Sun B, Sirringhaus H: Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett 2005, 5: 2408–2413. 10.1021/nl051586w
Article
CAS
PubMed
Google Scholar
Su YK, Peng SM, Ji LW, Wu CZ, Cheng WB, Liu CH: Ultraviolet ZnO nanorod photosensors. Langmuir 2010, 26: 603–606. 10.1021/la902171j
Article
CAS
PubMed
Google Scholar
Djurisic AB, Leung YH: Optical properties of ZnO nanostructures. Small 2006, 2: 944–961. 10.1002/smll.200600134
Article
CAS
PubMed
Google Scholar
Nohynek GJ, Dufour EK, Roberts MS: Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol 2008, 21: 136–149. 10.1159/000131078
Article
CAS
PubMed
Google Scholar
Fan Z, Lu JG: Zinc oxide nanostructures: synthesis and properties. J Nanosci Nanotechnol 2005, 5: 1561–1573. 10.1166/jnn.2005.182
Article
CAS
PubMed
Google Scholar
Beckett WS, Chalupa DF, Pauly-Brown A, Speers DM, Stewart JC, Frampton MW, Utell MJ, Huang LS, Cox C, Zareba W, Oberdorster G: Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am J Respir Crit Care Med 2005, 171: 1129–1135. 10.1164/rccm.200406-837OC
Article
PubMed Central
PubMed
Google Scholar
Sharma V, Anderson D, Dhawan A: Zinc oxide nanoparticles induce oxidative stress and genotoxicity in human liver cells (HepG2). J Biomed Nanotechnol 2011, 7: 98–99. 10.1166/jbn.2011.1220
Article
CAS
PubMed
Google Scholar
Valdiglesias V, Costa C, Kilic G, Costa S, Pasaro E, Laffon B, Teixeira JP: Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ Int 2013, 55: 92–100. 10.1016/j.envint.2013.02.013
Article
CAS
PubMed
Google Scholar
Alarifi S, Ali D, Alkahtani S, Verma A, Ahamed M, Ahmed M, Alhadlaq HA: Induction of oxidative stress, DNA damage, and apoptosis in a malignant human skin melanoma cell line after exposure to zinc oxide nanoparticles. Int J Nanomed 2013, 8: 983–993. 10.2217/nnm.13.80
Article
Google Scholar
Watson C, Ge J, Cohen J, Pyrgiotakis G, Engelward BP, Demokritou P: High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology. ACS Nano 2014, 8: 2118–2133. 10.1021/nn404871p
Article
PubMed Central
CAS
PubMed
Google Scholar
De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, Meschini S: Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharmacol 2010, 246: 116–127. 10.1016/j.taap.2010.04.012
Article
CAS
PubMed
Google Scholar
Vandebriel RJ, De Jong WH: A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl 2012, 5: 61–71. 10.2147/NSA.S23932
Article
PubMed Central
CAS
PubMed
Google Scholar
Warheit DB, Sayes CM, Reed KL: Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol 2009, 43: 7939–7945. 10.1021/es901453p
Article
CAS
PubMed
Google Scholar
Moghimi SM, Davis SS: Innovations in avoiding particle clearance from blood by Kupffer cells: cause for reflection. Crit Rev Ther Drug Carrier Syst 1994, 11: 31–59.
