Jiang B, Kauffman AE, Li L, McFee W, Cai B, Weinstein J, et al. Health impacts of environmental contamination of micro- and nanoplastics: a review. Environ Health Prev Med. 2020;25(1):29. https://doi.org/10.1186/s12199-020-00870-9.
Article
PubMed
PubMed Central
Google Scholar
Mueller MT, Fueser H, Trac LN, Mayer P, Traunspurger W, Hoss S. Surface-related toxicity of polystyrene beads to nematodes and the role of food availability. Environ Sci Technol. 2020;54(3):1790–8. https://doi.org/10.1021/acs.est.9b06583.
Article
CAS
PubMed
Google Scholar
Domenech J, Hernandez A, Rubio L, Marcos R, Cortes C. Interactions of polystyrene nanoplastics with in vitro models of the human intestinal barrier. Arch Toxicol. 2020;94(9):2997–3012. https://doi.org/10.1007/s00204-020-02805-3.
Article
CAS
PubMed
Google Scholar
Dong CD, Chen CW, Chen YC, Chen HH, Lee JS, Lin CH. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment. J Hazard Mater. 2020;385:121575. https://doi.org/10.1016/j.jhazmat.2019.121575.
Article
CAS
PubMed
Google Scholar
Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011;62(8):1596–605. https://doi.org/10.1016/j.marpolbul.2011.05.030.
Article
CAS
PubMed
Google Scholar
Jung JW, Park JW, Eo S, Choi J, Song YK, Cho Y, et al. Ecological risk assessment of microplastics in coastal, shelf, and deep sea waters with a consideration of environmentally relevant size and shape. Environ Pollut. 2021;270:116217. https://doi.org/10.1016/j.envpol.2020.116217.
Article
CAS
PubMed
Google Scholar
González-Pleiter M, Tamayo-Belda M, Pulido-Reyes G, Amariei G, Leganés F, Rosal R, et al. Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environ Sci Nano. 2019;6(5):1382–92. https://doi.org/10.1039/c8en01427b.
Article
CAS
Google Scholar
Strungaru S-A, Jijie R, Nicoara M, Plavan G, Faggio C. Micro- (nano) plastics in freshwater ecosystems: abundance, toxicological impact and quantification methodology. TrAC Trends Anal Chem. 2019;110:116–28. https://doi.org/10.1016/j.trac.2018.10.025.
Article
CAS
Google Scholar
Hartmann NB, Huffer T, Thompson RC, Hassellov M, Verschoor A, Daugaard AE, et al. Response to the Letter to the Editor regarding our feature “Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris.” Environ Sci Technol. 2019;53(9):4678–9. https://doi.org/10.1021/acs.est.9b02238.
Article
CAS
PubMed
Google Scholar
Goodman KE, Hare JT, Khamis ZI, Hua T, Sang QA. Exposure of human lung cells to polystyrene microplastics significantly retards cell proliferation and triggers morphological changes. Chem Res Toxicol. 2021. https://doi.org/10.1021/acs.chemrestox.0c00486.
Article
PubMed
Google Scholar
Qian J, He X, Wang P, Xu B, Li K, Lu B, et al. Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: the role of surface functional groups. Environ Pollut. 2021;279:116904. https://doi.org/10.1016/j.envpol.2021.116904.
Article
CAS
PubMed
Google Scholar
Hwang J, Choi D, Han S, Jung SY, Choi J, Hong J. Potential toxicity of polystyrene microplastic particles. Sci Rep. 2020;10(1):7391. https://doi.org/10.1038/s41598-020-64464-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patricio Silva AL, Prata JC, Walker TR, Duarte AC, Ouyang W, Barcelo D, et al. Increased plastic pollution due to COVID-19 pandemic: challenges and recommendations. Chem Eng J. 2021;405:126683. https://doi.org/10.1016/j.cej.2020.126683.
Article
CAS
PubMed
Google Scholar
Poerio T, Piacentini E, Mazzei R. Membrane processes for microplastic removal. Molecules. 2019;24:22. https://doi.org/10.3390/molecules24224148.
