. The acute effects of fine particulate matter constituents on blood inflammation and coagulation. Environ Sci Technol. 2017;51(14):8128–37. https://doi.org/10.1021/acs.est.7b00312.
Article
PubMed
CAS
Google Scholar
Xu MX, Ge CX, Qin YT, Gu TT, Lou DS, Li Q, et al. Prolonged PM2.5 exposure elevates risk of oxidative stress-driven nonalcoholic fatty liver disease by triggering increase of dyslipidemia. Free Radic Biol Med. 2019;130:542–56. https://doi.org/10.1016/j.freeradbiomed.2018.11.016.
Article
PubMed
CAS
Google Scholar
Zhou T, Hu Y, Wang Y, Sun C, Zhong Y, Liao J, et al. Fine particulate matter (PM(2.5)) aggravates apoptosis of cigarette-inflamed bronchial epithelium in vivo and vitro. Environ Pollut. 2019;248:1–9. https://doi.org/10.1016/j.envpol.2018.11.054.
Article
PubMed
CAS
Google Scholar
Shan H, Li X, Ouyang C, Ke H, Yu X, Tan J, et al. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function. Ecotoxicol Environ Saf. 2022;231:113170. https://doi.org/10.1016/j.ecoenv.2022.113170.
Article
PubMed
CAS
Google Scholar
Sachdeva K, Do DC, Zhang Y, Hu X, Chen J, Gao P. Environmental exposures and asthma development: autophagy, mitophagy, and cellular senescence. Front Immunol. 2019;10:2787. https://doi.org/10.3389/fimmu.2019.02787.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ogino K, Nagaoka K, Okuda T, Oka A, Kubo M, Eguchi E, et al. PM2.5-induced airway inflammation and hyperresponsiveness in NC/Nga mice. Environ Toxicol. 2017;32(3):1047–54. https://doi.org/10.1002/tox.22303.
Article
PubMed
CAS
Google Scholar
Fu Q, Lyu D, Zhang L, Qin Z, Tang Q, Yin H, et al. Airborne particulate matter (PM2.5) triggers autophagy in human corneal epithelial cell line. Environ Pollut. 2017;227:314–22. https://doi.org/10.1016/j.envpol.2017.04.078.
Article
PubMed
CAS
Google Scholar
Li J, An Z, Song J, Du J, Zhang L, Jiang J, et al. Fine particulate matter-induced lung inflammation is mediated by pyroptosis in mice. Ecotoxicol Environ Saf. 2021;219: 112351. https://doi.org/10.1016/j.ecoenv.2021.112351.
Article
PubMed
CAS
Google Scholar
Wang Y, Tang M. PM2.5 induces ferroptosis in human endothelial cells through iron overload and redox imbalance. Environ Pollut. 2019;254(Pt A):112937. https://doi.org/10.1016/j.envpol.2019.07.105.
Article
PubMed
CAS
Google Scholar
Han X, Tian M, Shliaha PV, Zhang J, Jiang S, Nan B, et al. Real-world particulate matters induce lung toxicity in rats fed with a high-fat diet: evidence of histone modifications. J Hazard Mater. 2021;416: 126182. https://doi.org/10.1016/j.jhazmat.2021.126182.
Article
PubMed
CAS
Google Scholar
Liang Y, Hu L, Li J, Liu F, Jones KC, Li D, et al. Short-term personal PM(2.5) exposure and change in DNA methylation of imprinted genes: panel study of healthy young adults in Guangzhou city. China Environ Pollut. 2021;275:116601. https://doi.org/10.1016/j.envpol.2021.116601.
Article
PubMed
CAS
Google Scholar
Ryu YS, Kang KA, Piao MJ, Ahn MJ, Yi JM, Hyun YM, et al. Particulate matter induces inflammatory cytokine production via activation of NFκB by TLR5-NOX4-ROS signaling in human skin keratinocyte and mouse skin. Redox Biol. 2019;21: 101080. https://doi.org/10.1016/j.redox.2018.101080.
Article
PubMed
CAS
Google Scholar
Yu Y, Sun Q, Li T, Ren X, Lin L, Sun M, et al. Adverse outcome pathway of fine particulate matter leading to increased cardiovascular morbidity and mortality: an integrated perspective from toxicology and epidemiology. J Hazard Mater. 2022;430: 128368. https://doi.org/10.1016/j.jhazmat.2022.128368.
Article
PubMed
CAS
Google Scholar
Wittwehr C, Aladjov H, Ankley G, Byrne HJ, de Knecht J, Heinzle E, et al. How adverse outcome pathways can aid the development and use of computational prediction models for regulatory toxicology. Toxicol Sci. 2017;155(2):326–36. https://doi.org/10.1093/toxsci/kfw207.
Article
PubMed
CAS
Google Scholar
Kelly FJ, Fussell JC. Air pollution and airway disease. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 2011;41(8):1059–71. https://doi.org/10.1111/j.1365-2222.2011.03776.x.
Article
CAS
Google Scholar
Xing YF, Xu YH, Shi MH, Lian YX. The impact of PM2.5 on the human respiratory system. J Thorac Dis. 2016;8(1):E69-74. https://doi.org/10.3978/j.issn.2072-1439.2016.01.19.
Article
PubMed
PubMed Central
Google Scholar
Sesé L, Nunes H, Cottin V, Sanyal S, Didier M, Carton Z, et al. Role of atmospheric pollution on the natural history of idiopathic pulmonary fibrosis. Thorax. 2018;73(2):145–50. https://doi.org/10.1136/thoraxjnl-2017-209967.
Article
PubMed
Google Scholar
Pun VC, Kazemiparkouhi F, Manjourides J, Suh HH. Long-term PM2.5 exposure and respiratory, cancer, and cardiovascular mortality in older US adults. Am J Epidemiol. 2017;186(8):961–9. https://doi.org/10.1093/aje/kwx166.
Article
PubMed
PubMed Central
Google Scholar
Cheng J, Su H, Xu Z. Intraday effects of outdoor air pollution on acute upper and lower respiratory infections in Australian children. Environ Pollut. 2021;268(Pt A): 115698. https://doi.org/10.1016/j.envpol.2020.115698.
Article
PubMed
CAS
Google Scholar
Hou D, Ge Y, Chen C, Tan Q, Chen R, Yang Y, et al. Associations of long-term exposure to ambient fine particulate matter and nitrogen dioxide with lung function: a cross-sectional study in China. Environ Int. 2020;144: 105977. https://doi.org/10.1016/j.envint.2020.105977.
Article
PubMed
CAS
Google Scholar
Krall JR, Mulholland JA, Russell AG, Balachandran S, Winquist A, Tolbert PE, et al. Associations between source-specific fine particulate matter and emergency department visits for respiratory disease in four U.S. cities. Environ Health Perspect. 2017;125(1):97–103. https://doi.org/10.1289/EHP271.
Article
PubMed
CAS
Google Scholar
Corsini E, Budello S, Marabini L, Galbiati V, Piazzalunga A, Barbieri P, et al. Comparison of wood smoke PM2.5 obtained from the combustion of FIR and beech pellets on inflammation and DNA damage in A549 and THP-1 human cell lines. Archives Toxicol. 2013;87(12):2187–99. https://doi.org/10.1007/s00204-013-1071-z.
Article
CAS
Google Scholar
Wang G, Zhen L, Lü P, Jiang R, Song W. Effects of ozone and fine particulate matter (PM2.5) on rat cardiac autonomic nervous system and systemic inflammation. J Hyg Res. 2013;42(4):554–60.
CAS
Google Scholar
Gualtieri M, Ovrevik J, Mollerup S, Asare N, Longhin E, Dahlman HJ, et al. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: effects on DNA, mitochondria, AhR binding and spindle organization. Mutat Res. 2011;713(1–2):18–31. https://doi.org/10.1016/j.mrfmmm.2011.05.011.
Article
PubMed
CAS
Google Scholar
Gualtieri M, Longhin E, Mattioli M, Mantecca P, Tinaglia V, Mangano E, et al. Gene expression profiling of A549 cells exposed to Milan PM2.5. Toxicol Lett. 2012;209(2):136–45. https://doi.org/10.1016/j.toxlet.2011.11.015.