CAS
PubMed
Google Scholar
Sund J, Alenius H, Vippola M, Savolainen K, Puustinen A: Proteomic characterization of engineered nanomaterial-protein interactions in relation to surface reactivity. ACS Nano 2011, 5: 4300–4309. 10.1021/nn101492k
Article
CAS
PubMed
Google Scholar
Xia T, Zhao Y, Sager T, George S, Pokhrel S, Li N, Schoenfeld D, Meng H, Lin S, Wang X, Wang M, Ji Z, Zink JI, Madler L, Castranova V, Nel AE: Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 2011, 5: 1223–1235. 10.1021/nn1028482
Article
PubMed Central
CAS
PubMed
Google Scholar
Sotiriou GA, Watson C, Murdaugh KM, Darrah TH, Pyrgiotakis G, Elder A, Brain JD, Demokritou P: Engineering safer-by-design, transparent, silica-coated ZnO nanorods with reduced DNA damage potential. Environ Sci Nano 2014, 1: 144–153. 10.1039/c3en00062a
Article
PubMed Central
CAS
PubMed
Google Scholar
Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Itty Ipe B, Bawendi MG, Frangioni JV: Renal clearance of quantum dots. Nat Biotechnol 2007, 25: 1165–1170. 10.1038/nbt1340
Article
PubMed Central
CAS
PubMed
Google Scholar
Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA: Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci U S A 2008, 105: 14265–14270. 10.1073/pnas.0805135105
Article
PubMed Central
CAS
PubMed
Google Scholar
Moghimi SM, Hunter AC, Andresen TL: Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective. Annu Rev Pharmacol Toxicol 2012, 52: 481–503. 10.1146/annurev-pharmtox-010611-134623
Article
CAS
PubMed
Google Scholar
Lynch I, Salvati A, Dawson KA: Protein-nanoparticle interactions: what does the cell see? Nat Nanotechnol 2009, 4: 546–547. 10.1038/nnano.2009.248
Article
CAS
PubMed
Google Scholar
Monopoli MP, Aberg C, Salvati A, Dawson KA: Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol 2012, 7: 779–786. 10.1038/nnano.2012.207
Article
CAS
PubMed
Google Scholar
Alwi R, Telenkov S, Mandelis A, Leshuk T, Gu F, Oladepo S, Michaelian K: Silica-coated super paramagnetic iron oxide nanoparticles (SPION) as biocompatible contrast agent in biomedical photoacoustics. Biomed Opt Express 2012, 3: 2500–2509. 10.1364/BOE.3.002500
Article
PubMed Central
CAS
PubMed
Google Scholar
Jana NR, Yu HH, Ali EM, Zheng Y, Ying JY: Controlled photostability of luminescent nanocrystalline ZnO solution for selective detection of aldehydes. Chem Commun (Camb) 2007, 1406–1408.
Chen Y-S, Wolfgang F, Seungsoo K, Pieter K, Kimberly H, Stanislav E: Silica-coated gold nanorods as photoacoustic signal nano-amplifiers. Nano Lett 2011, 11: 348–354. 10.1021/nl1042006
Article
PubMed Central
CAS
PubMed
Google Scholar
Baber O, Jang M, Barber D, Powers K: Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to in vitro BEAS-2B cells. Inhal Toxicol 2011, 23: 532–543. 10.3109/08958378.2011.592869
Article
CAS
PubMed
Google Scholar
Moghimi SM, Hunter AC, Murray JC: Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001, 53: 283–318.
CAS
PubMed
Google Scholar
Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ: In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 2006, 40: 4374–4381. 10.1021/es052069i
Article
CAS
PubMed
Google Scholar
Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, Martens JA, Hoet PH: Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 2009, 5: 846–853. 10.1002/smll.200800461
Article
CAS
PubMed
Google Scholar
Warheit DB, McHugh TA, Hartsky MA: Differential pulmonary responses in rats inhaling crystalline, colloidal or amorphous silica dusts. Scand J Work Environ Health 1995,21(Suppl 2):19–21.
CAS
PubMed
Google Scholar
Demokritou P, Gass S, Pyrgiotakis G, Cohen JM, Goldsmith W, McKinney W, Frazer D, Ma J, Schwegler-Berry D, Brain J, Castranova V: An in vivo and in vitro toxicological characterisation of realistic nanoscale CeO(2) inhalation exposures. Nanotoxicology 2013, 7: 1338–1350. 10.3109/17435390.2012.739665
Article
PubMed Central
CAS
PubMed
Google Scholar
Sotiriou GA, Sannomiya T, Teleki A, Krumeich F, Voros J, Pratsinis SE: Non-toxic dry-coated nanosilver for plasmonic biosensors. Adv Funct Mater 2010, 20: 4250–4257. 10.1002/adfm.201000985
Article
PubMed Central
CAS
PubMed
Google Scholar
Sotiriou GA, Franco D, Poulikakos D, Ferrari A: Optically stable biocompatible flame-made SiO2-coated Y2O3:Tb3+ nanophosphors for cell imaging. ACS Nano 2012, 6: 3888–3897. 10.1021/nn205035p
Article
PubMed Central
CAS
PubMed
Google Scholar
Teleki A, Heine MC, Krumeich F, Akhtar MK, Pratsinis SE: In situ coating of flame-made TiO2 particles with nanothin SiO2 films. Langmuir 2008, 24: 12553–12558. 10.1021/la801630z
Article
CAS
PubMed
Google Scholar
Demokritou P, Buchel R, Molina RM, Deloid GM, Brain JD, Pratsinis SE: Development and characterization of a Versatile Engineered Nanomaterial Generation System (VENGES) suitable for toxicological studies. Inhal Toxicol 2010,22(Suppl 2):107–116. 10.3109/08958378.2010.499385
Article
PubMed Central
CAS
PubMed
Google Scholar
Gass S, Cohen JM, Pyrgiotakis G, Sotiriou GA, Pratsinis SE, Demokritou P: A safer formulation concept for flame-generated engineered nanomaterials. ACS Sustain Chem Eng 2013, 1: 843–857.
