Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Jr., Rejeski D, Hull MS: Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 2015, 6:1769–1780, (DOI: https://doi.org/https://doi.org/10.3762/bjnano.6.181).
Natsuki J, Natsuki T, Hashimoto Y. A Review of Silver Nanoparticles: Synthesis Methods, Properties and Applications. Int J Mater Sci Appl. 2015;4:325–32. https://doi.org/. https://doi.org/10.11648/j.ijmsa.20150405.17.
Article
CAS
Google Scholar
Pareek V, Gupta R, Panwar J: Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater Sci Eng C 2018, 90:739–749, (DOI: https://doi.org/https://doi.org/10.1016/j.msec.2018.04.093).
Zhang H, Smith JA, Oyanedel-Craver V: The effect of natural water conditions on the anti-bacterial performance and stability of silver nanoparticles capped with different polymers. Water Res 2012, 46:691–699, (DOI: https://doi.org/https://doi.org/10.1016/j.watres.2011.11.037).
Rajan K, Roppolo I, Chiappone A, Bocchini S, Perrone D, A-C: silver nanoparticle ink technology: state of the art. Nanotechnol Sci Appl 2016, 9:1–13, (DOI: https://doi.org/https://doi.org/10.2147/NSA.S68080).
Campagnolo L, Massimiani M, Vecchione L, Piccirilli D, Toschi N, Magrini A, Bonanno E, Scimeca M, Castagnozzi L, Buonanno G, et al: Silver nanoparticles inhaled during pregnancy reach and affect the placenta and the foetus. Nanotoxicology 2017, 11:687–698, (DOI: https://doi.org/https://doi.org/10.1080/17435390.2017.1343875).
Akter M, Sikder MT, Rahman MM, Ullah A, Hossain KFB, Banik S, Hosokawa T, Saito T, Kurasaki M: A systematic review on silver nanoparticles-induced cytotoxicity: physicochemical properties and perspectives. J Adv Res 2018, 9:1–16, (DOI: https://doi.org/https://doi.org/10.1016/j.jare.2017.10.008).
Nicholas TP, Kavanagh TJ, Faustman EM, Altemeier WA: The effects of gene x environment interactions on silver nanoparticle toxicity in the respiratory system. Chem Res Toxicol 2019, 32:952–968, (DOI: https://doi.org/https://doi.org/10.1021/acs.chemrestox.8b00234).
Moradi-Sardareh H, Basir HRG, Hassan ZM, Davoudi M, Amidi F, Paknejad M: Toxicity of silver nanoparticles on different tissues of Balb/C mice. Life Sci 2018, 211:81–90, (DOI: https://doi.org/https://doi.org/10.1016/j.lfs.2018.09.001).
Braeuning A, Oberemm A, Gorte J, Bohmert L, Juling S, Lampen A: Comparative proteomic analysis of silver nanoparticle effects in human liver and intestinal cells. J Appl Toxicol 2018, 38:638–648, (DOI: https://doi.org/https://doi.org/10.1002/jat.3568).
Juling S, Bohmert L, Lichtenstein D, Oberemm A, Creutzenberg O, Thunemann AF, Braeuning A, Lampen A: Comparative proteomic analysis of hepatic effects induced by nanosilver, silver ions and nanoparticle coating in rats. Food Chem Toxicol 2018, 113:255–266, (DOI: https://doi.org/https://doi.org/10.1016/j.fct.2018.01.056).
Dan M, Wen H, Shao A, Xu L: Silver nanoparticle exposure induces neurotoxicity in the rat Hippocampus without increasing the blood-brain barrier permeability. J Biomed Nanotechnol 2018, 14:1330–1338, (DOI: https://doi.org/https://doi.org/10.1166/jbn.2018.2563).