Article
PubMed
CAS
Google Scholar
Longhin E, Holme JA, Gutzkow KB, Arlt VM, Kucab JE, Camatini M, et al. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells: characterization of the process and possible mechanisms involved. Part Fibre Toxicol. 2013;10:63. https://doi.org/10.1186/1743-8977-10-63.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dieme D, Cabral-Ndior M, Garçon G, Verdin A, Billet S, Cazier F, et al. Relationship between physicochemical characterization and toxicity of fine particulate matter (PM2.5) collected in Dakar city (Senegal). Environ Res. 2012;113:1–13. https://doi.org/10.1016/j.envres.2011.11.009.
Article
PubMed
CAS
Google Scholar
Hiraiwa K, van Eeden SF. Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants. Mediat Inflamm. 2013;2013: 619523. https://doi.org/10.1155/2013/619523.
Article
CAS
Google Scholar
Sun B, Shi Y, Li Y, Jiang J, Liang S, Duan J, et al. Short-term PM(2.5) exposure induces sustained pulmonary fibrosis development during post-exposure period in rats. J Hazard Mater. 2020;385:121566. https://doi.org/10.1016/j.jhazmat.2019.121566.
Article
PubMed
CAS
Google Scholar
Michael S, Montag M, Dott W. Pro-inflammatory effects and oxidative stress in lung macrophages and epithelial cells induced by ambient particulate matter. Environ Pollut. 2013;183:19–29. https://doi.org/10.1016/j.envpol.2013.01.026.
Article
PubMed
CAS
Google Scholar
Ma H, Li J, Wan C, Liang Y, Zhang X, Dong G, et al. Inflammation response of water-soluble fractions in atmospheric fine particulates: a seasonal observation in 10 large Chinese cities. Environ Sci Technol. 2019;53(7):3782–90. https://doi.org/10.1021/acs.est.8b05814.
Article
PubMed
CAS
Google Scholar
Motta V, Angelici L, Nordio F, Bollati V, Fossati S, Frascati F, et al. Integrative analysis of miRNA and inflammatory gene expression after acute particulate matter exposure. Toxicol Sci. 2013;132(2):307–16. https://doi.org/10.1093/toxsci/kft013.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu C, Guo H, Cheng X, Shao M, Wu C, Wang S, et al. Exposure to airborne PM2.5 suppresses microRNA expression and deregulates target oncogenes that cause neoplastic transformation in NIH3T3 cells. Oncotarget. 2015;6(30):29428–39. https://doi.org/10.18632/oncotarget.5005.
Article
PubMed
PubMed Central
Google Scholar
Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, et al. Role of oxidative damage in toxicity of particulates. Free Radical Res. 2010;44(1):1–46. https://doi.org/10.3109/10715760903300691.
Article
CAS
Google Scholar
Ghio AJ, Carraway MS, Madden MC. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B Crit Rev. 2012;15(1):1–21. https://doi.org/10.1080/10937404.2012.632359.
Article
PubMed
CAS
Google Scholar
Kaur S, Rana S, Singh HP, Batish DR, Kohli RK. Citronellol disrupts membrane integrity by inducing free radical generation. Z Naturforsch C J Biosci. 2011;66(5–6):260–6. https://doi.org/10.1515/znc-2011-5-609.
Article
PubMed
CAS
Google Scholar
Heo J, Antkiewicz DS, Shafer MM, Perkins DA, Sioutas C, Schauer JJ. Assessing the role of chemical components in cellular responses to atmospheric particle matter (PM) through chemical fractionation of PM extracts. Anal Bioanal Chem. 2015;407(20):5953–63. https://doi.org/10.1007/s00216-015-8749-4.
Article
PubMed
CAS
Google Scholar
Ma JH, Song SH, Guo M, Zhou J, Liu F, Peng L, et al. Long-term exposure to PM2.5 lowers influenza virus resistance via down-regulating pulmonary macrophage Kdm6a and mediates histones modification in IL-6 and IFN-beta promoter regions. Biochem Biophys Res Commun. 2017;493(2):1122–8. https://doi.org/10.1016/j.bbrc.2017.09.013.
Article
PubMed
CAS
Google Scholar
Chen YW, Huang MZ, Chen CL, Kuo CY, Yang CY, Chiang-Ni C, et al. PM(2.5) impairs macrophage functions to exacerbate pneumococcus-induced pulmonary pathogenesis. Part Fibre Toxicol. 2020;17(1):37. https://doi.org/10.1186/s12989-020-00362-2.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhao J, Gao Z, Tian Z, Xie Y, Xin F, Jiang R, et al. The biological effects of individual-level PM(2.5) exposure on systemic immunity and inflammatory response in traffic policemen. Occup Environ Med. 2013;70(6):426–31. https://doi.org/10.1136/oemed-2012-100864.
Article
PubMed
CAS
Google Scholar
Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Curr Opin Pediatr. 2009;21(2):243–51. https://doi.org/10.1097/mop.0b013e32832925cc.
Article
PubMed
PubMed Central
Google Scholar
Huang YC, Karoly ED, Dailey LA, Schmitt MT, Silbajoris R, Graff DW, et al. Comparison of gene expression profiles induced by coarse, fine, and ultrafine particulate matter. J Toxicol Environ Health A. 2011;74(5):296–312. https://doi.org/10.1080/15287394.2010.516238.
Article
PubMed
CAS
Google Scholar
Sun H, Shamy M, Kluz T, Muñoz AB, Zhong M, Laulicht F, et al. Gene expression profiling and pathway analysis of human bronchial epithelial cells exposed to airborne particulate matter collected from Saudi Arabia. Toxicol Appl Pharmacol. 2012;265(2):147–57. https://doi.org/10.1016/j.taap.2012.10.008.
Article
PubMed
CAS
Google Scholar
Yan SB, Guo-Wei YU, Chen HJO, Health. An overview on effect of PM_(2.5) on DNA damage. 2015,31(6):847–850.
Yang L, Liu G, Lin Z, Wang Y, He H, Liu T, et al. Pro-inflammatory response and oxidative stress induced by specific components in ambient particulate matter in human bronchial epithelial cells. Environ Toxicol. 2016;31(8):923–36. https://doi.org/10.1002/tox.22102.
Article
PubMed
CAS
Google Scholar
Yang L, Liu G, Fu L, Zhong W, Li X, Pan Q. DNA repair enzyme OGG1 promotes alveolar progenitor cell renewal and relieves PM2.5-induced lung injury and fibrosis. Ecotoxicol Environ Saf. 2020;205:111283. https://doi.org/10.1016/j.ecoenv.2020.111283.
Article
PubMed
CAS
Google Scholar
Dong H, Zheng L, Duan X, Zhao W, Chen J, Liu S, et al. Cytotoxicity analysis of ambient fine particle in BEAS-2B cells on an air-liquid interface (ALI) microfluidics system. Sci Total Environ. 2019;677:108–19. https://doi.org/10.1016/j.scitotenv.2019.04.203.
Article
PubMed
CAS
Google Scholar
Liu Y, Chen YY, Cao JY, Tao FB, Zhu XX, Yao CJ, et al. Oxidative stress, apoptosis, and cell cycle arrest are induced in primary fetal alveolar type II epithelial cells exposed to fine particulate matter from cooking oil fumes. Environ Sci Pollut Res Int. 2015;22(13):9728–41. https://doi.org/10.1007/s11356-015-4140-4.
Article
PubMed
CAS
Google Scholar
Huang Q, Zhang J, Peng S, Tian M, Chen J, Shen H. Effects of water soluble PM2.5 extracts exposure on human lung epithelial cells (A549): a proteomic study. J Appl Toxicol JAT. 2014;34(6):675–87. https://doi.org/10.1002/jat.2910.
Article
PubMed
CAS
Google Scholar
Feng Y, He D, Yao Z, Klionsky DJ. The machinery of macroautophagy. Cell Res. 2014;24(1):24–41. https://doi.org/10.1038/cr.2013.168.
Article
PubMed
CAS
Google Scholar
Ding S, Wang H, Wang M, Bai L, Yu P, Wu W. Resveratrol alleviates chronic “real-world” ambient particulate matter-induced lung inflammation and fibrosis by inhibiting NLRP3 inflammasome activation in mice. Ecotoxicol Environ Saf. 2019;182: 109425. https://doi.org/10.1016/j.ecoenv.2019.109425.