PubMed Central
CAS
PubMed
Google Scholar
Hembram K, Sivaprakasam D, Rao TN, Wegner K: Large-scale manufacture of ZnO nanorods by flame spray pyrolysis. J Nanopart Res 2013, 15: 1461–1464. 10.1007/s11051-013-1461-4
Article
Google Scholar
Beaucage G, Kammler HK, Pratsinis SE: Particle size distributions from small-angle scattering using global scattering functions. J Appl Crystallogr 2004, 37: 523–535. 10.1107/S0021889804008969
Article
CAS
Google Scholar
Height MJ, Madler L, Pratsinis SE: Nanorods of ZnO made by flame spray pyrolysis. Chem Mater 2006, 18: 572–578. 10.1021/cm052163y
Article
CAS
Google Scholar
Sotiriou GA, Schneider M, Pratsinis SE: Green, silica-coated monoclinic Y
2
O
3
:Tb3+ nanophosphors: flame synthesis and characterization. J Phys Chem C 2012, 116: 4493–4499. 10.1021/jp211722z
Article
CAS
Google Scholar
Buesser B, Pratsinis SE: Design of gas-phase synthesis of core-shell particles by computational fluid - aerosol dynamics. AIChE J 2011, 57: 3132–3142. 10.1002/aic.12512
Article
PubMed Central
CAS
PubMed
Google Scholar
Brouwer D: Exposure to manufactured nanoparticles in different workplaces. Toxicology 2010, 269: 120–127. 10.1016/j.tox.2009.11.017
Article
CAS
PubMed
Google Scholar
Vorbau M, Hillemann L, Stintz M: Method for the characterization of the abrasion induced nanoparticle release into air from surface coatings. Aerosol Sci 2009, 40: 209–217. 10.1016/j.jaerosci.2008.10.006
Article
CAS
Google Scholar
Brain JD, Knudson DE, Sorokin SP, Davis MA: Pulmonary distribution of particles given by intratracheal instillation or by aerosol inhalation. Environ Res 1976, 11: 13–33. 10.1016/0013-9351(76)90107-9
Article
CAS
PubMed
Google Scholar
Osier M, Oberdorster G: Intratracheal inhalation vs intratracheal instillation: differences in particle effects. Fundam Appl Toxicol 1997, 40: 220–227. 10.1006/faat.1997.2390
Article
CAS
PubMed
Google Scholar
Baisch BL, Corson NM, Wade-Mercer P, Gelein R, Kennell AJ, Oberdorster G, Elder A: Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation. Part Fibre Toxicol 2014, 11: 5. 10.1186/1743-8977-11-5
Article
PubMed Central
PubMed
Google Scholar
Du Z, Zhao D, Jing L, Cui G, Jin M, Li Y, Liu X, Liu Y, Du H, Guo C, Zhou X, Sun Z: Cardiovascular toxicity of different sizes amorphous silica nanoparticles in rats after intratracheal instillation. Cardiovasc Toxicol 2013, 13: 194–207. 10.1007/s12012-013-9198-y
Article
CAS
PubMed
Google Scholar
Johnston CJ, Driscoll KE, Finkelstein JN, Baggs R, O’Reilly MA, Carter J, Gelein R, Oberdorster G: Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica. Toxicol Sci 2000, 56: 405–413. 10.1093/toxsci/56.2.405
Article
CAS
PubMed
Google Scholar
McCarthy J, Inkielewicz-Stepniak I, Corbalan JJ, Radomski MW: Mechanisms of toxicity of amorphous silica nanoparticles on human lung submucosal cells in vitro: protective effects of fisetin. Chem Res Toxicol 2012, 25: 2227–2235. 10.1021/tx3002884
Article
CAS
PubMed
Google Scholar
Merget R, Bauer T, Kupper HU, Philippou S, Bauer HD, Breitstadt R, Bruening T: Health hazards due to the inhalation of amorphous silica. Arch Toxicol 2002, 75: 625–634. 10.1007/s002040100266
Article
CAS
PubMed
Google Scholar