Article
CAS
Google Scholar
Sharma VK, Ma X, Guo B, Zhang K. Environmental factors-mediated behavior of microplastics and nanoplastics in water: a review. Chemosphere. 2021;271:129597. https://doi.org/10.1016/j.chemosphere.2021.129597.
Article
CAS
PubMed
Google Scholar
Alimba CG, Faggio C. Microplastics in the marine environment: current trends in environmental pollution and mechanisms of toxicological profile. Environ Toxicol Pharmacol. 2019;68:61–74. https://doi.org/10.1016/j.etap.2019.03.001.
Article
CAS
PubMed
Google Scholar
Tibbetts JH. Managing marine plastic pollution: policy initiatives to address wayward waste. Environ Health Perspect. 2015;123(4):A90–3. https://doi.org/10.1289/ehp.123-A90.
Article
PubMed
PubMed Central
Google Scholar
Gambardella C, Morgana S, Bramini M, Rotini A, Manfra L, Migliore L, et al. Ecotoxicological effects of polystyrene microbeads in a battery of marine organisms belonging to different trophic levels. Mar Environ Res. 2018;141:313–21. https://doi.org/10.1016/j.marenvres.2018.09.023.
Article
CAS
PubMed
Google Scholar
Billen P, Khalifa L, Van Gerven F, Tavernier S, Spatari S. Technological application potential of polyethylene and polystyrene biodegradation by macro-organisms such as mealworms and wax moth larvae. Sci Total Environ. 2020;735:139521. https://doi.org/10.1016/j.scitotenv.2020.139521.
Article
CAS
PubMed
Google Scholar
Xiao Y, Jiang X, Liao Y, Zhao W, Zhao P, Li M. Adverse physiological and molecular level effects of polystyrene microplastics on freshwater microalgae. Chemosphere. 2020;255:126914. https://doi.org/10.1016/j.chemosphere.2020.126914.
Article
CAS
PubMed
Google Scholar
Wu B, Wu X, Liu S, Wang Z, Chen L. Size-dependent effects of polystyrene microplastics on cytotoxicity and efflux pump inhibition in human Caco-2 cells. Chemosphere. 2019;221:333–41. https://doi.org/10.1016/j.chemosphere.2019.01.056.
Article
CAS
PubMed
Google Scholar
Wu S, Wu M, Tian D, Qiu L, Li T. Effects of polystyrene microbeads on cytotoxicity and transcriptomic profiles in human Caco-2 cells. Environ Toxicol. 2020;35(4):495–506. https://doi.org/10.1002/tox.22885.
Article
CAS
PubMed
Google Scholar
He Y, Li J, Chen J, Miao X, Li G, He Q, et al. Cytotoxic effects of polystyrene nanoplastics with different surface functionalization on human HepG2 cells. Sci Total Environ. 2020;723:138180. https://doi.org/10.1016/j.scitotenv.2020.138180.
Article
CAS
PubMed
Google Scholar
Paget V, Dekali S, Kortulewski T, Grall R, Gamez C, Blazy K, et al. Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages. PLoS ONE. 2015;10(4):e0123297. https://doi.org/10.1371/journal.pone.0123297.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lunov O, Syrovets T, Loos C, Beil J, Delacher M, Tron K, et al. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line. ACS Nano. 2011;5(3):1657–69. https://doi.org/10.1021/nn2000756.
Article
CAS
PubMed
Google Scholar
Ivar do Sul JA, Costa MF. The present and future of microplastic pollution in the marine environment. Environ Pollut. 2014;185:352–64. https://doi.org/10.1016/j.envpol.2013.10.036.
Article
CAS
PubMed
Google Scholar
Massos A, Turner A. Cadmium, lead and bromine in beached microplastics. Environ Pollut. 2017;227:139–45. https://doi.org/10.1016/j.envpol.2017.04.034.