Article
PubMed
CAS
Google Scholar
Zhu XM, Wang Q, Xing WW, Long MH, Fu WL, Xia WR, et al. PM2.5 induces autophagy-mediated cell death via NOS2 signaling in human bronchial epithelium cells. Int J Biol Sci. 2018;14(5):557–64. https://doi.org/10.7150/ijbs.24546.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deng X, Zhang F, Rui W, Long F, Wang L, Feng Z, et al. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells. Toxicol in vitro Int J Publ Assoc BIBRA. 2013;27(6):1762–70. https://doi.org/10.1016/j.tiv.2013.05.004.
Article
CAS
Google Scholar
Badran G, Verdin A, Grare C, Abbas I, Achour D, Ledoux F, et al. Toxicological appraisal of the chemical fractions of ambient fine (PM(2.5–0.3)) and quasi-ultrafine (PM(0.3)) particles in human bronchial epithelial BEAS-2B cells. Environ Pollut. 2020;263(Pt A):114620. https://doi.org/10.1016/j.envpol.2020.114620.
Article
PubMed
CAS
Google Scholar
Li M, Hua Q, Shao Y, Zeng H, Liu Y, Diao Q, et al. Circular RNA circBbs9 promotes PM(2.5)-induced lung inflammation in mice via NLRP3 inflammasome activation. Environ Int. 2020;143:105976. https://doi.org/10.1016/j.envint.2020.105976.
Article
PubMed
CAS
Google Scholar
Guohua F, Tieyuan Z, Xinping M, Juan X. Melatonin protects against PM2.5-induced lung injury by inhibiting ferroptosis of lung epithelial cells in a Nrf2-dependent manner. Ecotoxicol Environ Saf. 2021;223:112588. https://doi.org/10.1016/j.ecoenv.2021.112588.
Article
PubMed
CAS
Google Scholar
Weichenthal S, Kulka R, Lavigne E, van Rijswijk D, Brauer M, Villeneuve PJ, et al. Biomass burning as a source of ambient fine particulate air pollution and acute myocardial infarction. Epidemiology. 2017;28(3):329–37. https://doi.org/10.1097/EDE.0000000000000636.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Ma R, Ban J, Lu F, Guo M, Zhong Y, et al. Risk of cardiovascular hospital admission after exposure to fine particulate pollution. J Am Coll Cardiol. 2021;78(10):1015–24. https://doi.org/10.1016/j.jacc.2021.06.043.
Article
PubMed
Google Scholar
Kaufman JD, Adar SD, Barr RG, Budoff M, Burke GL, Curl CL, et al. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study. Lancet. 2016;388(10045):696–704. https://doi.org/10.1016/S0140-6736(16)00378-0.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hu D, Jia X, Cui L, Liu J, Chen J, Wang Y, et al. Exposure to fine particulate matter promotes platelet activation and thrombosis via obesity-related inflammation. J Hazard Mater. 2021;413: 125341. https://doi.org/10.1016/j.jhazmat.2021.125341.
Article
PubMed
CAS
Google Scholar
Cosselman KE, Navas-Acien A, Kaufman JD. Environmental factors in cardiovascular disease. Nat Rev Cardiol. 2015;12(11):627–42. https://doi.org/10.1038/nrcardio.2015.152.
Article
PubMed
CAS
Google Scholar
Zhou Z, Qin M, Khodahemmati S, Li W, Niu B, Li J, et al. Gene expression in human umbilical vein endothelial cells exposed to fine particulate matter: RNA sequencing analysis. Int J Environ Health Res. 2021. https://doi.org/10.1080/09603123.2021.1935785.
Article
PubMed
Google Scholar
Zhao T, Qi W, Yang P, Yang L, Shi Y, Zhou L, et al. Mechanisms of cardiovascular toxicity induced by PM2.5: a review. Environ Sci Pollut Res Int. 2021. https://doi.org/10.1007/s11356-021-16735-9.
Article
PubMed
PubMed Central
Google Scholar
Jiang J, Liang S, Zhang J, Du Z, Xu Q, Duan J, et al. Melatonin ameliorates PM2.5-induced cardiac perivascular fibrosis through regulating mitochondrial redox homeostasis. J Pineal Res. 2021;70(1):e12686. https://doi.org/10.1111/jpi.12686.
Article
PubMed
CAS
Google Scholar
Long YM, Yang XZ, Yang QQ, Clermont AC, Yin YG, Liu GL, et al. PM2.5 induces vascular permeability increase through activating MAPK/ERK signaling pathway and ROS generation. J Hazard Mater. 2020;386:121659. https://doi.org/10.1016/j.jhazmat.2019.121659.
Article
PubMed
CAS
Google Scholar
Wang Y, Xiong L, Huang X, Ma Y, Zou L, Liang Y, et al. Intermittent exposure to airborne particulate matter induces subcellular dysfunction and aortic cell damage in BALB/c mice through multi-endpoint assessment at environmentally relevant concentrations. J Hazard Mater. 2021;424(Pt A): 127169. https://doi.org/10.1016/j.jhazmat.2021.127169.
Article
PubMed
CAS
Google Scholar
Pope CA 3rd, Bhatnagar A, McCracken JP, Abplanalp W, Conklin DJ, O’Toole T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ Res. 2016;119(11):1204–14. https://doi.org/10.1161/CIRCRESAHA.116.309279.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liang S, Zhao T, Xu Q, Duan J, Sun Z. Evaluation of fine particulate matter on vascular endothelial function in vivo and in vitro. Ecotoxicol Environ Saf. 2021;222: 112485. https://doi.org/10.1016/j.ecoenv.2021.112485.
Article
PubMed
CAS
Google Scholar
Liang S, Ning R, Zhang J, Liu J, Zhang J, Shen H, et al. MiR-939–5p suppresses PM2.5-induced endothelial injury via targeting HIF-1alpha in HAECs. Nanotoxicology. 2021;15(5):706–20. https://doi.org/10.1080/17435390.2021.1917716.
Article
PubMed
CAS
Google Scholar
Feng L, Wei J, Liang S, Sun Z, Duan J. miR-205/IRAK2 signaling pathway is associated with urban airborne PM2.5-induced myocardial toxicity. Nanotoxicology. 2020;14(9):1198–212. https://doi.org/10.1080/17435390.2020.1813824.
Article
PubMed
CAS
Google Scholar
Wang Y, Wu T, Tang M. Ambient particulate matter triggers dysfunction of subcellular structures and endothelial cell apoptosis through disruption of redox equilibrium and calcium homeostasis. J Hazard Mater. 2020;394: 122439. https://doi.org/10.1016/j.jhazmat.2020.122439.
Article
PubMed
CAS
Google Scholar
Wang Y, Ma Y, Yao Y, Liu Q, Pang Y, Tang M. Ambient particulate matter triggers defective autophagy and hijacks endothelial cell renewal through oxidative stress-independent lysosomal impairment. Environ Pollut. 2021;286: 117295. https://doi.org/10.1016/j.envpol.2021.117295.
Article
PubMed
CAS
Google Scholar
Ning R, Li Y, Du Z, Li T, Sun Q, Lin L, et al. The mitochondria-targeted antioxidant MitoQ attenuated PM2.5-induced vascular fibrosis via regulating mitophagy. Redox Biol. 2021;46:102113. https://doi.org/10.1016/j.redox.2021.102113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang X, Feng L, Zhang Y, Shi Y, Liang S, Zhao T, et al. Integrative analysis of methylome and transcriptome variation of identified cardiac disease-specific genes in human cardiomyocytes after PM(2.5) exposure. Chemosphere. 2018;212:915–26. https://doi.org/10.1016/j.chemosphere.2018.09.010.
Article
PubMed
CAS
Google Scholar
Yang X, Zhao T, Feng L, Shi Y, Jiang J, Liang S, et al. PM2.5-induced ADRB2 hypermethylation contributed to cardiac dysfunction through cardiomyocytes apoptosis via PI3K/Akt pathway. Environ Int. 2019;127:601–14. https://doi.org/10.1016/j.envint.2019.03.057.
Article
PubMed
CAS
Google Scholar
Pei YH, Chen J, Wu X, He Y, Qin W, He SY, et al. LncRNA PEAMIR inhibits apoptosis and inflammatory response in PM2.5 exposure aggravated myocardial ischemia/reperfusion injury as a competing endogenous RNA of miR-29b-3p. Nanotoxicology. 2020;14(5):638–53. https://doi.org/10.1080/17435390.2020.1731857.
