Sargent JF. Nanotechnology: a policy primer; 2012.
Google Scholar
Penn SG, He L, Natan MJ. Nanoparticles for bioanalysis. Curr Opin Chem Biol. 2003;7:609–15.
Article
CAS
Google Scholar
Liu WT. Nanoparticles and their biological and environmental applications. J Biosci Bioeng. 2006;102:1–7.
Article
CAS
Google Scholar
European Commission Communication from the Commision to the European Parliament, the Council and the European Economic and Social Committee. Second Regulatory Review on Nanomaterials. COM(2012) 572final; 2012. p. 1–15.
Rothen-Rutishauser B, Schürch S, Gehr P. Interaction of particles with membranes. In: Donaldson K, Borm P, editors. Paticle toxicology. Boca Raton: CRC Press; 2007. p. 139–60.
Google Scholar
Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology. 2008;17:438–47.
Article
CAS
Google Scholar
Hendren CO, Mesnard X, Dröge J, Wiesner MR. Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol. 2011;45:2562–9.
Article
CAS
Google Scholar
Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol. 2006;7:295–6.
Article
Google Scholar
Kaida T, Kobayashi K, Adachi M, Suzuki F. Optical characteristics of titanium oxide interference film and the film laminated with oxides and their applications for cosmetics. J Cosmet Sci. 2004;55:219–20.
PubMed
Google Scholar
Wang JJ, Sanderson BJ, Wang H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutat Res. 2007;628:99–106.
Article
CAS
Google Scholar
Wolf R, Matz H, Orion E, Lipozencic J. Sunscreens–the ultimate cosmetic. Acta Dermatovenerol Croat. 2003;11:158–62.
PubMed
Google Scholar
Shakeel M, Jabeen F, Shabbir S, Asghar MS, Khan MS, Chaudhry AS. Toxicity of nano-titanium dioxide (TiO2-NP) through various routes of exposure: a review. Biol Trace Elem Res. 2016;172(1):1–36.
Article
CAS
Google Scholar
Lomer MC, Thompson RP, Powell JJ. Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc Nutr Soc. 2002;61(1):123–30.
Article
Google Scholar
Wang J, Zhou G, Chen C, Yu H, Wang T, Ma Y, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett. 2007;168(2):176–85.
Article
CAS
Google Scholar
Shimizu M, Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K. Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse. Part Fibre Toxicol. 2009;6(1):20.
Article
Google Scholar
Takeda K, Suzuki K, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, et al. Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve system. J Health Sci. 2009;55:95–102.
Article
CAS
Google Scholar
Warheit DB, Boatman R, Brown SC. Developmental toxicity studies with 6 forms of titanium dioxide test materials (3 pigment-different grade & 3 nanoscale) demonstrate an absence of effects in orally-exposed rats. Regul Toxicol Pharmacol. 2015;73(3):887–96.
Article
CAS
Google Scholar
OECD Guideline for the testing of chemicals, prenatal developmental toxicity study, OECD 414, adopted 22nd January 2001, http://www.oecd.org/chemicalsafety/risk-assessment/1948482.pdf.
Wilson JG. Methods for administering agents and detecting malformations in experimental animals. In: Wilson JG, Warkany J, editors. Teratology, principles and techniques. Chicago and London: University of Chicago Press; 1965.
Google Scholar
Nishimura K. A microdissection method for detecting thoracic visceral malformations in mouse and rat fetuses. Cong Anom. 1974;14:23–40.
Google Scholar
Staples RE. Detecting of visceral alterations in mammalian fetuses. Teratology. 1974;9:37–8.
Article
Google Scholar
Dawson AB. A note on the staing of the skeleton of cleared specimens with alizarin red. S Stain Technol. 1926;1:123–4.
Article
Google Scholar
Makris SL, Solomon HM, Clark R, Shiota K, Barbellion S, Buschmann J, Ema M, Fujiwara M, Grote K, Hazelden KP, Hew KW, Horimoto M, Ooshima Y, Parkinson M, Wise LD. Terminology of developmental abnormalities in common laboratory mammals (version 2). Birth Defects Res B. 2009;86:227–327.
Article
CAS
Google Scholar
Bortey-Sam N, Nakayama SMM, Ikenaka Y, Akoto O, Baidoo E, Mizukawa H, Ishizuka M. Heavy metals and metalloid accumulation in livers and kidneys of wild rats around gold-mining communities in Tarkwa, Ghana. J Environ Chem Ecotoxicol. 2016;8(7):58–68.
Article
CAS
Google Scholar
Devoy J, Brun E, Cosnefroy A, Disdier C, Melczer M, Antoine G, Chalansonnet M, Mabondzo A. Mineralization of TiO2 nanoparticles for the determination of titanium in rat tissues. J Anal Chem. 2016;71(4):418–25.
Article
CAS
Google Scholar
Krystek P, Tentschert J, Nia Y, Trouiller B, Noël L, Goetz ME, Papin A, Luch A, Guérin T, De Jong WH. Method development and inter-laboratory comparison about the determination of titanium from titanium dioxide nanoparticles in tissues by inductively coupled plasma mass spectrometry. Anal Bioanal Chem. 2014;406(16):3853–61.
Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol. 2009;6(1):17.
Article
Google Scholar
Kang SJ, Kim BM, Lee YJ, Chung HW. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environ Mol Mutagen. 2008;49(5):399–405.
Article
CAS
Google Scholar
Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a review of current toxicological data. Part Fibre Toxicol. 2013;10(1):15.
Article
CAS
Google Scholar
Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I, Tschopp J. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc Natl Acad Sci. 2010;107(45):19449–54.