Article
CAS
PubMed
Google Scholar
Lear G, Kingsbury JM, Franchini S, Gambarini V, Maday SDM, Wallbank JA, et al. Plastics and the microbiome: impacts and solutions. Environ Microbiome. 2021;16(1):2. https://doi.org/10.1186/s40793-020-00371-w.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wright RJ, Erni-Cassola G, Zadjelovic V, Latva M, Christie-Oleza JA. Marine plastic debris: a new surface for microbial colonization. Environ Sci Technol. 2020;54(19):11657–72. https://doi.org/10.1021/acs.est.0c02305.
Article
CAS
PubMed
Google Scholar
Wright SL, Kelly FJ. Plastic and human health: a micro issue? Environ Sci Technol. 2017;51(12):6634–47. https://doi.org/10.1021/acs.est.7b00423.
Article
CAS
PubMed
Google Scholar
Prust M, Meijer J, Westerink RHS. The plastic brain: neurotoxicity of micro- and nanoplastics. Part Fibre Toxicol. 2020;17(1):24. https://doi.org/10.1186/s12989-020-00358-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kik K, Bukowska B, Sicinska P. Polystyrene nanoparticles: Sources, occurrence in the environment, distribution in tissues, accumulation and toxicity to various organisms. Environ Pollut. 2020;262:114297. https://doi.org/10.1016/j.envpol.2020.114297.
Article
CAS
PubMed
Google Scholar
Lelieveld J, Pozzer A, Poschl U, Fnais M, Haines A, Munzel T. Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective. Cardiovasc Res. 2020;116(11):1910–7. https://doi.org/10.1093/cvr/cvaa025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayes RB, Lim C, Zhang Y, Cromar K, Shao Y, Reynolds HR, et al. PM2.5 air pollution and cause-specific cardiovascular disease mortality. Int J Epidemiol. 2020;49(1):25–35. https://doi.org/10.1093/ije/dyz114.
Article
PubMed
Google Scholar
Yuan S, Wang J, Jiang Q, He Z, Huang Y, Li Z, et al. Long-term exposure to PM2.5 and stroke: a systematic review and meta-analysis of cohort studies. Environ Res. 2019;177:108587. https://doi.org/10.1016/j.envres.2019.108587.
Article
CAS
PubMed
Google Scholar
Apte JS, Marshall JD, Cohen AJ, Brauer M. Addressing global mortality from ambient PM2.5. Environ Sci Technol. 2015;49(13):8057–66. https://doi.org/10.1021/acs.est.5b01236.
Article
CAS
PubMed
Google Scholar
Bai N, Khazaei M, van Eeden SF, Laher I. The pharmacology of particulate matter air pollution-induced cardiovascular dysfunction. Pharmacol Ther. 2007;113(1):16–29. https://doi.org/10.1016/j.pharmthera.2006.06.005.
Article
CAS
PubMed
Google Scholar
Lippi G, Favaloro EJ, Franchini M, Guidi GC. Air pollution and coagulation testing: a new source of biological variability? Thromb Res. 2008;123(1):50–4. https://doi.org/10.1016/j.thromres.2008.04.010.
Article
CAS
PubMed
Google Scholar
Andrews DA, Low PS. Role of red blood cells in thrombosis. Curr Opin Hematol. 1999;6(2):76–82. https://doi.org/10.1097/00062752-199903000-00004.
Article
CAS
PubMed
Google Scholar
Wang Q, Zennadi R. oxidative stress and thrombosis during aging: the roles of oxidative stress in RBCs in venous thrombosis. Int J Mol Sci. 2020;21:12. https://doi.org/10.3390/ijms21124259.
Article
CAS
Google Scholar
Shin JH, Lim KM, Noh JY, Bae ON, Chung SM, Lee MY, et al. Lead-induced procoagulant activation of erythrocytes through phosphatidylserine exposure may lead to thrombotic diseases. Chem Res Toxicol. 2007;20(1):38–43. https://doi.org/10.1021/tx060114+.