Article
PubMed
CAS
Google Scholar
Li R, Zhao Y, Shi J, Zhao C, Xie P, Huang W, et al. Effects of PM(2.5) exposure in utero on heart injury, histone acetylation and GATA4 expression in offspring mice. Chemosphere. 2020;256:127133. https://doi.org/10.1016/j.chemosphere.2020.127133.
Article
PubMed
CAS
Google Scholar
Liu L, Zhang Y, Yang Z, Luo S, Zhang Y. Long-term exposure to fine particulate constituents and cardiovascular diseases in Chinese adults. J Hazard Mater. 2021;416: 126051. https://doi.org/10.1016/j.jhazmat.2021.126051.
Article
PubMed
CAS
Google Scholar
Wu S, Yang D, Pan L, Shan J, Li H, Wei H, et al. Chemical constituents and sources of ambient particulate air pollution and biomarkers of endothelial function in a panel of healthy adults in Beijing. China Sci Total Environ. 2016;560–561:141–9. https://doi.org/10.1016/j.scitotenv.2016.03.228.
Article
PubMed
CAS
Google Scholar
Ostro B, Hu J, Goldberg D, Reynolds P, Hertz A, Bernstein L, et al. Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: results from the California Teachers Study Cohort. Environ Health Perspect. 2015;123(6):549–56. https://doi.org/10.1289/ehp.1408565.
Article
PubMed
PubMed Central
Google Scholar
Wolf K, Stafoggia M, Cesaroni G, Andersen ZJ, Beelen R, Galassi C, et al. Long-term exposure to particulate matter constituents and the incidence of coronary events in 11 European cohorts. Epidemiology. 2015;26(4):565–74. https://doi.org/10.1097/EDE.0000000000000300.
Article
PubMed
Google Scholar
Zhang Z, Weichenthal S, Kwong JC, Burnett RT, Hatzopoulou M, Jerrett M, et al. Long-term exposure to iron and copper in fine particulate air pollution and their combined impact on reactive oxygen species concentration in lung fluid: a population-based cohort study of cardiovascular disease incidence and mortality in Toronto. Canada Int J Epidemiol. 2021;50(2):589–601. https://doi.org/10.1093/ije/dyaa230.
Article
PubMed
Google Scholar
Zhang Y, Ji X, Ku T, Li G, Sang N. Heavy metals bound to fine particulate matter from northern China induce season-dependent health risks: a study based on myocardial toxicity. Environ Pollut. 2016;216:380–90. https://doi.org/10.1016/j.envpol.2016.05.072.
Article
PubMed
CAS
Google Scholar
Hampel R, Peters A, Beelen R, Brunekreef B, Cyrys J, de Faire U, et al. Long-term effects of elemental composition of particulate matter on inflammatory blood markers in European cohorts. Environ Int. 2015;82:76–84. https://doi.org/10.1016/j.envint.2015.05.008.
Article
PubMed
CAS
Google Scholar
Ying Z, Xu X, Chen M, Liu D, Zhong M, Chen LC, et al. A synergistic vascular effect of airborne particulate matter and nickel in a mouse model. Toxicol Sci. 2013;135(1):72–80. https://doi.org/10.1093/toxsci/kft136.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xu X, Rao X, Wang TY, Jiang SY, Ying Z, Liu C, et al. Effect of co-exposure to nickel and particulate matter on insulin resistance and mitochondrial dysfunction in a mouse model. Part Fibre Toxicol. 2012;9:40. https://doi.org/10.1186/1743-8977-9-40.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Y, Ji X, Ku T, Sang N. Inflammatory response and endothelial dysfunction in the hearts of mice co-exposed to SO2, NO2, and PM2.5. Environ Toxicol. 2016;31(12):1996–2005. https://doi.org/10.1002/tox.22200.
Article
PubMed
CAS
Google Scholar
Kurhanewicz N, McIntosh-Kastrinsky R, Tong H, Walsh L, Farraj AK, Hazari MS. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses. Part Fibre Toxicol. 2014;11:54. https://doi.org/10.1186/s12989-014-0054-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Farraj AK, Walsh L, Haykal-Coates N, Malik F, McGee J, Winsett D, et al. Cardiac effects of seasonal ambient particulate matter and ozone co-exposure in rats. Part Fibre Toxicol. 2015;12:12. https://doi.org/10.1186/s12989-015-0087-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thompson LC, Walsh L, Martin BL, McGee J, Wood C, Kovalcik K, et al. Ambient particulate matter and acrolein co-exposure increases myocardial dyssynchrony in mice via TRPA1. Toxicol Sci. 2019;167(2):559–72. https://doi.org/10.1093/toxsci/kfy262.
Article
PubMed
CAS
Google Scholar
Ran Z, An Y, Zhou J, Yang J, Zhang Y, Yang J, et al. Subchronic exposure to concentrated ambient PM2.5 perturbs gut and lung microbiota as well as metabolic profiles in mice. Environ Pollut. 2021;272:115987. https://doi.org/10.1016/j.envpol.2020.115987.
Article
PubMed
CAS
Google Scholar
Feng J, Cavallero S, Hsiai T, Li R. Impact of air pollution on intestinal redox lipidome and microbiome. Free Radic Biol Med. 2020;151:99–110. https://doi.org/10.1016/j.freeradbiomed.2019.12.044.
Article
PubMed
CAS
Google Scholar
Wang C, Zhu G, Zhang L, Chen K. Particulate matter pollution and hospital outpatient visits for endocrine, digestive, urological, and dermatological diseases in Nanjing. China Environ Pollut. 2020;261: 114205. https://doi.org/10.1016/j.envpol.2020.114205.
Article
PubMed
CAS
Google Scholar
Ethan CJ, Mokoena KK, Yu Y, Shale K, Fan Y, Rong J, et al. Association between PM(2.5) and mortality of stomach and colorectal cancer in Xi’an: a time-series study. Environ Sci Pollut Res Int. 2020;27(18):22353–63. https://doi.org/10.1007/s11356-020-08628-0.
Article
PubMed
CAS
Google Scholar
Mutlu EA, Comba IY, Cho T, Engen PA, Yazıcı C, Soberanes S, et al. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ Pollut. 2018;240:817–30. https://doi.org/10.1016/j.envpol.2018.04.130.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu T, Chen X, Xu Y, Wu W, Tang W, Chen Z, et al. Gut microbiota partially mediates the effects of fine particulate matter on type 2 diabetes: evidence from a population-based epidemiological study. Environ Int. 2019;130: 104882. https://doi.org/10.1016/j.envint.2019.05.076.
Article
PubMed
CAS
Google Scholar
Li X, Cui J, Yang H, Sun H, Lu R, Gao N, et al. Colonic injuries induced by inhalational exposure to particulate-matter air pollution. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2019;6(11):1900180. https://doi.org/10.1002/advs.201900180.
Article
CAS
Google Scholar
Li X, Sun H, Li B, Zhang X, Cui J, Yun J, et al. Probiotics ameliorate Colon epithelial injury induced by ambient ultrafine particles exposure. Adv Sci (Weinheim, Baden-Wurttemberg, Germany). 2019;6(18):1900972. https://doi.org/10.1002/advs.201900972.
Article
CAS
Google Scholar
Vignal C, Pichavant M, Alleman LY, Djouina M, Dingreville F, Perdrix E, et al. Effects of urban coarse particles inhalation on oxidative and inflammatory parameters in the mouse lung and colon. Part Fibre Toxicol. 2017;14(1):46. https://doi.org/10.1186/s12989-017-0227-z.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wang W, Zhou J, Chen M, Huang X, Xie X, Li W, et al. Exposure to concentrated ambient PM(2.5) alters the composition of gut microbiota in a murine model. Part Fibre Toxicol. 2018;15(1):17. https://doi.org/10.1186/s12989-018-0252-6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fitch MN, Phillippi D, Zhang Y, Lucero J, Pandey RS, Liu J, et al. Effects of inhaled air pollution on markers of integrity, inflammation, and microbiota profiles of the intestines in Apolipoprotein E knockout mice. Environ Res. 2020;181: 108913. https://doi.org/10.1016/j.envres.2019.108913.