Article
CAS
Google Scholar
Morishige T, Yoshioka Y, Tanabe A, Yao X, Tsunoda SI, Tsutsumi Y, et al. Titanium dioxide induces different levels of IL-1β production dependent on its particle characteristics through caspase-1 activation mediated by reactive oxygen species and cathepsin B. Biochem Biophys Res Commun. 2010;392(2):160–5.
Article
CAS
Google Scholar
Gui S, Zhang Z, Zheng L, Cui Y, Liu X, Li N, et al. Molecular mechanism of kidney injury of mice caused by exposure to titanium dioxide nanoparticles. J Hazard Mater. 2011;195:365–70.
Article
CAS
Google Scholar
Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A. ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol in Vitro. 2011;25(1):231–41.
Article
CAS
Google Scholar
Driscoll KE, Deyo LC, Carter JM, Howard BW, Hassenbein DG, Bertram TA. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis. 1997;18(2):423–30.
Article
CAS
Google Scholar
Bu Q, Yan G, Deng P, Peng F, Lin H, Xu Y, et al. NMR-based metabonomic study of the sub-acute toxicity of titanium dioxide nanoparticles in rats after oral administration. Nanotechnology. 2010;21(12):125105.
Article
Google Scholar
Xu Z, Zhang YL, Song C, Wu LL, Gao HW. Interactions of hydroxyapatite with proteins and its toxicological effect to zebrafish embryos development. PLoS One. 2012;7(4):e32818.
Article
CAS
Google Scholar
Samaee SM, Rabbani S, Jovanović B, Mohajeri-Tehrani MR, Haghpanah V. Efficacy of the hatching event in assessing the embryo toxicity of the nano-sized TiO2 particles in zebrafish: a comparison between two different classes of hatching-derived variables. Ecotoxicol Environ Saf. 2015;116:121–8.
Article
CAS
Google Scholar
Wang J, Zhu X, Zhang X, Zhao Z, Liu H, George R, et al. Disruption of zebrafish (Danio rerio) reproduction upon chronic exposure to TiO2 nanoparticles. Chemosphere. 2011;83(4):461–7.
Article
CAS
Google Scholar
Fang Q, Shi X, Zhang L, Wang Q, Wang X, Guo Y, Zhou B. Effect of titanium dioxide nanoparticles on the bioavailability, metabolism, and toxicity of pentachlorophenol in zebrafish larvae. J Hazard Mater. 2015;283:897–904.
Article
CAS
Google Scholar
Yamashita K, Yoshioka Y, Higashisaka K, Mimura K, Morishita Y, Nozaki M, et al. Silica and titanium dioxide nanoparticles cause pregnancy complications in mice. Nat Nanotechnol. 2011;6(5):321–8.
Article
CAS
Google Scholar
Mwilu SK, El Badawy AM, Bradham K, Nelson C, Thomas D, Scheckel KG, et al. Changes in silver nanoparticles exposed to human synthetic stomach fluid: effects of particle size and surface chemistry. Sci Total Environ. 2013;447:90–8.
Article
CAS
Google Scholar
Geraets L, Oomen AG, Krystek P, Jacobsen NR, Wallin H, Laurentie M, et al. Tissue distribution and elimination after oral and intravenous administration of different titanium dioxide nanoparticles in rats. Part Fibre Toxicol. 2014;11(1):30.
Article
Google Scholar
Kreyling WG, Holzwarth U, Schleh C, Kozempel J, Wenk A, Haberl N, et al. Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: part 2. Nanotoxicology. 2017;11(4):443–53.
Article
CAS
Google Scholar
Kreyling WG, Holzwarth U, Haberl N, Kozempel J, Hirn S, Wenk A, et al. Quantitative biokinetics of titanium dioxide nanoparticles after intravenous injection in rats: part 1. Nanotoxicology. 2017;11(4):434–42.
Article
CAS
Google Scholar
Carney EW, Tornesi B, Markham DA, Rasoulpour RJ, Moore N. Species-specificity of ethylene glycol-induced developmental toxicity: toxicokinetic and whole embryo culture studies in the rabbit. Birth Defects Res B Dev Reprod Toxicol. 2008;83(6):573–81.
Article
CAS
Google Scholar
Kimmel CA, Holson JF, Hogue CI, Carlo GL. Reliability of experimental studies for predicting hazards to human development. Jefferson, Arkansas: U.S. Food and Drug Administration, National Center for Toxicological Research, NCTR technical report for experiment No. 6015; 1984.
Google Scholar
Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Van Ravenzwaay B. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol. 2008;82(3):151–7.
Article
CAS
Google Scholar
Chen J, Dong X, Zhao J, Tang G. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection. J Appl Toxicol. 2009;29(4):330–7.
Article
CAS
Google Scholar
Li Y, Li J, Yin J, Li W, Kang C, Huang Q, Li Q. Systematic influence induced by 3 nm titanium dioxide following intratracheal instillation of mice. J Nanosci Nanotechnol. 2010;10(12):8544–9.
Article
CAS
Google Scholar
Wise LD, Buschmann J, Feuston MH, Fisher JE, Hew KW, Hoberman AM, et al. Embryo-fetal developmental toxicity study design for pharmaceuticals. Birth Defects Res B Dev Reprod Toxicol. 2009;86(6):418–28.
Article
CAS
Google Scholar
Wang Y, Chen Z, Ba T, Pu J, Chen T, Song Y, et al. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles. Small. 2013;9(9–10):1742–52.
Article
CAS
Google Scholar