Scoville DK, Botta D, Galdanes K, Schmuck SC, White CC, Stapleton PL, Bammler TK, MacDonald JW, Altemeier WA, Hernandez M, et al: Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice. FASEB J 2017, 31:4600–4611, (DOI: https://doi.org/https://doi.org/10.1096/fj.201700187R).
Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, O'Shaughnessy PT, Grassian VH, Thorne PS: Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fibre Toxicol 2011, 8:5, (DOI: https://doi.org/https://doi.org/10.1186/1743-8977-8-5).
Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, et al: Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci 2008, 108:452–461, (DOI: https://doi.org/https://doi.org/10.1093/toxsci/kfn246).
Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, et al: Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. InhalToxicol 2008, 20:567–574, (DOI. https://doi.org/https://doi.org/10.1080/08958370701874671).
Kwon J-T, Minai-Tehrani A, Hwang S-K, Kim J-E, Shin J-Y, Yu K-N, Chang S-H, Kim D-S, Kwon Y-T, Choi I-J, et al: Acute pulmonary toxicity and body distribution of inhaled metallic silver nanoparticles. Toxicol Res 2012, 28:25–31, (DOI: https://doi.org/https://doi.org/10.5487/TR.2012.28.1.025).
Lee JH, Kim YS, Song KS, Ryu HR, Sung JH, Park JD, Park HM, Song NW, Shin BS, Marshak D, et al: Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Part Fibre Toxicol 2013, 10:36, (DOI: https://doi.org/https://doi.org/10.1186/1743-8977-10-36).
Braakhuis HM, Gosens I, Krystek P, Boere JA, Cassee FR, Fokkens PH, Post JA, van Loveren H, Park MV: Particle size dependent deposition and pulmonary inflammation after short-term inhalation of silver nanoparticles. Part Fibre Toxicol 2014, 11:49, (DOI: https://doi.org/https://doi.org/10.1186/s12989-014-0049-1).
Yu KN, Sung JH, Lee S, Kim JE, Kim S, Cho WY, Lee AY, Park SJ, Lim J, Park C, et al: Inhalation of titanium dioxide induces endoplasmic reticulum stress-mediated autophagy and inflammation in mice. Food Chem Toxicol 2015, 85:106–113, (DOI: https://doi.org/https://doi.org/10.1016/j.fct.2015.08.001).
Guo C, Buckley A, Marczylo T, Seiffert J, Romer I, Warren J, Hodgson A, Chung KF, Gant TW, Smith R, Leonard MO: The small airway epithelium as a target for the adverse pulmonary effects of silver nanoparticle inhalation. Nanotoxicology 2018, 12:539–553, (DOI: https://doi.org/https://doi.org/10.1080/17435390.2018.1465140).
Seiffert J, Buckley A, Leo B, Martin NG, Zhu J, Dai R, Hussain F, Guo C, Warren J, Hodgson A, et al: Pulmonary effects of inhalation of spark-generated silver nanoparticles in Brown-Norway and Sprague–Dawley rats. Respir Res 2016, 17:85, (DOI: https://doi.org/https://doi.org/10.1186/s12931-016-0407-7).
Hadrup N, Lam HR: Oral toxicity of silver ions, silver nanoparticles and colloidal silver – a review. Regul Toxicol Pharmacol 2014, 68:1–7, (DOI: https://doi.org/https://doi.org/10.1016/j.yrtph.2013.11.002).
Arai Y, Miyayama T, Hirano S: Difference in the toxicity mechanism between ion and nanoparticle forms of silver in the mouse lung and in macrophages. Toxicology 2015, 328:84–92, (DOI: https://doi.org/https://doi.org/10.1016/j.tox.2014.12.014).
Kreyling WG, Möller W, Holzwarth U, Hirn S, Wenk A, Schleh C, Schäffler M, Haberl N, Gibson N, Schittny JC: Age-dependent rat lung deposition patterns of inhaled 20 nanometer gold nanoparticles and their quantitative biokinetics in adult rats. ACS Nano 2018, 12(8):7771–7790, (DOI: https://doi.org/https://doi.org/10.1021/acsnano.8b01826).
Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, Oberdörster G, Ziesenis A: Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health-Part A 2002, 65:1513–1530, (DOI. https://doi.org/https://doi.org/10.1080/00984100290071649.
Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdorster G, Kreyling WG: Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 2004, 16:453–459, (DOI. https://doi.org/https://doi.org/10.1080/08958370490439650.
Semmler-Behnke M, Takenaka S, Fertsch S, Wenk A, Seitz J, Mayer P, Oberdorster G, Kreyling WG: Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect 2007, 115:728–733, (DOI: https://doi.org/https://doi.org/10.1289/ehp.9685).
Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdorster G: Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 2009, 21:55–60, (DOI: https://doi.org/https://doi.org/10.1080/08958370902942517).
Kreyling WG, Holzwarth U, Schleh C, Hirn S, Wenk A, Schäffler M, Haberl N, Semmler-Behnke M, Gibson N: Quantitative biokinetics over a 28 day period of freshly generated, pristine, 20 nm titanium dioxide nanoparticle aerosols in healthy adult rats after a single two-hour inhalation exposure. Part Fibre Toxicol 2019, 16:29, (DOI: https://doi.org/https://doi.org/10.1186/s12989-019-0303-7).
Liu J, Wang Z, Liu FD, Kane AB, Hurt RH: Chemical transformations of nanosilver in biological environments. ACS Nano 2012, 6:9887–9899, (DOI: https://doi.org/https://doi.org/10.1021/nn303449n).
Molleman B, Hiemstra T: Surface structure of silver nanoparticles as a model for understanding the oxidative dissolution of silver ions. Langmuir 2015, 31:13361–13372, (DOI: https://doi.org/https://doi.org/10.1021/acs.langmuir.5b03686).
Li X, Lenhart JJ, Walker HW: Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 2010, 26:16690–16698, (DOI: https://doi.org/https://doi.org/10.1021/la101768n).
Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE, Tanguay RL, Di Giulio RT, et al: Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 2013, 47:13440–13448, (DOI: https://doi.org/https://doi.org/10.1021/es403527n).
Levard C, Mitra S, Yang T, Jew AD, Badireddy AR, Lowry GV, Brown GE: Effect of chloride on the dissolution rate of silver nanoparticles and toxicity to E. coli. Environ Sci Technol 2013, 47:5738–5745, (DOI: https://doi.org/https://doi.org/10.1021/es400396f).
Mwilu SK, El Badawy AM, Bradham K, Nelson C, Thomas D, Scheckel KG, Tolaymat T, Ma L, Rogers KR: Changes in silver nanoparticles exposed to human synthetic stomach fluid: effects of particle size and surface chemistry. Sci Total Environ 2013, 447:90–98, (DOI: https://doi.org/https://doi.org/10.1016/j.scitotenv.2012.12.036).
Jiang X, Wu Y, Gray P, Zheng J, Cao G, Zhang H, Zhang X, Boudreau M, Croley TR, Chen C, Yin J-J: Influence of gastrointestinal environment on free radical generation of silver nanoparticles and implications for their cytotoxicity. NanoImpact 2018, 10:144–152, (DOI: https://doi.org/https://doi.org/10.1016/j.impact.2018.04.001).
Levard C, Reinsch BC, Michel FM, Oumahi C, Lowry GV, Brown GE: Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate. Environ Sci Technol 2011, 45:5260–5266, (DOI: https://doi.org/https://doi.org/10.1021/es2007758).
Juling S, Bachler G, von Götz N, Lichtenstein D, Böhmert L, Niedzwiecka A, Selve S, Braeuning A, Lampen A: In vivo distribution of nanosilver in the rat: the role of ions and de novo-formed secondary particles. Food Chem Toxicol 2016, 97:327–335, (DOI: https://doi.org/https://doi.org/10.1016/j.fct.2016.08.016).
van der Zande M, Vandebriel RJ, Van Doren E, Kramer E, Herrera Rivera Z, Serrano-Rojero CS, Gremmer ER, Mast J, Peters RJ, Hollman PC, et al: Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure. ACS Nano 2012, 6:7427–7442, (DOI: https://doi.org/https://doi.org/10.1021/nn302649p).