Article
PubMed
CAS
Google Scholar
Fu P, Bai L, Cai Z, Li R, Yung KKL. Fine particulate matter aggravates intestinal and brain injury and affects bacterial community structure of intestine and feces in Alzheimer’s disease transgenic mice. Ecotoxicol Environ Saf. 2020;192: 110325. https://doi.org/10.1016/j.ecoenv.2020.110325.
Article
PubMed
CAS
Google Scholar
Pastorekova S, Gillies RJ. The role of carbonic anhydrase IX in cancer development: links to hypoxia, acidosis, and beyond. Cancer Metast Rev. 2019;38(1–2):65–77. https://doi.org/10.1007/s10555-019-09799-0.
Article
CAS
Google Scholar
Zhang Z, Guo C, Chang LY, Bo Y, Lin C, Tam T, et al. Long-term exposure to ambient fine particulate matter and liver enzymes in adults: a cross-sectional study in Taiwan. Occup Environ Med. 2019;76(7):488–94. https://doi.org/10.1136/oemed-2019-105695.
Article
PubMed
Google Scholar
Yuan CS, Lai CS, Tseng YL, Hsu PC, Lin CM, Cheng FJ. Repeated exposure to fine particulate matter constituents lead to liver inflammation and proliferative response in mice. Ecotoxicol Environ Saf. 2021;224: 112636. https://doi.org/10.1016/j.ecoenv.2021.112636.
Article
PubMed
CAS
Google Scholar
Duan X, Zhang X, Chen J, Xiao M, Zhao W, Liu S, et al. Association of PM(2.5) with insulin resistance signaling pathways on a microfluidic liver-kidney microphysiological system (LK-MPS) device. Anal Chem. 2021;93(28):9835–44. https://doi.org/10.1021/acs.analchem.1c01384.
Article
PubMed
CAS
Google Scholar
Li R, Wang Y, Chen R, Gu W, Zhang L, Gu J, et al. Ambient fine particulate matter disrupts hepatic circadian oscillation and lipid metabolism in a mouse model. Environ Pollut. 2020;262: 114179. https://doi.org/10.1016/j.envpol.2020.114179.
Article
PubMed
CAS
Google Scholar
Sunyer J, Dadvand P. Pre-natal brain development as a target for urban air pollution. Basic Clin Pharmacol Toxicol. 2019;125(Suppl 3):81–8. https://doi.org/10.1111/bcpt.13226.
Article
PubMed
CAS
Google Scholar
Suades-González E, Gascon M, Guxens M, Sunyer J. Air pollution and neuropsychological development: a review of the latest evidence. Endocrinology. 2015;156(10):3473–82. https://doi.org/10.1210/en.2015-1403.
Article
PubMed
PubMed Central
CAS
Google Scholar
Carey IM, Anderson HR, Atkinson RW, Beevers SD, Cook DG, Strachan DP, et al. Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. BMJ Open. 2018;8(9): e022404. https://doi.org/10.1136/bmjopen-2018-022404.
Article
PubMed
PubMed Central
Google Scholar
Guxens M, Garcia-Esteban R, Giorgis-Allemand L, Forns J, Badaloni C, Ballester F, et al. Air pollution during pregnancy and childhood cognitive and psychomotor development: six European birth cohorts. Epidemiology. 2014;25(5):636–47. https://doi.org/10.1097/EDE.0000000000000133.
Article
PubMed
Google Scholar
Calderón-Garcidueñas L, Cross JV, Franco-Lira M, Aragón-Flores M, Kavanaugh M, Torres-Jardón R, et al. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrP(C)), Interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution. Front Neurosci. 2013;7:183. https://doi.org/10.3389/fnins.2013.00183.
Article
PubMed
PubMed Central
Google Scholar
Jung CR, Lin YT, Hwang BF. Air pollution and newly diagnostic autism spectrum disorders: a population-based cohort study in Taiwan. PLoS ONE. 2013;8(9): e75510. https://doi.org/10.1371/journal.pone.0075510.
Article
PubMed
PubMed Central
CAS
Google Scholar
Talbott EO, Arena VC, Rager JR, Clougherty JE, Michanowicz DR, Sharma RK, et al. Fine particulate matter and the risk of autism spectrum disorder. Environ Res. 2015;140:414–20. https://doi.org/10.1016/j.envres.2015.04.021.
Article
PubMed
CAS
Google Scholar
Kaufman JA, Wright JM, Rice G, Connolly N, Bowers K, Anixt J. Ambient ozone and fine particulate matter exposures and autism spectrum disorder in metropolitan Cincinnati. Ohio Environ Res. 2019;171:218–27. https://doi.org/10.1016/j.envres.2019.01.013.
Article
PubMed
CAS
Google Scholar
Chen G, Jin Z, Li S, Jin X, Tong S, Liu S, et al. Early life exposure to particulate matter air pollution (PM(1), PM(2.5) and PM(10)) and autism in Shanghai, China: a case-control study. Environ Int. 2018;121(Pt 2):1121–7. https://doi.org/10.1016/j.envint.2018.10.026.
Article
PubMed
CAS
Google Scholar
Ritz B, Liew Z, Yan Q, Cui X, Virk J, Ketzel M, et al. Air pollution and Autism in Denmark. Environ Epidemiol (Philadelphia, Pa). 2018;2(4): e028. https://doi.org/10.1097/EE9.0000000000000028.
Article
Google Scholar
Chen H, Kwong JC, Copes R, Tu K, Villeneuve PJ, van Donkelaar A, et al. Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: a population-based cohort study. Lancet (London, England). 2017;389(10070):718–26. https://doi.org/10.1016/S0140-6736(16)32399-6.
Article
PubMed
Google Scholar
Jung CR, Lin YT, Hwang BF. Ozone, particulate matter, and newly diagnosed Alzheimer’s disease: a population-based cohort study in Taiwan. J Alzheimer’s Dis JAD. 2015;44(2):573–84. https://doi.org/10.3233/JAD-140855.
Article
PubMed
CAS
Google Scholar
Cacciottolo M, Wang X, Driscoll I, Woodward N, Saffari A, Reyes J, et al. Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models. Transl Psychiatry. 2017;7(1): e1022. https://doi.org/10.1038/tp.2016.280.
Article
PubMed
PubMed Central
CAS
Google Scholar
The LN. Air pollution and brain health: an emerging issue. Lancet Neurol. 2018;17(2):103. https://doi.org/10.1016/S1474-4422(17)30462-3.
Article
Google Scholar
Costa LG, Cole TB, Dao K, Chang YC, Garrick JM. Developmental impact of air pollution on brain function. Neurochem Int. 2019;131: 104580. https://doi.org/10.1016/j.neuint.2019.104580.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ulusoy A, Di Monte DA. α-Synuclein elevation in human neurodegenerative diseases: experimental, pathogenetic, and therapeutic implications. Mol Neurobiol. 2013;47(2):484–94. https://doi.org/10.1007/s12035-012-8329-y.
Article
PubMed
CAS
Google Scholar
Woodward NC, Haghani A, Johnson RG, Hsu TM, Saffari A, Sioutas C, et al. Prenatal and early life exposure to air pollution induced hippocampal vascular leakage and impaired neurogenesis in association with behavioral deficits. Transl Psychiatry. 2018;8(1):261. https://doi.org/10.1038/s41398-018-0317-1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cui J, Fu Y, Lu R, Bi Y, Zhang L, Zhang C, et al. Metabolomics analysis explores the rescue to neurobehavioral disorder induced by maternal PM(2.5) exposure in mice. Ecotoxicol Environ Saf. 2019;169:687–95. https://doi.org/10.1016/j.ecoenv.2018.11.037.
Article
PubMed
CAS
Google Scholar
Zhang T, Zheng X, Wang X, Zhao H, Wang T, Zhang H, et al. Maternal exposure to PM(2.5) during pregnancy induces impaired development of cerebral cortex in mice offspring. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19010257.
Article
PubMed
PubMed Central
Google Scholar
Li K, Li L, Cui B, Gai Z, Li Q, Wang S, et al. Early postnatal exposure to airborne fine particulate matter induces autism-like phenotypes in male rats. Toxicol Sci. 2018;162(1):189–99. https://doi.org/10.1093/toxsci/kfx240.
Article
PubMed
CAS
Google Scholar
Kim RE, Shin CY, Han SH, Kwon KJ. Astaxanthin suppresses PM2.5-induced neuroinflammation by regulating Akt phosphorylation in BV-2 microglial cells. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21197227.