Article
CAS
PubMed
Google Scholar
Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014;5:84. https://doi.org/10.3389/fphys.2014.00084.
Article
PubMed
PubMed Central
Google Scholar
Tortora F, Notariale R, Lang F, Manna C. Hydroxytyrosol decreases phosphatidylserine exposure and inhibits suicidal death induced by lysophosphatidic acid in human erythrocytes. Cell Physiol Biochem. 2019;53(6):921–32. https://doi.org/10.33594/000000185.
Article
CAS
PubMed
Google Scholar
Gao M, Lau PM, Kong SK. Mitochondrial toxin betulinic acid induces in vitro eryptosis in human red blood cells through membrane permeabilization. Arch Toxicol. 2014;88(3):755–68. https://doi.org/10.1007/s00204-013-1162-x.
Article
CAS
PubMed
Google Scholar
Wesseling MC, Wagner-Britz L, Huppert H, Hanf B, Hertz L, Nguyen DB, et al. Phosphatidylserine exposure in human red blood cells depending on cell age. Cell Physiol Biochem. 2016;38(4):1376–90. https://doi.org/10.1159/000443081.
Article
CAS
PubMed
Google Scholar
Avsievich T, Popov A, Bykov A, Meglinski I. Mutual interaction of red blood cells influenced by nanoparticles. Sci Rep. 2019;9(1):5147. https://doi.org/10.1038/s41598-019-41643-x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rothen-Rutishauser BM, Schurch S, Haenni B, Kapp N, Gehr P. Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques. Environ Sci Technol. 2006;40(14):4353–9. https://doi.org/10.1021/es0522635.
Article
CAS
PubMed
Google Scholar
Barshtein G, Livshits L, Shvartsman LD, Shlomai NO, Yedgar S, Arbell D. Polystyrene nanoparticles activate erythrocyte aggregation and adhesion to endothelial cells. Cell Biochem Biophys. 2016;74(1):19–27. https://doi.org/10.1007/s12013-015-0705-6.
Article
CAS
PubMed
Google Scholar
Li SQ, Zhu RR, Zhu H, Xue M, Sun XY, Yao SD, et al. Nanotoxicity of TiO(2) nanoparticles to erythrocyte in vitro. Food Chem Toxicol. 2008;46(12):3626–31. https://doi.org/10.1016/j.fct.2008.09.012.
Article
CAS
PubMed
Google Scholar
Han Y, Wang X, Dai H, Li S. Nanosize and surface charge effects of hydroxyapatite nanoparticles on red blood cell suspensions. ACS Appl Mater Interfaces. 2012;4(9):4616–22. https://doi.org/10.1021/am300992x.
Article
CAS
PubMed
Google Scholar
Nolte TM, Hartmann NB, Kleijn JM, Garnaes J, van de Meent D, Jan Hendriks A, et al. The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. Aquat Toxicol. 2017;183:11–20. https://doi.org/10.1016/j.aquatox.2016.12.005.
Article
CAS
PubMed
Google Scholar
Choi D, Bang J, Kim T, Oh Y, Hwang Y, Hong J. In vitro chemical and physical toxicities of polystyrene microfragments in human-derived cells. J Hazard Mater. 2020;400:123308. https://doi.org/10.1016/j.jhazmat.2020.123308.
Article
CAS
PubMed
Google Scholar
Zhang F, Wang Z, Wang S, Fang H, Wang D. Aquatic behavior and toxicity of polystyrene nanoplastic particles with different functional groups: complex roles of pH, dissolved organic carbon and divalent cations. Chemosphere. 2019;228:195–203. https://doi.org/10.1016/j.chemosphere.2019.04.115.
Article
CAS
PubMed
Google Scholar
Weisel JW, Litvinov RI. Red blood cells: the forgotten player in hemostasis and thrombosis. J Thromb Haemost. 2019;17(2):271–82. https://doi.org/10.1111/jth.14360.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zwaal RF, Schroit AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 1997;89(4):1121–32.