Warheit DB, Webb TR, Reed KL: Pulmonary toxicity screening studies in male rats with TiO2 particulates substantially encapsulated with pyrogenically deposited, amorphous silica. Part Fibre Toxicol 2006, 3: 3. 10.1186/1743-8977-3-3
Article
PubMed Central
CAS
PubMed
Google Scholar
Braakhuis HM, Park MV, Gosens I, De Jong WH, Cassee FR: Physicochemical characteristics of nanomaterials that affect pulmonary inflammation. Part Fibre Toxicol 2014, 11: 18. 10.1186/1743-8977-11-18
Article
PubMed Central
PubMed
Google Scholar
Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, Bawendi MG, Semmler-Behnke M, Frangioni JV, Tsuda A: Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 2010, 28: 1300–1303. 10.1038/nbt.1696
Article
PubMed Central
CAS
PubMed
Google Scholar
Gessner A, Lieske A, Paulke B, Muller R: Influence of surface charge density on protein adsorption on polymeric nanoparticles: analysis by two-dimensional electrophoresis. Eur J Pharm Biopharm 2002, 54: 165–170. 10.1016/S0939-6411(02)00081-4
Article
CAS
PubMed
Google Scholar
Lartigue L, Wilhelm C, Servais J, Factor C, Dencausse A, Bacri JC, Luciani N, Gazeau F: Nanomagnetic sensing of blood plasma protein interactions with iron oxide nanoparticles: impact on macrophage uptake. ACS Nano 2012, 6: 2665–2678. 10.1021/nn300060u
Article
CAS
PubMed
Google Scholar
Buzea C, Pacheco II, Robbie K: Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2007, 2: MR17–71. 10.1116/1.2815690
Article
PubMed
Google Scholar
Xia T, Kovochich M, Liong M, Madler L, Gilbert B, Shi H, Yeh JI, Zink JI, Nel AE: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2008, 2: 2121–2134. 10.1021/nn800511k
Article
PubMed Central
CAS
PubMed
Google Scholar
He X, Zhang H, Ma Y, Bai W, Zhang Z, Lu K, Ding Y, Zhao Y, Chai Z: Lung deposition and extrapulmonary translocation of nano-ceria after intratracheal instillation. Nanotechnology 2010, 21: 285103. 10.1088/0957-4484/21/28/285103
Article
PubMed
Google Scholar
Cullen RT, Tran CL, Buchanan D, Davis JM, Searl A, Jones AD, Donaldson K: Inhalation of poorly soluble particles. I. Differences in inflammatory response and clearance during exposure. Inhal Toxicol 2000, 12: 1089–1111. 10.1080/08958370050166787
Article
CAS
PubMed
Google Scholar
Adamcakova-Dodd A, Stebounova LV, Kim JS, Vorrink SU, Ault AP, O’Shaughnessy PT, Grassian VH, Thorne PS: Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part Fibre Toxicol 2014, 11: 15. 10.1186/1743-8977-11-15
Article
PubMed Central
PubMed
Google Scholar
Mineral Tolerance of Animals. The National Academic Press, Washington. D.C; 2005.
Google Scholar
Environmental Health Criteria 221 Zinc. Worl Health Organization, Geneva; 2001.
Google Scholar
Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdörster G: Size and material dependency of translocation of inhaled iridium or carbon nanoparticles from the lungs of rats to blood. Inhal Toxicol 2009, 21: 55–60. 10.1080/08958370902942517
Article
CAS
PubMed
Google Scholar
Cho WS, Duffin R, Howie SE, Scotton CJ, Wallace WA, Macnee W, Bradley M, Megson IL, Donaldson K: Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 2011, 8: 27. 10.1186/1743-8977-8-27
Article
PubMed Central
CAS
PubMed
Google Scholar
Berry JP, Arnoux B, Stanislas G, Galle P, Chretien J: A microanalytic study of particles transport across the alveoli: role of blood platelets. Biomedicine 1977, 27: 354–357.