Article
PubMed
PubMed Central
Google Scholar
Zhang H, Haghani A, Mousavi AH, Cacciottolo M, D’Agostino C, Safi N, et al. Cell-based assays that predict in vivo neurotoxicity of urban ambient nano-sized particulate matter. Free Radic Biol Med. 2019;145:33–41. https://doi.org/10.1016/j.freeradbiomed.2019.09.016.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin CC, Chen SJ, Huang KL, Hwang WI, Chang-Chien GP, Lin WY. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ Sci Technol. 2005;39(21):8113–22. https://doi.org/10.1021/es048182a.
Article
PubMed
CAS
Google Scholar
Racette BA, Nelson G, Dlamini WW, Prathibha P, Turner JR, Ushe M, et al. Severity of parkinsonism associated with environmental manganese exposure. Environ Health. 2021;20(1):27. https://doi.org/10.1186/s12940-021-00712-3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Menezes-Filho JA, Carvalho CF, Rodrigues JLG, Araújo CFS, Dos Santos NR, Lima CS, et al. Environmental co-exposure to lead and manganese and intellectual deficit in school-aged children. Int J Environ Res Public Health. 2018. https://doi.org/10.3390/ijerph15112418.
Article
PubMed
PubMed Central
Google Scholar
Rojas-Lemus M, López-Valdez N, Bizarro-Nevares P, González-Villalva A, Ustarroz-Cano M, Zepeda-Rodríguez A, et al. Toxic effects of inhaled vanadium attached to particulate matter: a literature review. Int J Environ Res Public Health. 2021. https://doi.org/10.3390/ijerph18168457.
Article
PubMed
PubMed Central
Google Scholar
Colín-Barenque L, Bizarro-Nevares P, González Villalva A, Pedraza-Chaverri J, Medina-Campos ON, Jimenez-Martínez R, et al. Neuroprotective effect of carnosine in the olfactory bulb after vanadium inhalation in a mouse model. Int J Exp Pathol. 2018;99(4):180–8. https://doi.org/10.1111/iep.12285.
Article
PubMed
PubMed Central
CAS
Google Scholar
Avila-Costa MR, Fortoul TI, Niño-Cabrera G, Colín-Barenque L, Bizarro-Nevares P, Gutiérrez-Valdez AL, et al. Hippocampal cell alterations induced by the inhalation of vanadium pentoxide (V(2)O(5)) promote memory deterioration. Neurotoxicology. 2006;27(6):1007–12. https://doi.org/10.1016/j.neuro.2006.04.001.
Article
PubMed
CAS
Google Scholar
Avila-Costa MR, Colín-Barenque L, Zepeda-Rodríguez A, Antuna SB, Saldivar OL, Espejel-Maya G, et al. Ependymal epithelium disruption after vanadium pentoxide inhalation. A mice experimental model. Neurosci Lett. 2005;381(1–2):21–5. https://doi.org/10.1016/j.neulet.2005.01.072.
Article
PubMed
CAS
Google Scholar
Cory-Slechta DA, Sobolewski M, Marvin E, Conrad K, Merrill A, Anderson T, et al. The impact of inhaled ambient ultrafine particulate matter on developing brain: potential importance of elemental contaminants. Toxicol Pathol. 2019;47(8):976–92. https://doi.org/10.1177/0192623319878400.
Article
PubMed
PubMed Central
CAS
Google Scholar
Haghani A, Johnson R, Safi N, Zhang H, Thorwald M, Mousavi A, et al. Toxicity of urban air pollution particulate matter in developing and adult mouse brain: comparison of total and filter-eluted nanoparticles. Environ Int. 2020;136: 105510. https://doi.org/10.1016/j.envint.2020.105510.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shabani S. A mechanistic view on the neurotoxic effects of air pollution on central nervous system: risk for autism and neurodegenerative diseases. Environ Sci Pollut Res Int. 2021;28(6):6349–73. https://doi.org/10.1007/s11356-020-11620-3.
Article
PubMed
CAS
Google Scholar
Haghani A, Morgan TE, Forman HJ, Finch CE. Air pollution neurotoxicity in the adult brain: emerging concepts from experimental findings. J Alzheimer’s Dis JAD. 2020;76(3):773–97. https://doi.org/10.3233/JAD-200377.
Article
PubMed
Google Scholar
Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roque P. Neurotoxicants are in the air: convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. Biomed Res Int. 2014;2014: 736385. https://doi.org/10.1155/2014/736385.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yin F, Lawal A, Ricks J, Fox JR, Larson T, Navab M, et al. Diesel exhaust induces systemic lipid peroxidation and development of dysfunctional pro-oxidant and pro-inflammatory high-density lipoprotein. Arterioscler Thromb Vasc Biol. 2013;33(6):1153–61. https://doi.org/10.1161/ATVBAHA.112.300552.
Article
PubMed
CAS
Google Scholar
Anderson JO, Thundiyil JG, Stolbach A. Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol Off J Am Coll Med Toxicol. 2012;8(2):166–75. https://doi.org/10.1007/s13181-011-0203-1.
Article
CAS
Google Scholar
Calderón-Garcidueñas L, Maronpot RR, Torres-Jardon R, Henríquez-Roldán C, Schoonhoven R, Acuña-Ayala H, et al. DNA damage in nasal and brain tissues of canines exposed to air pollutants is associated with evidence of chronic brain inflammation and neurodegeneration. Toxicol Pathol. 2003;31(5):524–38. https://doi.org/10.1080/01926230390226645.
Article
PubMed
CAS
Google Scholar
Bos I, De Boever P, Emmerechts J, Buekers J, Vanoirbeek J, Meeusen R, et al. Changed gene expression in brains of mice exposed to traffic in a highway tunnel. Inhalation Toxicol. 2012;24(10):676–86. https://doi.org/10.3109/08958378.2012.714004.
Article
CAS
Google Scholar
Li X, Zhang Y, Li B, Yang H, Cui J, Li X, et al. Activation of NLRP3 in microglia exacerbates diesel exhaust particles-induced impairment in learning and memory in mice. Environ Int. 2020;136: 105487. https://doi.org/10.1016/j.envint.2020.105487.
Article
PubMed
CAS
Google Scholar
Gatto NM, Henderson VW, Hodis HN, St John JA, Lurmann F, Chen JC, et al. Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles. Neurotoxicology. 2014;40:1–7. https://doi.org/10.1016/j.neuro.2013.09.004.
Article
PubMed
CAS
Google Scholar
Sirivelu MP, MohanKumar SM, Wagner JG, Harkema JR, MohanKumar PS. Activation of the stress axis and neurochemical alterations in specific brain areas by concentrated ambient particle exposure with concomitant allergic airway disease. Environ Health Perspect. 2006;114(6):870–4. https://doi.org/10.1289/ehp.8619.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sorace A, de Acetis L, Alleva E, Santucci D. Prolonged exposure to low doses of ozone: short- and long-term changes in behavioral performance in mice. Environ Res. 2001;85(2):122–34. https://doi.org/10.1006/enrs.2000.4097.
Article
PubMed
CAS
Google Scholar
Calderón-Garcidueñas L, Mora-Tiscareño A, Ontiveros E, Gómez-Garza G, Barragán-Mejía G, Broadway J, et al. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn. 2008;68(2):117–27. https://doi.org/10.1016/j.bandc.2008.04.008.
Article
PubMed
Google Scholar
Wang G, Jiang R, Zhao Z, Song W. Effects of ozone and fine particulate matter (PM(2.5)) on rat system inflammation and cardiac function. Toxicol Lett. 2013;217(1):23–33. https://doi.org/10.1016/j.toxlet.2012.11.009.
Article
PubMed
CAS
Google Scholar
Wang F, Liu F, Liu H. Effect of exposure to staphylococcus aureus, particulate matter, and their combination on the neurobehavioral function of mice. Environ Toxicol Pharmacol. 2016;47:175–81. https://doi.org/10.1016/j.etap.2016.08.017.
Article
PubMed
CAS
Google Scholar
Wang Y, Liu D, Zhang H, Wang Y, Wei L, Liu Y, et al. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase. Toxicol Appl Pharmacol. 2017;322:51–9. https://doi.org/10.1016/j.taap.2017.03.005.