Article
CAS
Google Scholar
Pretini V, Koenen MH, Kaestner L, Fens M, Schiffelers RM, Bartels M, et al. Red blood cells: chasing interactions. Front Physiol. 2019;10:945. https://doi.org/10.3389/fphys.2019.00945.
Article
PubMed
PubMed Central
Google Scholar
Bogdanova A, Makhro A, Wang J, Lipp P, Kaestner L. Calcium in red blood cells—a perilous balance. Int J Mol Sci. 2013;14(5):9848–72. https://doi.org/10.3390/ijms14059848.
Article
CAS
PubMed
PubMed Central
Google Scholar
Betz T, Lenz M, Joanny JF, Sykes C. ATP-dependent mechanics of red blood cells. Proc Natl Acad Sci U S A. 2009;106(36):15320–5. https://doi.org/10.1073/pnas.0904614106.
Article
PubMed
PubMed Central
Google Scholar
Powers HJ, Thurnham DI. Riboflavin deficiency in man: effects on haemoglobin and reduced glutathione in erythrocytes of different ages. Br J Nutr. 1981;46(2):257–66. https://doi.org/10.1079/bjn19810031.
Article
CAS
PubMed
Google Scholar
Suzuki J, Fujii T, Imao T, Ishihara K, Kuba H, Nagata S. Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members. J Biol Chem. 2013;288(19):13305–16. https://doi.org/10.1074/jbc.M113.457937.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weiss E, Rees DC, Gibson JS. Role of calcium in phosphatidylserine externalisation in red blood cells from sickle cell patients. Anemia. 2011;2011:379894. https://doi.org/10.1155/2011/379894.
Article
CAS
PubMed
Google Scholar
Lim KM, Kim S, Noh JY, Kim K, Jang WH, Bae ON, et al. Low-level mercury can enhance procoagulant activity of erythrocytes: a new contributing factor for mercury-related thrombotic disease. Environ Health Perspect. 2010;118(7):928–35. https://doi.org/10.1289/ehp.0901473.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wautier MP, Heron E, Picot J, Colin Y, Hermine O, Wautier JL. Red blood cell phosphatidylserine exposure is responsible for increased erythrocyte adhesion to endothelium in central retinal vein occlusion. J Thromb Haemost. 2011;9(5):1049–55. https://doi.org/10.1111/j.1538-7836.2011.04251.x.
Article
CAS
PubMed
Google Scholar
Blum A. The possible role of red blood cell microvesicles in atherosclerosis. Eur J Intern Med. 2009;20(2):101–5. https://doi.org/10.1016/j.ejim.2008.06.001.
Article
CAS
PubMed
Google Scholar
Kim K, Bae ON, Koh SH, Kang S, Lim KM, Noh JY, et al. High-dose vitamin C injection to cancer patients may promote thrombosis through procoagulant activation of erythrocytes. Toxicol Sci. 2015;147(2):350–9. https://doi.org/10.1093/toxsci/kfv133.
Article
CAS
PubMed
Google Scholar
Kim L, Kim D, Kim SA, Kim H, Lee TY, An YJ. Are your shoes safe for the environment?—Toxicity screening of leachates from microplastic fragments of shoe soles using freshwater organisms. J Hazard Mater. 2021;421:126779. https://doi.org/10.1016/j.jhazmat.2021.126779.
Article
CAS
PubMed
Google Scholar
Kim D, Kwak JI, An YJ. Physiological response of crop plants to the endocrine-disrupting chemical nonylphenol in the soil environment. Environ Pollut. 2019;251:573–80. https://doi.org/10.1016/j.envpol.2019.04.101.
Article
CAS
PubMed
Google Scholar
Cortés C, Domenech J, Salazar M, Pastor S, Marcos R, Hernández A. Nanoplastics as a potential environmental health factor: effects of polystyrene nanoparticles on human intestinal epithelial Caco-2 cells. Environ Sci Nano. 2020;7(1):272–85. https://doi.org/10.1039/c9en00523d.