CAS
PubMed
Google Scholar
Cohen JM, Derk R, Wang L, Godleski J, Kobzik L, Brain J, Demokritou P: Tracking translocation of industrially relevant engineered nanomaterials (ENMs) across alveolar epithelial monolayers in vitro. Nanotoxicology 2014, 8: 216–225. 10.3109/17435390.2013.879612
Article
PubMed Central
CAS
PubMed
Google Scholar
Geiser M, Kreyling WG: Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol 2010, 7: 2. 10.1186/1743-8977-7-2
Article
PubMed Central
PubMed
Google Scholar
Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P: Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005, 113: 1555–1560. 10.1289/ehp.8006
Article
PubMed Central
PubMed
Google Scholar
Oberdorster G, Sharp Z, Atudorei V, Elder A, Gelein R, Lunts A, Kreyling W, Cox C: Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J Toxicol Environ Health A 2002, 65: 1531–1543. 10.1080/00984100290071658
Article
CAS
PubMed
Google Scholar
Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdorster G, Kreyling WG: Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 2004, 16: 453–459. 10.1080/08958370490439650
Article
CAS
PubMed
Google Scholar
Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J: Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 2001,109(Suppl 4):547–551. 10.1289/ehp.01109s4547
Article
PubMed Central
CAS
PubMed
Google Scholar
Burch RE, Hahn HK, Sullivan JF: Newer aspects of the roles of zinc, manganese, and copper in human nutrition. Clin Chem 1975, 21: 501–520.
CAS
PubMed
Google Scholar
Seo J-H, Cho Y-E, Kim T, Shin H-I, Kwun I-S: Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic. Nutr Res Pract 2010, 4: 356–361. 10.4162/nrp.2010.4.5.356
Article
PubMed Central
CAS
PubMed
Google Scholar
Hashizume M, Yamaguchi M: Stimulatory effect of beta-alanyl-L-histidinato zinc on cell proliferation is dependent on protein synthesis in osteoblastic MC3T3-E1 cells. Mol Cell Biochem 1993, 122: 59–64. 10.1007/BF00925737
Article
CAS
PubMed
Google Scholar
Yamaguchi M, Igarashi A, Uchiyama S: Bioavailability of zinc yeast in rats: stimulatory effect of bone calcification in vivo. J Health Sci 2004,50(1):75–81. 10.1248/jhs.50.75
Article
CAS
Google Scholar
Hilty FM, Arnold M, Hilbe M, Teleki A, Knijnenburg JTN, Ehrensperger F, Hurrell RF, Pratsinis SE, Langhans W, Zimmermann MB: Iron from nanocompounds containing iron and zinc is highly bioavailable in rats without tissue accumulation. Nat Nanotechnol 2010, 5: 374–380. 10.1038/nnano.2010.79
Article
CAS
PubMed
Google Scholar
Espita PJP, Soares NFF, Coimbra JSR, de Andrade NJ, Medeiros EAA: Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 2012, 5: 1447–1464. 10.1007/s11947-012-0797-6
Article
Google Scholar
Lai SK, Wang YY, Hanes J: Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009, 61: 158–171. 10.1016/j.addr.2008.11.002
Article
PubMed Central
CAS
PubMed
Google Scholar
Paek HJ, Lee YJ, Chung HE, Yoo NH, Lee JA, Kim MK, Lee JK, Jeong J, Choi SJ: Modulation of the pharmacokinetics of zinc oxide nanoparticles and their fates in vivo. Nanoscale 2013, 5: 11416–11427. 10.1039/c3nr02140h
Article
CAS
PubMed
Google Scholar
Chung HE, Yu J, Baek M, Lee JA, Kim MS, Kim SH, Maeng EH, Lee JK, Jeong J, Choi SJ: Toxicokinetics of zinc oxide nanoparticles in rats. J Phys: Conf Ser 2013, 429: 012037.
Google Scholar
Baek M, Chung HE, Yu J, Lee JA, Kim TH, Oh JM, Lee WJ, Paek SM, Lee JK, Jeong J, Choy JH, Choi SJ: Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomedicine 2012, 7: 3081–3097.
PubMed Central
PubMed
Google Scholar
Cohen J, Deloid G, Pyrgiotakis G, Demokritou P: Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 2013, 7: 417–431. 10.3109/17435390.2012.666576
Article
PubMed Central
CAS
PubMed
Google Scholar
Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP: Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 1997, 13: 407–484. 10.1177/074823379701300401
Article
CAS
PubMed
Google Scholar
Schoeffner DJ, Warren DA, Muralidara S, Bruckner JV, Simmons JE: Organ weights and fat volume in rats as a function of strain and age. J Toxicol Environ Health A 1999, 56: 449–462. 10.1080/009841099157917
Article
CAS
PubMed
Google Scholar
Jaki T, Wolfsegger MJ: Estimation of pharmacokinetic parameters with the R package PK. Pharm Stat 2011, 10: 288–294. 10.1002/pst.449
Article
Google Scholar