Loeschner K, Hadrup N, Qvortrup K, Larsen A, Gao X, Vogel U, Mortensen A, Lam HR, Larsen EH: Distribution of silver in rats following 28 days of repeated oral exposure to silver nanoparticles or silver acetate. Part Fibre Toxicol 2011, 8:18, (DOI: https://doi.org/https://doi.org/10.1186/1743-8977-8-18).
Aaseth J, Olsen A, Halse J, Hovig T: Argyria-tissue deposition of silver as selenide. Scand J Clin Lab Invest 1981, 41:247–251, (DOI: https://doi.org/https://doi.org/10.3109/00365518109092041).
Hadrup N, Sharma AK, Loeschner K: Toxicity of silver ions, metallic silver, and silver nanoparticle materials after in vivo dermal and mucosal surface exposure: a review. Regul Toxicol Pharmacol 2018, 98:257–267, (DOI: https://doi.org/https://doi.org/10.1016/j.yrtph.2018.08.007).
Danscher G, Stoltenberg M: Silver enhancement of quantum dots resulting from (1) metabolism of toxic metals in animals and humans, (2) in vivo, in vitro and immersion created zinc-sulphur/zinc-selenium nanocrystals, (3) metal ions liberated from metal implants and particles. Prog Histochem Cytochem 2006, 41:57–139, (DOI. https://doi.org/https://doi.org/10.1016/j.proghi.2006.06.001.
Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J: Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 2001, 109:547–551, (DOI: https://doi.org/https://doi.org/10.1289/ehp.01109s4547.
Kittler S, Greulich C, Diendorf J, Koller M, Epple M: Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 2010, 22:4548–4554, (DO:. https://doi.org/https://doi.org/10.1021/cm100023p.
Loza K, Diendorf J, Sengstock C, Ruiz-Gonzalez L, Gonzalez-Calbet JM, Vallet-Regi M, Koller M, Epple M: The dissolution and biological effects of silver nanoparticles in biological media. J Mater Chem B 2014, 2:1634–1643, (DOI: https://doi.org/https://doi.org/10.1039/c3tb21569e).
Oeff K, Konig A. Blood volume of rat organs and residual amount of blood after blood letting or irrigation; determination with radiophosphorus-labeled erythrocytes. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1955;226:98–102.
Article
CAS
Google Scholar
Sancho-Albero M, Navascués N, Mendoza G, Sebastián V, Arruebo M, Martín-Duque P, Santamaría J: Exosome origin determines cell targeting and the transfer of therapeutic nanoparticles towards target cells. J Nanobiotechnol 2019, 17:16, (DOI: https://doi.org/https://doi.org/10.1186/s12951-018-0437-z).
Logozzi M, Mizzoni D, Bocca B, Di Raimo R, Petrucci F, Caimi S, Alimonti A, Falchi M, Cappello F, Campanella C, et al: Human primary macrophages scavenge AuNPs and eliminate it through exosomes. A natural shuttling for nanomaterials. Eur J Pharm Biopharm 2019, 137:23–36, (DOI: https://doi.org/https://doi.org/10.1016/j.ejpb.2019.02.014).
Mário F, Ivo L, José T, Cláudia B, Andreia CG: Exosome-like nanoparticles: a new type of nanocarrier. Curr Med Chem 2019, 26:1–15, (DOI: http://dx.doi.org/https://doi.org/10.2174/0929867326666190129142604).
Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Bawendi MG, Frangioni JV: Renal clearance of quantum dots. Nat Biotechnol 2007, 25:1165–1170, (DOI. https://doi.org/https://doi.org/10.1038/nbt1340.