Article
CAS
Google Scholar
Hou B, Wang F, Liu T, Wang Z. Reproductive toxicity of polystyrene microplastics: in vivo experimental study on testicular toxicity in mice. J Hazard Mater. 2021;405:124028. https://doi.org/10.1016/j.jhazmat.2020.124028.
Article
CAS
PubMed
Google Scholar
Choi D, Hwang J, Bang J, Han S, Kim T, Oh Y, et al. In vitro toxicity from a physical perspective of polyethylene microplastics based on statistical curvature change analysis. Sci Total Environ. 2021;752:142242. https://doi.org/10.1016/j.scitotenv.2020.142242.
Article
CAS
PubMed
Google Scholar
Yong CQY, Valiyaveetill S, Tang BL. Toxicity of microplastics and nanoplastics in mammalian systems. Int J Environ Res Public Health. 2020;17:5. https://doi.org/10.3390/ijerph17051509.
Article
CAS
Google Scholar
Gruber MM, Hirschmugl B, Berger N, Holter M, Radulovic S, Leitinger G, et al. Plasma proteins facilitates placental transfer of polystyrene particles. J Nanobiotechnol. 2020;18(1):128. https://doi.org/10.1186/s12951-020-00676-5.
Article
CAS
Google Scholar
Kelly FJ, Fussell JC. Toxicity of airborne particles-established evidence, knowledge gaps and emerging areas of importance. Philos Trans A Math Phys Eng Sci. 2020;378(2183):20190322. https://doi.org/10.1098/rsta.2019.0322.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–39. https://doi.org/10.1289/ehp.7339.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silva VM, Corson N, Elder A, Oberdorster G. The rat ear vein model for investigating in vivo thrombogenicity of ultrafine particles (UFP). Toxicol Sci. 2005;85(2):983–9. https://doi.org/10.1093/toxsci/kfi142.
Article
CAS
PubMed
Google Scholar
Nemmar A, Hoylaerts MF, Hoet PH, Dinsdale D, Smith T, Xu H, et al. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am J Respir Crit Care Med. 2002;166(7):998–1004. https://doi.org/10.1164/rccm.200110-026OC.
Article
PubMed
Google Scholar
Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF. A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health. 2020;17:4. https://doi.org/10.3390/ijerph17041212.
Article
CAS
Google Scholar
Mohamed Nor NH, Kooi M, Diepens NJ, Koelmans AA. Lifetime accumulation of microplastic in children and adults. Environ Sci Technol. 2021;55(8):5084–96. https://doi.org/10.1021/acs.est.0c07384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ribeiro F, Okoffo ED, O’Brien JW, Fraissinet-Tachet S, O’Brien S, Gallen M, et al. Quantitative analysis of selected plastics in high-commercial-value australian seafood by pyrolysis gas chromatography mass spectrometry. Environ Sci Technol. 2020;54(15):9408–17. https://doi.org/10.1021/acs.est.0c02337.
Article
CAS
PubMed
Google Scholar
Kim KA, Kim D, Kim JH, Shin YJ, Kim ES, Akram M, et al. Autophagy-mediated occludin degradation contributes to blood-brain barrier disruption during ischemia in bEnd.3 brain endothelial cells and rat ischemic stroke models. Fluids Barriers CNS. 2020;17(1):21. https://doi.org/10.1186/s12987-020-00182-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillespie AH, Doctor A. Red blood cell contribution to hemostasis. Front Pediatr. 2021;9:629824. https://doi.org/10.3389/fped.2021.629824.
Article
PubMed
PubMed Central
Google Scholar
Byrnes JR, Wolberg AS. Red blood cells in thrombosis. Blood. 2017;130(16):1795–9. https://doi.org/10.1182/blood-2017-03-745349.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van Der Meijden PE, Van Schilfgaarde M, Van Oerle R, Renne T, ten Cate H, Spronk HM. Platelet- and erythrocyte-derived microparticles trigger thrombin generation via factor XIIa. J Thromb Haemost. 2012;10(7):1355–62. https://doi.org/10.1111/j.1538-7836.2012.04758.x.