Article
PubMed
CAS
Google Scholar
Nozza E, Valentini S, Melzi G, Vecchi R, Corsini E. Advances on the immunotoxicity of outdoor particulate matter: a focus on physical and chemical properties and respiratory defence mechanisms. Sci Total Environ. 2021;780: 146391. https://doi.org/10.1016/j.scitotenv.2021.146391.
Article
PubMed
CAS
Google Scholar
Su R, Jin X, Lyu L, Tian J, Amin S, Li Z. The potential immunotoxicity of fine particulate matter based on SD rat spleen. Environ Sci Pollut Res Int. 2019;26(23):23958–66. https://doi.org/10.1007/s11356-019-05512-4.
Article
PubMed
CAS
Google Scholar
Xu X, Jiang SY, Wang TY, Bai Y, Zhong M, Wang A, et al. Inflammatory response to fine particulate air pollution exposure: neutrophil versus monocyte. PLoS ONE. 2013;8(8): e71414. https://doi.org/10.1371/journal.pone.0071414.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pan K, Jiang S, Du X, Zeng X, Zhang J, Song L, et al. Parental PM2.5 exposure changes Th17/Treg cells in offspring, is associated with the elevation of blood pressure. Environ Toxicol. 2021;36(6):1152–61. https://doi.org/10.1002/tox.23114.
Article
PubMed
CAS
Google Scholar
Xie Y, Zhang X, Tian Z, Jiang R, Chen R, Song W, et al. Preexposure to PM2.5 exacerbates acute viral myocarditis associated with Th17 cell. Int J Cardiol. 2013;168(4):3837–45. https://doi.org/10.1016/j.ijcard.2013.06.025.
Article
PubMed
Google Scholar
Tong GQ, Zhang ZH, Zhao Y, Liu JJ, Han JB. Traffic-related PM2.5 induces cytosolic [Ca(2)(+)] increase regulated by Orai1, alters the CaN-NFAT signaling pathway, and affects IL-2 and TNF-alpha cytoplasmic levels in Jurkat T-cells. Arch Environ Contam Toxicol. 2015;68(1):31–7. https://doi.org/10.1007/s00244-014-0077-8.
Article
PubMed
CAS
Google Scholar
Hou T, Liao J, Zhang C, Sun C, Li X, Wang G. Elevated expression of miR-146, miR-139 and miR-340 involved in regulating Th1/Th2 balance with acute exposure of fine particulate matter in mice. Int Immunopharmacol. 2018;54:68–77. https://doi.org/10.1016/j.intimp.2017.10.003.
Article
PubMed
CAS
Google Scholar
Ouyang Y, Xu Z, Fan E, Li Y, Miyake K, Xu X, et al. Changes in gene expression in chronic allergy mouse model exposed to natural environmental PM2.5-rich ambient air pollution. Sci Rep. 2018;8(1):6326. https://doi.org/10.1038/s41598-018-24831-z.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kulas JA, Hettwer JV, Sohrabi M, Melvin JE, Manocha GD, Puig KL, et al. In utero exposure to fine particulate matter results in an altered neuroimmune phenotype in adult mice. Environ Pollut. 2018;241:279–88. https://doi.org/10.1016/j.envpol.2018.05.047.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chowdhury PH, Okano H, Honda A, Kudou H, Kitamura G, Ito S, et al. Aqueous and organic extract of PM2.5 collected in different seasons and cities of Japan differently affect respiratory and immune systems. Environ Pollut. 2018;235:223–34. https://doi.org/10.1016/j.envpol.2017.12.040.
Article
PubMed
CAS
Google Scholar
Dai P, Shen D, Shen J, Tang Q, Xi M, Li Y, et al. The roles of Nrf2 and autophagy in modulating inflammation mediated by TLR4-NFkappaB in A549cell exposed to layer house particulate matter 2.5 (PM2.5). Chemosphere. 2019;235:1134–45. https://doi.org/10.1016/j.chemosphere.2019.07.002.
Article
PubMed
CAS
Google Scholar
Arooj M, Ali I, Kang HK, Hyun JW, Koh YS. Inhibitory effect of particulate matter on toll-like receptor 9 stimulated dendritic cells by downregulating mitogen-activated protein kinase and NF-kappaB pathway. J Toxicol Environ Health A. 2020;83(9):341–50. https://doi.org/10.1080/15287394.2020.1756018.
Article
PubMed
CAS
Google Scholar
Ge J, Yang H, Lu X, Wang S, Zhao Y, Huang J, et al. Combined exposure to formaldehyde and PM2.5: hematopoietic toxicity and molecular mechanism in mice. Environ Int. 2020;144:106050. https://doi.org/10.1016/j.envint.2020.106050.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiao Z, Wen Z, Yang W, Hu L, Li J. Influence of fine particulate matter and its pure particulate fractions on pulmonary immune cells and cytokines in mice. Exp Ther Med. 2021;21(6):662. https://doi.org/10.3892/etm.2021.10094.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gour N, Sudini K, Khalil SM, Rule AM, Lees P, Gabrielson E, et al. Unique pulmonary immunotoxicological effects of urban PM are not recapitulated solely by carbon black, diesel exhaust or coal fly ash. Environ Res. 2018;161:304–13. https://doi.org/10.1016/j.envres.2017.10.041.
Article
PubMed
CAS
Google Scholar
Li N, Wang M, Bramble LA, Schmitz DA, Schauer JJ, Sioutas C, et al. The adjuvant effect of ambient particulate matter is closely reflected by the particulate oxidant potential. Environ Health Perspect. 2009;117(7):1116–23. https://doi.org/10.1289/ehp.0800319.
Article
PubMed
PubMed Central
CAS
Google Scholar
Herr CE, Dostal M, Ghosh R, Ashwood P, Lipsett M, Pinkerton KE, et al. Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths. Environ Health. 2010;9:46. https://doi.org/10.1186/1476-069X-9-46.
Article
PubMed
PubMed Central
CAS
Google Scholar
Prunicki M, Stell L, Dinakarpandian D, de Planell-Saguer M, Lucas RW, Hammond SK, et al. Exposure to NO2, CO, and PM2.5 is linked to regional DNA methylation differences in asthma. Clin Epigenetics. 2018;10:2. https://doi.org/10.1186/s13148-017-0433-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Liu XX, Li Y, Qin G, Zhu Y, Li X, Zhang J, et al. Effects of air pollutants on occurrences of influenza-like illness and laboratory-confirmed influenza in Hefei. China Int J Biometeorol. 2019;63(1):51–60. https://doi.org/10.1007/s00484-018-1633-0.
Article
PubMed
Google Scholar
Lee GI, Saravia J, You D, Shrestha B, Jaligama S, Hebert VY, et al. Exposure to combustion generated environmentally persistent free radicals enhances severity of influenza virus infection. Part Fibre Toxicol. 2014;11:57. https://doi.org/10.1186/s12989-014-0057-1.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ni L, Chuang CC, Zuo L. Fine particulate matter in acute exacerbation of COPD. Front Physiol. 2015;6:294. https://doi.org/10.3389/fphys.2015.00294.
Article
PubMed
PubMed Central
Google Scholar
Saravia J, You D, Thevenot P, Lee GI, Shrestha B, Lomnicki S, et al. Early-life exposure to combustion-derived particulate matter causes pulmonary immunosuppression. Mucosal Immunol. 2014;7(3):694–704. https://doi.org/10.1038/mi.2013.88.
Article
PubMed
CAS
Google Scholar
Jaligama S, Saravia J, You D, Yadav N, Lee GI, Shrestha B, et al. Regulatory T cells and IL10 suppress pulmonary host defense during early-life exposure to radical containing combustion derived ultrafine particulate matter. Respir Res. 2017;18(1):15. https://doi.org/10.1186/s12931-016-0487-4.
Article
PubMed
PubMed Central
CAS
Google Scholar
Matthews NC, Faith A, Pfeffer P, Lu H, Kelly FJ, Hawrylowicz CM, et al. Urban particulate matter suppresses priming of T helper type 1 cells by granulocyte/macrophage colony-stimulating factor-activated human dendritic cells. Am J Respir Cell Mol Biol. 2014;50(2):281–91. https://doi.org/10.1165/rcmb.2012-0465OC.