Kreyling WG, Hirn S, Moller W, Schleh C, Wenk A, Celik G, Lipka J, Schaffler M, Haberl N, Johnston BD, et al: Air-blood barrier translocation of tracheally instilled gold nanoparticles inversely depends on particle size. ACS Nano 2014, 8:222–233, (DOI: https://doi.org/https://doi.org/10.1021/nn403256v).
Hirn S, Semmler-Behnke M, Schleh C, Wenk A, Lipka J, Schaffler M, Takenaka S, Moller W, Schmid G, Simon U, Kreyling WG: Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm 2011, 77:407–416, (DOI: https://doi.org/https://doi.org/10.1016/j.ejpb.2010.12.029).
Recordati C, De Maglie M, Bianchessi S, Argentiere S, Cella C, Mattiello S, Cubadda F, Aureli F, D'Amato M, Raggi A, et al: Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects. Part Fibre Toxicol 2016, 13:12, (DOI: https://doi.org/https://doi.org/10.1186/s12989-016-0124-x).
Lankveld DPK, Oomen AG, Krystek P, Neigh A, Troost – de Jong a, Noorlander CW, Van Eijkeren JCH, Geertsma RE, De Jong WH: the kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 2010, 31:8350–8361, (DOI: https://doi.org/https://doi.org/10.1016/j.biomaterials.2010.07.045).
Zhang Y-N, Poon W, Tavares AJ, McGilvray ID, Chan WCW: Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J Control Release 2016, 240:332–348, (DOI: https://doi.org/https://doi.org/10.1016/j.jconrel.2016.01.020).
Longmire M, Choyke PL, Kobayashi H: Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine (Lond) 2008, 3:703–717, (DOI: https://doi.org/https://doi.org/10.2217/17435889.3.5.703).
Hainfeld JF, Slatkin DN, Smilowitz HM: The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 2004, 49:N309-N315, (DOI. https://doi.org/https://doi.org/10.1088/0031-9155/49/18/n03.
Osier M, Baggs RB, Oberdorster G: Intratracheal instillation versus intratracheal inhalation: influence of cytokines on inflammatory response. Environ Health Perspect 1997, 105 Suppl 5:1265–1271, (DOI. https://doi.org/https://doi.org/10.1289/ehp.97105s51265.
Kreyling WG, Biswas P, Messing ME, Gibson N, Geiser M, Wenk A, Sahu M, Deppert K, Cydzik I, Wigge C, et al: Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies. J Nanopart Res 2011, 13:511–524, (DOI: https://doi.org/https://doi.org/10.1007/s11051-010-0081-5).
Kreyling WG, Holzwarth U, Haberl N, Kozempel J, Wenk A, Hirn S, Schleh C, Schäffler M, Lipka J, Semmler-Behnke M, Gibson N: Quantitative biokinetics of titanium dioxide nanoparticles after intratracheal instillation in rats: part 3. Nanotoxicology 2017, 11:454–464, (DOI: https://doi.org/https://doi.org/10.1080/17435390.2017.1306894).
Kreyling WG, Holzwarth U, Haberl N, Kozempel J, Hirn S, Wenk A, Schleh C, Schäffler M, Lipka J, Semmler-Behnke M, Gibson N: Quantitative biokinetics of titanium dioxide nanoparticles after intravenous injection in rats: part 1. Nanotoxicology 2017, 11:434–442, (DOI: https://doi.org/https://doi.org/10.1080/17435390.2017.1306892).
Kreyling WG, Holzwarth U, Schleh C, Kozempel J, Wenk A, Haberl N, Hirn S, Schäffler M, Lipka J, Semmler-Behnke M, Gibson N: Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: part 2. Nanotoxicology 2017, 11:443–453, (DOI: https://doi.org/https://doi.org/10.1080/17435390.2017.1306893).