Article
CAS
Google Scholar
Litvinov RI, Weisel JW. Role of red blood cells in haemostasis and thrombosis. ISBT Sci Ser. 2017;12(1):176–83. https://doi.org/10.1111/voxs.12331.
Article
CAS
PubMed
Google Scholar
Yildirim A, Ozgur E, Bayindir M. Impact of mesoporous silica nanoparticle surface functionality on hemolytic activity, thrombogenicity and non-specific protein adsorption. J Mater Chem B. 2013;1(14):1909–20. https://doi.org/10.1039/c3tb20139b.
Article
CAS
PubMed
Google Scholar
Ghosh M, Chakraborty A, Mukherjee A. Cytotoxic, genotoxic and the hemolytic effect of titanium dioxide (TiO2) nanoparticles on human erythrocyte and lymphocyte cells in vitro. J Appl Toxicol. 2013;33(10):1097–110. https://doi.org/10.1002/jat.2863.
Article
CAS
PubMed
Google Scholar
Preedia Babu E, Subastri A, Suyavaran A, Premkumar K, Sujatha V, Aristatile B, et al. Size dependent uptake and hemolytic effect of zinc oxide nanoparticles on erythrocytes and biomedical potential of ZnO–ferulic acid conjugates. Sci Rep. 2017;7(1):4203. https://doi.org/10.1038/s41598-017-04440-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bian Y, Chung HY, Bae ON, Lim KM, Chung JH, Pi J. Titanium dioxide nanoparticles enhance thrombosis through triggering the phosphatidylserine exposure and procoagulant activation of red blood cells. Part Fibre Toxicol. 2021;18(1):28. https://doi.org/10.1186/s12989-021-00422-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bian Y, Kim K, Ngo T, Kim I, Bae ON, Lim KM, et al. Silver nanoparticles promote procoagulant activity of red blood cells: a potential risk of thrombosis in susceptible population. Part Fibre Toxicol. 2019;16(1):9. https://doi.org/10.1186/s12989-019-0292-6.
Article
PubMed
PubMed Central
Google Scholar
Fongsodsri K, Chamnanchanunt S, Desakorn V, Thanachartwet V, Sahassananda D, Rojnuckarin P, et al. Particulate matter 2.5 and hematological disorders from dust to diseases: a systematic review of available evidence. Front Med (Lausanne). 2021;8:692008. https://doi.org/10.3389/fmed.2021.692008.
Article
PubMed
PubMed Central
Google Scholar
Tang L, Wang QY, Cheng ZP, Hu B, Liu JD, Hu Y. Air pollution and venous thrombosis: a meta-analysis. Sci Rep. 2016;6:32794. https://doi.org/10.1038/srep32794.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hadei M, Naddafi K. Cardiovascular effects of airborne particulate matter: a review of rodent model studies. Chemosphere. 2020;242:125204. https://doi.org/10.1016/j.chemosphere.2019.125204.
Article
CAS
PubMed
Google Scholar
Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol. 2015;39:35–42. https://doi.org/10.1016/j.semcdb.2015.01.009.
Article
CAS
PubMed
Google Scholar
Balasubramanian K, Schroit AJ. Aminophospholipid asymmetry: a matter of life and death. Annu Rev Physiol. 2003;65:701–34. https://doi.org/10.1146/annurev.physiol.65.092101.142459.
Article
CAS
PubMed
Google Scholar
Dumaswala UJ, Zhuo L, Jacobsen DW, Jain SK, Sukalski KA. Protein and lipid oxidation of banked human erythrocytes: role of glutathione. Free Radic Biol Med. 1999;27(9–10):1041–9. https://doi.org/10.1016/s0891-5849(99)00149-5.