Article
PubMed
CAS
Google Scholar
Pfeffer PE, Ho TR, Mann EH, Kelly FJ, Sehlstedt M, Pourazar J, et al. Urban particulate matter stimulation of human dendritic cells enhances priming of naive CD8 T lymphocytes. Immunology. 2018;153(4):502–12. https://doi.org/10.1111/imm.12852.
Article
PubMed
CAS
Google Scholar
Glencross DA, Ho TR, Camina N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radic Biol Med. 2020;151:56–68. https://doi.org/10.1016/j.freeradbiomed.2020.01.179.
Article
PubMed
CAS
Google Scholar
Kowalska M, Wegierek-Ciuk A, Brzoska K, Wojewodzka M, Meczynska-Wielgosz S, Gromadzka-Ostrowska J, et al. Genotoxic potential of diesel exhaust particles from the combustion of first- and second-generation biodiesel fuels–the FuelHealth project. Environ Sci Pollut Res Int. 2017;24(31):24223–34. https://doi.org/10.1007/s11356-017-9995-0.
Article
PubMed
PubMed Central
CAS
Google Scholar
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol. 2014;32:403–32. https://doi.org/10.1146/annurev-immunol-032713-120245.
Article
PubMed
CAS
Google Scholar
Pathmanathan S, Krishna MT, Blomberg A, Helleday R, Kelly FJ, Sandström T, et al. Repeated daily exposure to 2 ppm nitrogen dioxide upregulates the expression of IL-5, IL-10, IL-13, and ICAM-1 in the bronchial epithelium of healthy human airways. Occup Environ Med. 2003;60(11):892–6. https://doi.org/10.1136/oem.60.11.892.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ramanathan M Jr, London NR Jr, Tharakan A, Surya N, Sussan TE, Rao X, et al. Airborne particulate matter induces nonallergic eosinophilic sinonasal inflammation in mice. Am J Respir Cell Mol Biol. 2017;57(1):59–65. https://doi.org/10.1165/rcmb.2016-0351OC.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lafuente R, Garcia-Blaquez N, Jacquemin B, Checa MA. Outdoor air pollution and sperm quality. Fertil Steril. 2016;106(4):880–96. https://doi.org/10.1016/j.fertnstert.2016.08.022.
Article
PubMed
CAS
Google Scholar
Sifakis S, Androutsopoulos VP, Tsatsakis AM, Spandidos DA. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environ Toxicol Pharmacol. 2017;51:56–70. https://doi.org/10.1016/j.etap.2017.02.024.
Article
PubMed
CAS
Google Scholar
Radwan M, Jurewicz J, Polanska K, Sobala W, Radwan P, Bochenek M, et al. Exposure to ambient air pollution-does it affect semen quality and the level of reproductive hormones? Ann Hum Biol. 2016;43(1):50–6. https://doi.org/10.3109/03014460.2015.1013986.
Article
PubMed
Google Scholar
Jurewicz J, Radwan M, Sobala W, Polanska K, Radwan P, Jakubowski L, et al. The relationship between exposure to air pollution and sperm disomy. Environ Mol Mutagen. 2015;56(1):50–9. https://doi.org/10.1002/em.21883.
Article
PubMed
CAS
Google Scholar
Zhang G, Jiang F, Chen Q, Yang H, Zhou N, Sun L, et al. Associations of ambient air pollutant exposure with seminal plasma MDA, sperm mtDNA copy number, and mtDNA integrity. Environ Int. 2020;136:105483. https://doi.org/10.1016/j.envint.2020.105483.
Article
PubMed
CAS
Google Scholar
Santi D, Vezzani S, Granata AR, Roli L, De Santis MC, Ongaro C, et al. Sperm quality and environment: a retrospective, cohort study in a Northern province of Italy. Environ Res. 2016;150:144–53. https://doi.org/10.1016/j.envres.2016.05.053.
Article
PubMed
CAS
Google Scholar
Montano L, Donato F, Bianco PM, Lettieri G, Guglielmino A, Motta O, et al. Air pollution and COVID-19: a possible dangerous synergy for male fertility. Int J Environ Res Public Health. 2021. https://doi.org/10.3390/ijerph18136846.
Article
PubMed
PubMed Central
Google Scholar
Yang Y, Feng Y, Huang H, Cui L, Li F. PM2.5 exposure induces reproductive injury through IRE1/JNK/autophagy signaling in male rats. Ecotoxicol Environ Saf. 2021;211:111924. https://doi.org/10.1016/j.ecoenv.2021.111924.
Article
PubMed
CAS
Google Scholar
Zhou L, Su X, Li B, Chu C, Sun H, Zhang N, et al. PM2.5 exposure impairs sperm quality through testicular damage dependent on NALP3 inflammasome and miR-183/96/182 cluster targeting FOXO1 in mouse. Ecotoxicol Environ Saf. 2019;169:551–63. https://doi.org/10.1016/j.ecoenv.2018.10.108.
Article
PubMed
CAS
Google Scholar
Qiu L, Chen M, Wang X, Qin X, Chen S, Qian Y, et al. Exposure to concentrated ambient PM2.5 compromises spermatogenesis in a mouse model: role of suppression of hypothalamus-pituitary-gonads axis. Toxicol Sci. 2018;162(1):318–26. https://doi.org/10.1093/toxsci/kfx261.
Article
PubMed
CAS
Google Scholar
Cao XN, Yan C, Liu DY, Peng JP, Chen JJ, Zhou Y, et al. Fine particulate matter leads to reproductive impairment in male rats by overexpressing phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. Toxicol Lett. 2015;237(3):181–90. https://doi.org/10.1016/j.toxlet.2015.06.015.
Article
PubMed
CAS
Google Scholar
Carre J, Gatimel N, Moreau J, Parinaud J, Leandri R. Does air pollution play a role in infertility?: a systematic review. Environ Health. 2017;16(1):82. https://doi.org/10.1186/s12940-017-0291-8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gaskins AJ, Minguez-Alarcon L, Fong KC, Abdelmessih S, Coull BA, Chavarro JE, et al. Exposure to fine particulate matter and ovarian reserve among women from a fertility clinic. Epidemiology. 2019;30(4):486–91. https://doi.org/10.1097/EDE.0000000000001029.
Article
PubMed
PubMed Central
Google Scholar
Ogliari KS, Lichtenfels AJ, de Marchi MR, Ferreira AT, Dolhnikoff M, Saldiva PH. Intrauterine exposure to diesel exhaust diminishes adult ovarian reserve. Fertil Steril. 2013;99(6):1681–8. https://doi.org/10.1016/j.fertnstert.2013.01.103.
Article
PubMed
CAS
Google Scholar
Guo Y, Cao Z, Jiao X, Bai D, Zhang Y, Hua J, et al. Pre-pregnancy exposure to fine particulate matter (PM2.5) increases reactive oxygen species production in oocytes and decrease litter size and weight in mice. Environ Pollut. 2021;268(Pt A):115858. https://doi.org/10.1016/j.envpol.2020.115858.
Article
PubMed
CAS
Google Scholar
Zhou S, Xi Y, Chen Y, Zhang Z, Wu C, Yan W, et al. Ovarian dysfunction induced by chronic whole-body PM2.5 exposure. Small. 2020;16(33):e2000845. https://doi.org/10.1002/smll.202000845.
Article
PubMed
CAS
Google Scholar
Zhang M, Miao Y, Chen Q, Cai M, Dong W, Dai X, et al. BaP exposure causes oocyte meiotic arrest and fertilization failure to weaken female fertility. FASEB J. 2018;32(1):342–52. https://doi.org/10.1096/fj.201700514R.
Article
PubMed
CAS
Google Scholar
Sui L, Nie J, Xiao P, Yan K, Zhang H, Liu J, et al. Maternal benzo[a]pyrene exposure is correlated with the meiotic arrest and quality deterioration of offspring oocytes in mice. Reprod Toxicol. 2020;93:10–8. https://doi.org/10.1016/j.reprotox.2019.12.003.
Article
PubMed
CAS
Google Scholar
Gai HF, An JX, Qian XY, Wei YJ, Williams JP, Gao GL. Ovarian damages produced by aerosolized fine particulate matter (PM2.5) pollution in mice: possible protective medications and mechanisms. Chin Med J (Engl). 2017;130(12):1400–10. https://doi.org/10.4103/0366-6999.207472.
Article
PubMed
CAS
Google Scholar