Article
CAS
PubMed
Google Scholar
Seki M, Arashiki N, Takakuwa Y, Nitta K, Nakamura F. Reduction in flippase activity contributes to surface presentation of phosphatidylserine in human senescent erythrocytes. J Cell Mol Med. 2020;24(23):13991–4000. https://doi.org/10.1111/jcmm.16010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bookchin RM, Lew VL. Progressive inhibition of the Ca pump and Ca: Ca exchange in sickle red cells. Nature. 1980;284(5756):561–3. https://doi.org/10.1038/284561a0.
Article
CAS
PubMed
Google Scholar
Shalev O, Mogilner S, Shinar E, Rachmilewitz EA, Schrier SL. Impaired erythrocyte calcium homeostasis in beta-thalassemia. Blood. 1984;64(2):564–6.
Article
CAS
Google Scholar
Huang S, Hou HW, Kanias T, Sertorio JT, Chen H, Sinchar D, et al. Towards microfluidic-based depletion of stiff and fragile human red cells that accumulate during blood storage. Lab Chip. 2015;15(2):448–58. https://doi.org/10.1039/c4lc00768a.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Z, Dou W, Wang C, Sun Y. Stiffness and ATP recovery of stored red blood cells in serum. Microsyst Nanoeng. 2019;5:51. https://doi.org/10.1038/s41378-019-0097-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anguissola S, Garry D, Salvati A, O’Brien PJ, Dawson KA. High content analysis provides mechanistic insights on the pathways of toxicity induced by amine-modified polystyrene nanoparticles. PLoS ONE. 2014;9(9):e108025. https://doi.org/10.1371/journal.pone.0108025.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang F, Salvati A, Boya P. Lysosome-dependent cell death and deregulated autophagy induced by amine-modified polystyrene nanoparticles. Open Biol. 2018;8:4. https://doi.org/10.1098/rsob.170271.
Article
CAS
Google Scholar
Greish K, Thiagarajan G, Herd H, Price R, Bauer H, Hubbard D, et al. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology. 2012;6(7):713–23. https://doi.org/10.3109/17435390.2011.604442.
Article
CAS
PubMed
Google Scholar
Goncalves RA, de Oliveira Franco Rossetto AL, Nogueira DJ, Vicentini DS, Matias WG. Comparative assessment of toxicity of ZnO and amine-functionalized ZnO nanorods toward Daphnia magna in acute and chronic multigenerational tests. Aquat Toxicol. 2018;197:32–40. https://doi.org/10.1016/j.aquatox.2018.02.002.
Article
CAS
PubMed
Google Scholar
Schwarz AE, Ligthart TN, Boukris E, van Harmelen T. Sources, transport, and accumulation of different types of plastic litter in aquatic environments: a review study. Mar Pollut Bull. 2019;143:92–100. https://doi.org/10.1016/j.marpolbul.2019.04.029.
Article
CAS
PubMed
Google Scholar
Zimmermann L, Gottlich S, Oehlmann J, Wagner M, Volker C. What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna. Environ Pollut. 2020;267:115392. https://doi.org/10.1016/j.envpol.2020.115392.
Article
CAS
PubMed
Google Scholar
Ziajahromi S, Kumar A, Neale PA, Leusch FDL. Impact of microplastic beads and fibers on waterflea (Ceriodaphnia dubia) survival, growth, and reproduction: implications of single and mixture exposures. Environ Sci Technol. 2017;51(22):13397–406. https://doi.org/10.1021/acs.est.7b03574.
Article
CAS
PubMed
Google Scholar
Horn DA, Granek EF, Steele CL. Effects of environmentally relevant concentrations of microplastic fibers on Pacific mole crab (Emerita analoga) mortality and reproduction. Limnol Oceanogr Lett. 2020;5(1):74–83. https://doi.org/10.1002/lol2.10137.
Article
Google Scholar
Lim X. Microplastics are everywhere—but are they harmful? Nature. 2021;593(7857):22–5. https://doi.org/10.1038/d41586-021-01143-3.
Article
CAS
PubMed
Google Scholar